首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ML Hanke  A Angle  T Kielian 《PloS one》2012,7(8):e42476
Bacterial biofilms represent a significant therapeutic challenge based on their ability to evade host immune and antibiotic-mediated clearance. Recent studies have implicated IL-1β in biofilm containment, whereas Toll-like receptors (TLRs) had no effect. This is intriguing, since both the IL-1 receptor (IL-1R) and most TLRs impinge on MyD88-dependent signaling pathways, yet the role of this key adaptor in modulating the host response to biofilm growth is unknown. Therefore, we examined the course of S. aureus catheter-associated biofilm infection in MyD88 knockout (KO) mice. MyD88 KO animals displayed significantly increased bacterial burdens on catheters and surrounding tissues during early infection, which coincided with enhanced dissemination to the heart and kidney compared to wild type (WT) mice. The expression of several proinflammatory mediators, including IL-6, IFN-γ, and CXCL1 was significantly reduced in MyD88 KO mice, primarily at the later stages of infection. Interestingly, immunofluorescence staining of biofilm-infected tissues revealed increased fibrosis in MyD88 KO mice concomitant with enhanced recruitment of alternatively activated M2 macrophages. Taken in the context of previous studies with IL-1β, TLR2, and TLR9 KO mice, the current report reveals that MyD88 signaling is a major effector pathway regulating fibrosis and macrophage polarization during biofilm formation. Together these findings represent a novel example of the divergence between TLR and MyD88 action in the context of S. aureus biofilm infection.  相似文献   

2.
The role of IL-17 in atherogenesis remains controversial. We previously reported that the TLR/MyD88 signaling pathway plays an important role in high-fat diet as well as Chlamydophila pneumoniae infection-mediated acceleration of atherosclerosis in apolipoprotein E-deficient mice. In this study, we investigated the role of the IL-17A in high-fat diet (HFD)- and C. pneumoniae-induced acceleration of atherosclerosis. The aortic sinus plaque and aortic lesion size and lipid composition as well as macrophage accumulation in the lesions were significantly diminished in IL-17A(-/-) mice fed an HFD compared with wild-type (WT) C57BL/6 control mice. As expected, C. pneumoniae infection led to a significant increase in size and lipid content of the atherosclerotic lesions in WT mice. However, IL-17A(-/-) mice developed significantly less acceleration of lesion size following C. pneumoniae infection compared with WT control despite similar levels of blood cholesterol levels. Furthermore, C. pneumoniae infection in WT but not in IL-17A(-/-) mice was associated with significant increases in serum concentrations of IL-12p40, CCL2, IFN-γ, and numbers of macrophages in their plaques. Additionally, in vitro studies suggest that IL-17A activates vascular endothelial cells, which secrete cytokines that in turn enhance foam cell formation in macrophages. Taken together, our data suggest that IL-17A is proatherogenic and that it plays an important role in both diet-induced atherosclerotic lesion development, and C. pneumoniae infection-mediated acceleration of atherosclerotic lesions in the presence of HFD.  相似文献   

3.
Myeloid differentiation factor 88 (MyD88) is an essential adaptor protein in the Toll-like receptor-mediated innate signaling pathway, as well as in interleukin-1 receptor (IL-1R) and IL-18R signaling. The importance of MyD88 in the regulation of innate immunity to microbial pathogens has been well demonstrated. However, its role in regulating acquired immunity to viral pathogens and neuropathogenesis is not entirely clear. In the present study, we examine the role of MyD88 in the CD4+ T-cell response following lymphocytic choriomeningitis virus (LCMV) infection. We demonstrate that wild-type (WT) mice developed a CD4+ T-cell-mediated wasting disease after intracranial infection with LCMV. In contrast, MyD88 knockout (KO) mice did not develop wasting disease in response to the same infection. This effect was not the result of MyD88 regulation of IL-1 or IL-18 responses since IL-1R1 KO and IL-18R KO mice were not protected from weight loss. In the absence of MyD88, naïve CD4+ T cells failed to differentiate to LCMV-specific CD4 T cells. We demonstrated that MyD88 KO antigen-presenting cells are capable of activating WT CD4+ T cells. Importantly, when MyD88 KO CD4+ T cells were reconstituted with an MyD88-expressing lentivirus, the rescued CD4+ T cells were able to respond to LCMV infection and support IgG2a antibody production. Overall, these studies reveal a previously unknown role of MyD88-dependent signaling in CD4+ T cells in the regulation of the virus-specific CD4+ T-cell response and in viral infection-induced immunopathology in the central nervous system.  相似文献   

4.
GPIs isolated from Toxoplasma gondii, as well as a chemically synthesized GPI lacking the lipid moiety, activated a reporter gene in Chinese hamster ovary cells expressing TLR4, while the core glycan and lipid moieties cleaved from the GPIs activated both TLR4- and TLR2-expressing cells. MyD88, but not TLR2, TLR4, or CD14, is absolutely needed to trigger TNF-alpha production by macrophages exposed to T. gondii GPIs. Importantly, TNF-alpha response to GPIs was completely abrogated in macrophages from TLR2/4-double-deficient mice. MyD88(-/-) mice were more susceptible to death than wild-type (WT), TLR2(-/-), TLR4(-/-), TLR2/4(-/-), and CD14(-/-) mice infected with the ME-49 strain of T. gondii. The cyst number was higher in the brain of TLR2/4(-/-), but not TLR2(-/-), TLR4(-/-), and CD14(-/-), mice, as compared with WT mice. Upon infection with the ME-49 strain of T. gondii, we observed no decrease of IL-12 and IFN-gamma production in TLR2-, TLR4-, or CD14-deficient mice. Indeed, splenocytes from T. gondii-infected TLR2(-/-) and TLR2/4(-/-) mice produced more IFN-gamma than cells from WT mice in response to in vitro stimulation with parasite extracts enriched in GPI-linked surface proteins. Together, our results suggest that both TLR2 and TLR4 receptors may participate in the host defense against T. gondii infection through their activation by the GPIs and could work together with other MyD88-dependent receptors, like other TLRs or even IL-18R or IL-1R, to obtain an effective host response against T. gondii infection.  相似文献   

5.
Myeloid differentiation factor 88 (MyD88) is an adapter molecule required for signal transduction via Toll-like receptors (TLRs) and receptors of the IL-1 family. Consequently, MyD88-deficient mice are highly susceptible to bacterial infections, including systemic infection with Staphylococcus aureus. To determine the role of MyD88 in innate immunity to bacterial pneumonia, we exposed MyD88-deficient and wild-type mice to aerosolized Pseudomonas aeruginosa or S. aureus. As predicted, MyD88-deficient mice failed to mount an early cytokine or inflammatory response or to control bacterial replication after infection with P. aeruginosa, which resulted in necrotizing pneumonia and death. By contrast, MyD88-deficient mice controlled S. aureus infection despite blunted local cytokine and inflammatory responses. Thus, whereas MyD88-dependent signaling is integral to the initiation of cytokine and inflammatory responses to both pathogens following infection of the lower respiratory tract, MyD88 is essential for innate immunity to P. aeruginosa but not S. aureus.  相似文献   

6.
7.
Brain abscesses form in response to a parenchymal infection by pyogenic bacteria, with Staphylococcus aureus representing a common etiologic agent of human disease. Numerous receptors that participate in immune responses to bacteria, including the majority of TLRs, the IL-1R, and the IL-18R, use a common adaptor molecule, MyD88, for transducing activation signals leading to proinflammatory mediator expression and immune effector functions. To delineate the importance of MyD88-dependent signals in brain abscesses, we compared disease pathogenesis using MyD88 knockout (KO) and wild-type (WT) mice. Mortality rates were significantly higher in MyD88 KO mice, which correlated with a significant reduction in the expression of several proinflammatory mediators, including but not limited to IL-1beta, TNF-alpha, and MIP-2/CXCL2. These changes were associated with a significant reduction in neutrophil and macrophage recruitment into brain abscesses of MyD88 KO animals. In addition, microglia, macrophages, and neutrophils isolated from the brain abscesses of MyD88 KO mice produced significantly less TNF-alpha, IL-6, MIP-1alpha/CCL3, and IFN-gamma-induced protein 10/CXCL10 compared with WT cells. The lack of MyD88-dependent signals had a dramatic effect on the extent of tissue injury, with significantly larger brain abscesses typified by exaggerated edema and necrosis in MyD88 KO animals. Interestingly, despite these striking changes in MyD88 KO mice, bacterial burdens did not significantly differ between the two strains at the early time points examined. Collectively, these findings indicate that MyD88 plays an essential role in establishing a protective CNS host response during the early stages of brain abscess development, whereas MyD88-independent pathway(s) are responsible for pathogen containment.  相似文献   

8.
The innate immune system responds to endogenous molecules released during cellular stress or those that have undergone modifications normally absent in healthy tissue. These structures are detected by pattern-recognition receptors, alerting the immune system to "danger." In this study, we looked for early signals that direct immune cells to cells undergoing stress before irreversible damage takes place. To avoid detecting signals emanating from apoptotic or necrotic cells we exposed fibroblasts to sublethal oxidative stress. Our results indicate that both nonenzymatic chemical reactions and aldehyde dehydrogenase-2-mediated enzymatic activity released signals from fibroblasts that selectively attracted CD14(+) monocytes but not T, NK, and NKT cells or granulocytes. Splenocytes from MyD88(-/-) mice did not migrate, and treatment with an inhibitory peptide that blocks MyD88 dimerization abrogated human monocyte migration. Monocyte migration was accompanied by downmodulation of CD14 expression and by the phosphorylation of IL-1R-associated kinase 1, a well-known MyD88-dependent signaling molecule. The scavenger receptor inhibitors, dextran sulfate and fucoidan, attenuated monocyte migration toward stressed cells and IL-1R-associated kinase 1 phosphorylation. Surprisingly, although monocyte migration was MyD88 dependent, it was not accompanied by inflammatory cytokine secretion. Taken together, these results establish a novel link between scavenger receptors and MyD88 that together function as sensors of oxidation-associated molecular patterns and induce monocyte motility. Furthermore, the data indicate that MyD88 independently regulates monocyte activation and motility.  相似文献   

9.
10.
11.
Inflammation is critically involved in atherogenesis. Signaling from innate immunity receptors TLR2 and 4, IL-1 and IL-18 is mediated by MyD88 and further by interleukin-1 receptor activated kinases (IRAK) 4 and 1. We hypothesized that IRAK4 kinase activity is critical for development of atherosclerosis. IRAK4 kinase-inactive knock-in mouse was crossed with the ApoE−/− mouse. Lesion development was stimulated by carotid ligation. IRAK4 functional deficiency was associated with down-regulation of several pro-inflammatory genes, inhibition of macrophage infiltration, smooth muscle cell and lipid accumulation in vascular lesions. Reduction of plaque size and inhibition of outward remodeling were also observed. Similar effects were observed when ApoE−/− mice subjected to carotid ligation were treated with recombinant IL-1 receptor antagonist thereby validating the model in the relevant pathway context. Thus, IRAK4 functional deficiency inhibits vascular lesion formation in ApoE−/− mice, which further unravels mechanisms of vascular inflammation and identifies IRAK4 as a potential therapeutic target.  相似文献   

12.
We have explored the pathological role of the MyD88 signaling pathway via Toll-like receptors (TLRs) that mediate the recognition of pathogen-associated molecular patterns (PAMPs) in a murine model of autoimmune hepatitis induced by administering Concanavalin A (ConA). We first found that various TLRs and MyD88 molecules were expressed in liver of Con A-treated and untreated wild-type (WT) mice including liver macrophages. Flowcytometric analysis revealed that liver CD11b+CD11c and CD11b+CD11c+ antigen-presenting cells express TLR2, although NK and NKT cells did not. When WT and MyD88−/− mice were intravenously administered with Con A, the severity of hepatitis was significantly lower in Con A-injected MyD88−/− mice than in WT mice in terms of the histopathology, the levels of serum transaminase and pro-inflammatory cytokines (TNF-α, IFN-γ, and IL-6), and upregulation of CD80/CD86 and TNF-α on/in liver macrophages. The results provide evidence of a possible contribution of the TLRs-MyD88 signaling pathway in activating TLR-expressing liver macrophages in the autoimmune hepatitis model, and thus indicate that the strategy of blockade of pathological pathogens via the intestinal lumen may be feasible for the treatment of the disease.  相似文献   

13.
Experimental and clinical studies link Chlamydia pneumoniae infection to atherogenesis and atherothrombotic events, but the underlying mechanisms are unclear. We tested the hypothesis that C. pneumoniae-induced acceleration of atherosclerosis in apolipoprotein E (ApoE)(-/-) mice is reciprocally modulated by activation of TLR-mediated innate immune and liver X receptor alpha (LXRalpha) signaling pathways. We infected ApoE(-/-) mice and ApoE(-/-) mice that also lacked TLR2, TLR4, MyD88, or LXRalpha intranasally with C. pneumoniae followed by feeding of a high fat diet for 4 mo. Mock-infected littermates served as controls. Atherosclerosis was assessed in aortic sinuses and in en face preparation of whole aorta. The numbers of activated dendritic cells (DCs) within plaques and the serum levels of cholesterol and proinflammatory cytokines were also measured. C. pneumoniae infection markedly accelerated atherosclerosis in ApoE-deficient mice that was associated with increased numbers of activated DCs in aortic sinus plaques and higher circulating levels of MCP-1, IL-12p40, IL-6, and TNF-alpha. In contrast, C. pneumoniae infection had only a minimal effect on atherosclerosis, accumulation of activated DCs in the sinus plaques, or circulating cytokine increases in ApoE(-/-) mice that were also deficient in TLR2, TLR4, or MyD88. However, C. pneumoniae-induced acceleration of atherosclerosis in ApoE(-/-) mice was further enhanced in ApoE(-/-)LXRalpha(-/-) double knockout mice and was accompanied by higher serum levels of IL-6 and TNF-alpha. We conclude that C. pneumoniae infection accelerates atherosclerosis in hypercholesterolemic mice predominantly through a TLR/MyD88-dependent mechanism and that LXRalpha appears to reciprocally modulate and reduce the proatherogenic effects of C. pneumoniae infection.  相似文献   

14.
The IL-1R/Toll-like receptor (TLR) superfamily of receptors has a key role in innate immunity and inflammation. In this study, we report that streptococcal cell wall (SCW)-induced joint inflammation is predominantly dependent on TLR-2 signaling, since TLR-2-deficient mice were unable to develop either joint swelling or inhibition of cartilage matrix synthesis. Myeloid differentiation factor 88 (MyD88) is a Toll/IL-1R domain containing adaptor molecule known to have a central role in both IL-1R/IL-18R and TLR signaling. Mice deficient for MyD88 did not develop SCW-induced arthritis; both joint swelling and disturbance of cartilage chondrocyte anabolic function was completely abolished. Local levels of proinflammatory cytokines and chemokines in synovial tissue washouts were strongly reduced in MyD88-deficient mice. Histology confirmed the pivotal role of MyD88 in acute joint inflammation. TLR-2-deficient mice still allow influx of inflammatory cells into the joint cavity, although the number of cells was markedly reduced. No influx of inflammatory cells was seen in joints of MyD88-deficient mice. In addition, cartilage matrix proteoglycan loss was completely absent in MyD88 knockout mice. These findings clearly demonstrated that MyD88 is a key component in SCW-induced joint inflammation. Since agonists of the Toll-like pathway are abundantly involved in both septic and rheumatoid arthritis, targeting of MyD88 may be a novel therapy in inflammatory joint diseases.  相似文献   

15.
The incidence of infections with Enterococcus faecium is increasing worldwide. TLRs have been implicated in the recognition of pathogens and the initiation of an adequate innate immune response. We here sought to determine the roles of MyD88, the common adaptor protein involved in TLR signaling, TLR2, TLR4, and CD14 in host defense against E. faecium peritonitis. MyD88 knockout (KO) mice demonstrated an impaired early response to E. faecium peritonitis, as reflected by higher bacterial loads in peritoneal fluid and liver accompanied by a markedly attenuated neutrophil influx into the abdominal cavity. In vitro, not only MyD88 KO macrophages but also TLR2 KO and CD14 KO macrophages displayed a reduced responsiveness to E. faecium. In accordance, transfection of TLR2 rendered human embryonic kidney 293 cells responsive to E. faecium, which was enhanced by cotransfection of CD14. TLR2 KO mice showed higher bacterial loads in peritoneal fluid after in vivo infection with E. faecium and a diminished influx of neutrophils, whereas CD14 KO mice had an unaltered host response. E. faecium phagocytosis and killing were not affected by MyD88, TLR2, or CD14 deficiency. TLR4 did not play a role in the immune response to E. faecium in vitro or in vivo. These data suggest that MyD88 contributes to the effective clearance of E. faecium during peritonitis at least in part via TLR2 and by facilitating neutrophil recruitment to the site of the infection.  相似文献   

16.
TLRs are important for the recognition of conserved motifs expressed by invading bacteria. TLR4 is the signaling receptor for LPS, the major proinflammatory component of the Gram-negative cell wall, whereas CD14 serves as the ligand-binding part of the LPS receptor complex. Triggering of TLR4 results in the activation of two distinct intracellular pathways, one that relies on the common TLR adaptor MyD88 and one that is mediated by Toll/IL-1R domain-containing adaptor-inducing IFN-beta (TRIF). Nontypeable Haemophilus influenzae (NTHi) is a common Gram-negative respiratory pathogen that expresses both TLR4 (LPS and lipooligosaccharide) and TLR2 (lipoproteins) ligands. To determine the roles of CD14, TLR4, and TLR2 during NTHi pneumonia, the following studies were performed: 1) Alveolar macrophages from CD14 and TLR4 knockout (KO) mice were virtually unresponsive to NTHi in vitro, whereas TLR2 KO macrophages displayed a reduced NTHi responsiveness. 2) After intranasal infection with NTHi, CD14 and TLR4 KO mice showed an attenuated early inflammatory response in their lungs, which was associated with a strongly reduced clearance of NTHi from the respiratory tract; in contrast, in TLR2 KO mice, lung inflammation was unchanged, and the number of NTHi CFU was only modestly increased at the end of the 10-day observation period. 3) MyD88 KO, but not TRIF mutant mice showed an increased bacterial load in their lungs upon infection with NTHi. These data suggest that the MyD88-dependent pathway of TLR4 is important for an effective innate immune response to respiratory tract infection caused by NTHi.  相似文献   

17.
Cattle and humans are susceptible to infection with the Gram-negative intracellular bacterium Brucella abortus. Heat-killed B. abortus (HKBA) is a strong Th1 adjuvant and carrier. Previously, we have demonstrated that dendritic cells produce IL-12 in response to HKBA stimulation. In the present study, we use knockout mice and in vitro reconstitution assays to examine the contribution of signaling by Toll-like receptors (TLRs) and their immediate downstream signaling initiator, myeloid differentiation protein MyD88, in the activation following stimulation by HKBA. Our results show that HKBA-mediated induction of IL-12p40 and TNF is dependent on the adapter molecule MyD88. To identify the TLR involved in HKBA recognition, we examined HKBA responses in TLR2- and TLR4-deficient animals. TNF responses to HKBA were TLR4 independent; however, the response in TLR2-deficient mice was significantly delayed and reduced, although not completely abolished. Studies using Chinese hamster ovary/CD14 reporter cell lines stably transfected with either human TLR2 or human TLR4 confirmed the results seen with knockout mice, namely TLR2, but not TLR4, can mediate cellular activation by HKBA. In addition, human embryonic kidney 293 cells, which do not respond to HKBA, were made responsive by transfecting TLR2, but not TLR4 or TLR9. Taken together, our data demonstrate that MyD88-dependent pathways are crucial for activation by HKBA and that TLR2 plays a role in TNF, but not IL-12p40 pathways activated by this microbial product.  相似文献   

18.
Toll-like receptors (TLRs) are known predominantly for their role in activating the innate immune response. Recently, TLR signaling via MyD88 has been reported to play an important function in development of a B-cell response. Since B cells are a major latency reservoir for murine gammaherpesvirus 68 (MHV68), we investigated the role of TLR signaling in the establishment and maintenance of MHV68 latency in vivo. Mice deficient in MyD88 (MyD88(-/-)) or TLR3 (TLR3(-/-)) were infected with MHV68. Analysis of splenocytes recovered at day 16 postinfection from MyD88(-/-) mice compared to those from wild-type control mice revealed a lower frequency of (i) activated B cells, (ii) germinal-center B cells, and (iii) class-switched B cells. Accompanying this substantial defect in the B-cell response was an approximately 10-fold decrease in the establishment of splenic latency. In contrast, no defect in viral latency was observed in TLR3(-/-) mice. Analysis of MHV68-specific antibody responses also demonstrated a substantial decrease in the kinetics of the response in MyD88(-/-) mice. Analysis of wild-type x MyD88(-/-) mixed-bone-marrow chimeric mice demonstrated that there is a selective failure of MyD88(-/-) B cells to participate in germinal-center reactions as well as to become activated and undergo class switching. In addition, while MHV68 established latency efficiently in the MyD88-sufficient B cells, there was again a ca. 10-fold reduction in the frequency of MyD88(-/-) B cells harboring latent MHV68. This phenotype indicates that MyD88 is important for the establishment of MHV68 latency and is directly related to the role of MyD88 in the generation of a B-cell response. Furthermore, the generation of a B-cell response to MHV68 was intrinsic to B cells and was independent of the interleukin-1 receptor, a cytokine receptor that also signals through MyD88. These data provide evidence for a unique role for MyD88 in the establishment of MHV68 latency.  相似文献   

19.
MyD88, the common adapter involved in TLR, IL-1, and IL-18 receptor signaling, is essential for the control of acute Mycobacterium tuberculosis (MTB) infection. Although TLR2, TLR4, and TLR9 have been implicated in the response to mycobacteria, gene disruption for these TLRs impairs only the long-term control of MTB infection. Here, we addressed the respective role of IL-1 and IL-18 receptor pathways in the MyD88-dependent control of acute MTB infection. Mice deficient for IL-1R1, IL-18R, or Toll-IL-1R domain-containing adaptor protein (TIRAP) were compared with MyD88-deficient mice in an acute model of aerogenic MTB infection. Although primary MyD88-deficient macrophages and dendritic cells were defective in cytokine production in response to mycobacterial stimulation, IL-1R1-deficient macrophages exhibited only a reduced IL-12p40 secretion with unaffected TNF, IL-6, and NO production and up-regulation of costimulatory molecules CD40 and CD86. Aerogenic MTB infection of IL-1R1-deficient mice was lethal within 4 wk with 2-log higher bacterial load in the lung and necrotic pneumonia but efficient pulmonary CD4 and CD8 T cell responses, as seen in MyD88-deficient mice. Mice deficient for IL-18R or TIRAP controlled acute MTB infection. These data demonstrate that absence of IL-1R signal leads to a dramatic defect of early control of MTB infection similar to that seen in the absence of MyD88, whereas IL-18R and TIRAP are dispensable, and that IL-1, together with IL-1-induced innate response, might account for most of MyD88-dependent host response to control acute MTB infection.  相似文献   

20.
Inflammation contributes to the pathogenesis of chronic kidney disease (CKD). Molecules released by the inflamed injured tissue can activate toll-like receptors (TLRs), thereby modulating macrophage and CD4+ T-cell activity. We propose that in renal fibrogenesis, M2 macrophages are recruited and activated in a T helper subset 2 cell (TH2)-prone inflammatory milieu in a MyD88-dependent manner. Mice submitted to unilateral ureteral ligation (UUO) demonstrated an increase in macrophage infiltration with collagen deposition after 7 d. Conversely, TLR2, TLR4 and MyD88 knockout (KO) mice had an improved renal function together with diminished TH2 cytokine production and decreased fibrosis formation. Moreover, TLR2, TLR4 and MyD88 KO animals exhibited less M2 macrophage infiltration, namely interleukin (IL)-10+ and CD206+ CD11bhigh cells, at 7 d after surgery. We evaluated the role of a TH2 cytokine in this context, and observed that the absence of IL-4 was associated with better renal function, decreased IL-13 and TGF-β levels, reduced arginase activity and a decrease in fibrosis formation when compared with IL-12 KO and wild-type (WT) animals. Indeed, the better renal outcomes and the decreased fibrosis formation were restricted to the deficiency of IL-4 in the hematopoietic compartment. Finally, macrophage depletion, rather than the absence of T cells, led to reduced lesions of the glomerular filtration barrier and decreased collagen deposition. These results provide evidence that future therapeutic strategies against renal fibrosis should be accompanied by the modulation of the M1:M2 and TH1:TH2 balance, as TH2 and M2 cells are predictive of fibrosis toward mechanisms that are sensed by innate immune response and triggered in a MyD88-dependent pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号