首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Somatic hypermutation in the variable regions of immunoglobulin genes is required to produce high affinity antibody molecules. Somatic hypermutation results by processing G.U mismatches generated when activation-induced cytidine deaminase (AID) deaminates C to U. Mutations at C/G sites are targeted mainly at deamination sites, whereas mutations at A/T sites entail error-prone DNA gap repair. We used B-cell lysates to analyze salient features of somatic hypermutation with in vitro mutational assays. Tonsil and hypermutating Ramos B-cells convert C-->U in accord with AID motif specificities, whereas HeLa cells do not. Using tonsil cell lysates to repair a G.U mismatch, A/T and G/C targeted mutations occur about equally, whereas Ramos cell lysates make fewer mutations at A/T sites (approximately 24%) compared with G/C sites (approximately 76%). In contrast, mutations in HeLa cell lysates occur almost exclusively at G/C sites (> 95%). By recapitulating two basic features of B-cell-specific somatic hypermutation, G/C mutations targeted to AID hot spot motifs and elevated A/T mutations dependent on error-prone processing of G.U mispairs, these cell free assays provide a practical method to reconstitute error-prone mismatch repair using purified B-cell proteins.  相似文献   

2.
Somatic hypermutation of immunoglobulin (Ig) genes occurs at a frequency that is a million times greater than the mutation in other genes. Mutations occur in variable genes to increase antibody affinity, and in switch regions before constant genes to cause switching from IgM to IgG. Hypermutation is initiated in activated B cells when the activation-induced deaminase protein deaminates cytosine in DNA to uracil. Uracils can be processed by either a mutagenic pathway to produce mutations or a non-mutagenic pathway to remove mutations. In the mutagenic pathway, we first studied the role of mismatch repair proteins, MSH2, MSH3, MSH6, PMS2 and MLH1, since they would recognize mismatches. The MSH2–MSH6 heterodimer is involved in hypermutation by binding to U:G and other mismatches generated during repair synthesis, but the other proteins are not necessary. Second, we analysed the role of low-fidelity DNA polymerases η, ι and θ in synthesizing mutations, and conclude that polymerase η is the dominant participant by generating mutations at A:T base pairs. In the non-mutagenic pathway, we examined the role of the Cockayne syndrome B protein that interacts with other repair proteins. Mice deficient in this protein had normal hypermutation and class switch recombination, showing that it is not involved.  相似文献   

3.
4.
5.
6.
7.
Class switch recombination (CSR) and somatic hypermutation (SHM) of immunoglobulin (Ig) genes are initiated by the activation-induced cytosine deaminase AID. The resulting uracils in Ig genes were believed to be removed by the uracil glycosylase (UNG) and the resulting abasic sites treated in an error-prone fashion, creating breaks in the Ig switch regions and mutations in the variable regions. A recent report suggests that UNG does not act as a glycosylase in CSR and SHM but rather has unknown activity subsequent to DNA breaks that were created by other mechanisms.  相似文献   

8.
9.
Summary T lymphocytes of higher vertebrates are able to specifically recognize a seemingly unlimited number of foreign antigens via their receptors, the T cell antigen receptors (TCRs). T lymphocytes mature by passing through the thymus and acquire antigen specificity by expressing the TCR molecules on their cell surface. Genetic and somatic diversification mechanisms give rise to the enormous degree of TCR variability observed in mature T cells: germline and combinatorial diversity as well as junctional and the so-called N-region diversity. In contrast to the situation in immunoglobulin genes somatic hypermutation does not seem to play a significant role in TCR diversification. It is argued here that the enzyme terminal nucleotidyl-transferase is potentially a major factor in generating the immense diversity. We propose furthermore that this enzyme ensures the flexibility of T cell responses to novel antigens by random insertion of so-called N-region nucleotides. Apart from the physiological functions of TCR genes any involvement in the etiology of T cell neoplasia remains to be proven.  相似文献   

10.
Somatic hypermutation (SHM) diversifies the genes that encode immunoglobulin variable regions in antigen-activated germinal centre B lymphocytes. Available evidence strongly suggests that DNA deamination potentiates phase I SHM and subsequently triggers phase II SHM. A concise review of this evidence is followed by a detailed critique of two possible models which suggest that polymerase-eta potentiates phase II SHM via either its DNA-dependent or its RNA-dependent DNA synthetic activity. Quantitative analysis, in the context of extant data that define the features of SHM, favours the RNA-dependent mechanism.  相似文献   

11.
12.
DNA polymerase (pol) η is a specialized error-prone polymerase with at least two quite different and contrasting cellular roles: to mitigate the genetic consequences of solar UV irradiation, and promote somatic hypermutation in the variable regions of immunoglobulin genes. Misregulation and mistargeting of pol η can compromise genome integrity. We explored whether the mutational signature of pol η could be found in datasets of human somatic mutations derived from normal and cancer cells. A substantial excess of single and tandem somatic mutations within known pol η mutable motifs was noted in skin cancer as well as in many other types of human cancer, suggesting that somatic mutations in A:T bases generated by DNA polymerase η are a common feature of tumorigenesis. Another peculiarity of pol ηmutational signatures, mutations in YCG motifs, led us to speculate that error-prone DNA synthesis opposite methylated CpG dinucleotides by misregulated pol η in tumors might constitute an additional mechanism of cytosine demethylation in this hypermutable dinucleotide.  相似文献   

13.
Codon bias and plasticity in immunoglobulins   总被引:6,自引:1,他引:5  
Immunoglobulin genes experience Darwinian evolution twice. In addition to the germline evolution all genes experience, immunoglobulins are subjected, upon exposure to antigen, to somatic hypermutation. This is accompanied by selection for high affinity to the eliciting antigen and frequently results in a significant increase in the specificity of the responding population. The hypermutation mechanism displays a strong sequence specificity. Thus arises the opportunity to manipulate codon bias in a site-specific manner so as to direct hypermutation to those parts of the gene that encode the antigen-binding portions of the molecule and away from those that encode the structurally conserved regions. This segregation of mutability would clearly be advantageous; it would enhance the generation of potentially useful variants while keeping mutational loss to acceptably low levels. But it is not clear that the advantage gained would be large enough to produce a measurable effect within the background stochasticity of the evolutionary process. I have performed a pair of statistical tests to determine whether site- specific codon bias in human immunoglobulin genes is correlated with the sequence specificity of the somatic mutation mechanism. The sequence specificity of the mutator was determined by analysis of a database of published immunoglobulin intron sequences that had experienced somatic mutation but not selection. The site-specific codon bias was determined by analysis of published sequences of human germline immunoglobulin V genes. Both tests strongly suggest that evolution has acted to enhance the plasticity of immunoglobulin genes under somatic hypermutation.   相似文献   

14.
Multiple DNA polymerases participate in somatic hypermutation of immunoglobulin (Ig) genes. Mutations at A/T are largely dependent on DNA polymerase eta (POLH) whereas mutations at C/G appear to be generated by several DNA polymerases. We have previously shown that mice expressing a catalytically inactive POLQ (Polq-inactive) have a reduction in C/G mutations. Here we have generated mice that completely lack Polq expression (Polq-null). Polq-null mice have no obvious abnormality in B or T cell differentiation, and their splenic B cells responded normally to various activation signals and underwent normal Ig gene class switching. The mutant mice mounted relatively normal immune responses against a T-dependent antigen although there was a slight decrease in antigen specific antibodies. Polq-null mice exhibited a mild reduction in the overall mutation frequency, however, in contrast to Polq-inactive mice where the reduction mostly affected mutations at C/G, Polq-null mice showed a reduction of both C/G and A/T mutations and there was a significant increase of G to C transversions. These results confirm a role for POLQ in somatic hypermutation and suggest that in the complete absence of POLQ other polymerases may functionally substitute, resulting in a mutation pattern different from that found in Polq-inactive mice.  相似文献   

15.
Longerich S  Meira L  Shah D  Samson LD  Storb U 《DNA Repair》2007,6(12):1764-1773
Somatic hypermutation (SHM) and class switch recombination (CSR) of immunoglobulin (Ig) genes require the cytosine deaminase AID, which deaminates cytosine to uracil in Ig gene DNA. Paradoxically, proteins involved normally in error-free base excision repair and mismatch repair, seem to be co-opted to facilitate SHM and CSR, by recruiting error-prone translesion polymerases to DNA sequences containing deoxy-uracils created by AID. Major evidence supports at least one mechanism whereby the uracil glycosylase Ung removes AID-generated uracils creating abasic sites which may be used either as uninformative templates for DNA synthesis, or processed to nicks and gaps that prime error-prone DNA synthesis. We investigated the possibility that deamination at adenines also initiates SHM. Adenosine deamination would generate hypoxanthine (Hx), a substrate for the alkyladenine DNA glycosylase (Aag). Aag would generate abasic sites which then are subject to error-prone repair as above for AID-deaminated cytosine processed by Ung. If the action of an adenosine deaminase followed by Aag were responsible for significant numbers of mutations at A, we would find a preponderance of A:T>G:C transition mutations during SHM in an Aag deleted background. However, this was not observed and we found that the frequencies of SHM and CSR were not significantly altered in Aag-/- mice. Paradoxically, we found that Aag is expressed in B lymphocytes undergoing SHM and CSR and that its activity is upregulated in activated B cells. Moreover, we did find a statistically significant, albeit low increase of T:A>C:G transition mutations in Aag-/- animals, suggesting that Aag may be involved in creating the SHM A>T bias seen in wild type mice.  相似文献   

16.
Summary From the chromosomal analysis of 9461 lymphocytes from 57 patients affected by ataxia telangiectasia, it is concluded that bands 7p14, 7q35, 14q12, and 14qter, which are frequently recombined in rearrangements are also too frequently involved in rearrangements with a few other chromosome sites. Among these sites, the most frequently involved are bands 2p11, 2p12, 22q12, and 22q13.2, or the proximal parts of adjacent R-bands. The same rearrangements were observed in a large series of control lymphocytes but their frequencies were much lower than in ataxia telangiectasia. All these recurrent sites of rearrangements, except 22q13.2, are known to be near or at immunoglobulin genes or partially homologous genes like T-cell receptor genes and antigen Leu-2/T8. It is supposed that the rearrangements observed correspond to the visualization at the chromosomal level of illegitimate rearrangements between these genes, and by analogy, that another similar structure may exist on band 22q13.2.  相似文献   

17.
18.
Activation-induced cytosine deaminase (AID) is a cytosine deaminase that is critical to immunoglobulin hypermutation, class switch recombination, and gene conversion. In the context of hypermutating B cells, AID deaminates cytosine in the DNA of immunoglobulin genes, leading to the accumulation of mutations in the variable regions. However, when AID is expressed ectopically, it is a generalized mutator of G:C base pairs. Therefore, we asked whether AID may be partially regulated by an active system of nuclear export. We found that removal of a highly conserved nuclear export signal in the C terminus of AID causes accumulation of AID in the nucleus. However, a putative nuclear localization signal in the N terminus does not appear to be functional. Finally, we found that agents that induce DNA breaks caused retention of AID in the nucleus, suggesting that DNA breaks or the repair patches initiated as a result are a substrate for AID binding.  相似文献   

19.
The tissue-specific expression of immunoglobulin genes can be partially explained by a requirement for activating factors found only in B lymphocytes and their derivatives. However, loss of immunoglobulin expression upon fusion of an immunoglobulin-producing myeloma cell with a T lymphoma cell (BW5147) or fibroblast (L cell) suggests that negatively acting factors also play a role in the tissue specificity of immunoglobulin genes. Expression of a cloned immunoglobulin heavy-chain gene introduced into myeloma cells was suppressed after fusion of the myeloma transformants with BW5147. The presence of either the immunoglobulin heavy-chain enhancer or promoter conferred suppression, under similar conditions, upon a heterologous gene that is normally expressed in both B and T lymphocytes. These immunoglobulin heavy-chain gene control regions, or gene modifications induced by them, are subject to negative control by T-lymphocyte-derived factors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号