首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
生淀粉糖化酶催化位点氨基酸及酶合成调控的初步研究   总被引:1,自引:0,他引:1  
通过对Rhizopus OR-1UVN菌种所产生淀粉糖化酶在不同底物不同缓冲溶液条件下酶最适pH的测定,推测出该生淀粉糖化酶活力中心催化位点氨基酸是天冬氨酸(Asp)和谷氨酸(Glu)。实验证明5~50mg/mL浓度葡萄糖对生淀粉糖化酶没有抑制作用。分别以浓度<5mg/mL葡萄糖和淀粉为碳源的培养基进行不同碳源发酵实验,发现以淀粉为碳源的培养基Ⅰ发酵15h开始产生淀粉糖化酶,以葡萄糖为碳源的培养基Ⅱ发酵35h开始产酶(葡萄糖浓度<8mg/mL),而且前者菌体较后者少,由此可知葡萄糖对产酶有阻遏作用。实验还发现解阻遏熟淀粉糖化酶的葡萄糖浓度(15mg/mL)比生淀粉糖化酶的要高。由于葡萄糖的阻遏作用不发生在翻译水平,而发生在转录水平上,而且生淀粉糖化酶(G1)与熟淀粉糖化酶(G2)来自同一条DNA链,可以推测存在mRNA的拼接。通过以生淀粉为碳源的比较实验,发现生淀粉对生淀粉糖化酶形成的诱导作用可能主要是通过mRNA拼接的调节来实现的。  相似文献   

3.
Glutamine synthetase (GS) (EC 6.3.1.2) has been purified 67-fold fromNocardia corallina. The apparentM r of the GS subunit was approximately 56,000. Assuming the enzyme is a typical dodecamer this indicates a particle mass for the undissociated enzyme of 672,000. The GS is regulated by adenylylation and deadenylylation, and subject to feedback inhibition by alanine and glycine. The pH profiles assayed by the -glutamyl transferase method were similar for NH4 +-treated and untreated cell extracts and an isoactivity point was not obtained from these curves. GS activity was repressed by (NH4)2SO4 and glutamate. Cells grown in the presence of glutamine, alanine, proline and histidine had enhanced levels of GS activity. The GS ofN. corallina cross-reacted with antisera prepared against GS from a Gram-negativeThiobacillus ferrooxidans strain but not with antisera raised against GS from a Gram-positiveClostridium acetobutylicum strain.  相似文献   

4.
Glutamine synthetase (GS) synthesis inVibrio alginolyticus was regulated by temperature, oxygen and nitrogen levels. A GS gene,glnA fromV. alginolyticus was cloned on a 5.67 kb insert in the recombinant plasmid pRM210, which enabledEscherichia coli glnA, ntrB, ntrC deletion mutants to utilize (NH4)2SO4 as a sole source of nitrogen. TheV. alginolyticus glnA gene was expressed from a regulatory region contained within the cloned fragment.V. alginolyticus glnA expression from pRM210 was subject to regulation by temperature, oxygen and nitrogen levels. GS specific activity in anE. coli wild-type strain was not affected by temperature or oxygen. pRM211 was a deletion derivative of pRM210 and GS production by pRM211 was not regulated by temperature, oxygen or nitrogen levels inE. coli.Abbreviation GS glutamine synthetase  相似文献   

5.
Purification and properties of glutamine synthetase from Douglas fir roots   总被引:2,自引:0,他引:2  
Glutamine synthetase (GS. EC 6.3.1.2) was purified to apparent electrophoretic homogeneity from roots of Pseudotsuga menziesii (Mirb) Franco by a three-step procedure involving diethylaminoethyl (DEAE)-Trisacryl chromatography, affinity chromatography on Matrex Gel Red A. and preparative polyacrylamide gel electrophoresis. The enzyme was purified 40-fold with a 16% recovery. The native enzyme had a molecular mass of 460 ± 5 kDa as estimated by gel filtration, interpolation of the Ferguson plots and non-denaturing gradient-PAGE. It was composed of two different subunits of 54 and 64 kDa. Affinity constants for glutamate (Glu), glutamine (Gln), ATP and ADP were 2.6, 10.5, 0.5 and 0.083 m M . respectively. The enzyme exhibited a negative cooperativity for ammonium (Hill number of 0.7) with two Km values which were 11 and 75 μ M in the presence of ammonium concentrations lower and higher than 1.3 m M , respectively. Glycine and ADP appeared as potential inhibitors of the GS activity. The optimum pH values were 7.2 and 7.6 for the transferase and the biosynthetic assays, respectively. The enzyme lost 30% of its activity within 25 days of storage at 4°C. The optimum temperatures of activity were 40°C and 45°C for the transferase and bio-synthetic activities, respectively.  相似文献   

6.
Grapevine (Vitis vinifera L.) glutamine synthetase (GS) was analysed into two distinct classes of isoforms; one of them was present in both leaf and root tissues while the other one showed leaf specificity. Western blot analysis revealed that grapevine GS consists of three types of polypeptides of distinct size and differential tissue specificity. Two structurally distinct cDNA clones, pGS1;1 and pGS1;2, encoding grapevine GS were isolated from a cell suspension library and characterized. Both clones contained open reading frames encoding for polypeptides of 356 amino acids with a predicted molecular mass of about 39 kDa. Although the coding sequences of pGS1;1 and pGS1;2 were 84% similar, their 5-and 3-untranslated sequences showed only 40% similarity. The coding sequences of the two clones and the derived amino acid sequences showed higher homology to cytosolic than to chloroplastic GSs of other higher plants indicating that the cDNAs isolated encode for cytosolic isoforms of grapevine GS. Southern blot analysis suggested the existence of more than two GS genes in the grapevine genome. In northern blots both clones were hybridized to mRNAs of about 1.4 kb that are differentially expressed in the various tissues. Supply of nitrate or ammonium in the cell suspension culture medium, as a sole nitrogen source, resulted in differential response of the pGS1;1-and pGS1;2-related genes.  相似文献   

7.
Glutamine synthetase expression was studied in developing root-nodules of common bean with regard to the time-course of specific activity, antigen accumulation, polypeptide composition and in vitro translation products. This analysis shows that the nodule-specific GS polypeptide (GS-gamma) is detected prior to the nitrogenase acetylene-reducing activity, and that its accumulation together with that of the GS-alpha and GS-beta polypeptides vary with nodule age. GS-gamma is present in ineffective nodules, although in a lower ratio to GS-beta than in wild-type nodules. Comparisons of in vitro translated and in vivo synthesized GS polypeptides suggest no post-translational modifications. The possible factors and mechanisms involved in the regulation of expression of GS polypeptides are discussed.  相似文献   

8.
Glycosidases play a key role in a number of biological processes and, as such, are of considerable clinical and biotechnological importance. Knowledge of the identifies of catalytically important active site residues is essential for understanding the catalytic mechanism, for enzyme classification, and for targeted bioengineering of glycosidases with altered characteristics. Here we review and discuss traditional strategies and novel approaches based on tandem mass spectrometry for the identification of the key active site residues in glycosidases.  相似文献   

9.
Anaerobiospirillum succiniciproducens phosphoenolpyruvate (PEP) carboxykinase catalyzes the reversible formation of oxaloacetate and adenosine triphosphate from PEP, adenosine diphosphate, and carbon dioxide, and uses Mn2+ as the activating metal ion. The enzyme is a monomer and presents 68% identity with Escherichia coli PEP carboxykinase. Comparison with the crystalline structure of homologous E. coli PEP carboxykinase [Tari, L. W., Matte, A., Goldie, H., and Delbaere, L. T. J. (1997). Nature Struct. Biol. 4, 990–994] suggests that His225, Asp262, Asp263, and Thr249 are located in the active site of the protein, interacting with manganese ions. In this work, these residues were individually changed to Gln (His225) or Asn. The mutated enzymes present 3–6 orders of magnitude lower values of V max/K m, indicating high catalytic relevance for these residues. The His225Gln mutant showed increased K m values for Mn2+ and PEP as compared with wild-type enzyme, suggesting a role of His225 in Mn2+ and PEP binding. From 1.5–1.6 Kcal/mol lower affinity for the 3(2)-O-(N-methylantraniloyl) derivative of adenosine diphosphate was observed for the His225Gln and Asp263Asn mutant A. succiniciproducens PEP carboxykinases, implying a role of His225 and Asp263 in nucleotide binding.  相似文献   

10.
Glutamine synthetase (L-glutamate : ammonia ligase, EC 6.3.1.2) fromPhaseolus aureus (mung bean) seedlings was purified to homogeneity by ammonium sulphate fractionation, DEAE-cellulose chromatography, Sephadex G-200 gel filtration and affinity chromatography on histidine-Sepharose. The enzyme had a molecular weight of 775,000 ± 25,000. The enzyme consisted of identical subunits with an approximate subunit molecular weight of 50,000. Hyperbolic saturation curves were obtained with the substrates, glutamate, ATP and hydroxylamine. Antibody, raised in the rabbit, against mung bean glutamine synthetase, completely inhibited the activity of the enzyme. Preincubation of the enzyme with glutamate and ATP, prior to the addition of the antibody, partially protected the enzyme against inhibition. TheK m values of this enzyme-antibody complex and the native enzyme were identical (glutamate, 2.5mM; ATP, 1 mM; hydroxylamine, 0.5 mM). The Km values of the partially inhibited enzyme (the enzyme pretreated with antibody prior to the addition of substrates) were 2-fold higher than those of the native enzyme. These results suggested that the substrate-induced conformational changes in the enzyme were responsible for the protection against inhibition of the enzyme activity by the antibody.  相似文献   

11.
12.
13.
Six glycopeptide fractions namely GP-C1, GP-C2. GP-C3a.GP-C3b.GP-D, and GP-D2 were isolated after exhaustive digestion of glucoamylase II (Glucozyme) fromAspergillus niger with pronase. They were purified using gel-filtration. high-voltage paper electrophoresis and ion-exchange chromatography on Dowex-50 and Dowex-1. They appeared homogeneous on electrophoresis under different conditions of pHs. The molecular weights ranged from 1600 and 4000 for these glycopeptides. Ally of them contained serine at the N-terminal end. Serine and threonine were the major amino acids with glycine, alanine, proline and tryosine present as minor constituents. Carbohydrate analysis revealed the presence of different sugars. Based on this, the glycopeptides were grouped into three types: (1) GP-C1 and GP-C2 containing mannose, glucose and galactose; (2) GP-C3a, and GP-C3b,containing mannose glucose and glucosamine; and (3) GP-D1 and GP-D2, containing mannose. glucose, galactose and xylose. Most sugar constituents in each glycopeptide occured in non-integral ratios implying a microheterogeneity of the carbohydrate moiety inAspergillus niger glucoamylase.  相似文献   

14.
Nitrogenase activity in Rhodopseudomonas palustris is subject to a rapid switch-off in response to exogenous ammonia. When cells were grown on limiting nitrogen and eventually became nitrogen deficient, nitrogenase synthesis was fully derepressed but the enzyme was insensitive to ammonia. The transformation of ammonia-sensitive to ammonia-insensitive cells was a slow, but fully reversible process. The switch-off effect in ammonia-sensitive cells paralleled changes in the adenylylation state of glutamine synthetase. Ammonia-insensitive cells, however, showed similar changes in glutamine synthetase activity although nitrogenase activity was unaffected. We conclude that nitrogenase regulation and adenylylation of glutamine synthetase are independent processes, at least under conditions of nitrogen deficiency.  相似文献   

15.
The glutamine synthetase isozymes ofDrosophila melanogaster offer an attractive model for the study of the molecular genetics and evolution of a small gene family encoding enzymatic isoforms that evolved to assume a variety of specific and sometimes essential biological functions. InDrosophila melanogaster two GS. isozymes have been described which exhibit different cellular localisation and are coded by a two-member gene family. The mitochondrial GS structural gene resides at the 21B region of the second chromosome, the structural gene for the cytosolic isoform at the 10B region of the X chromosome. cDNA clones corresponding to the two genes have been isolated and sequenced. Evolutionary analysis data are in accord with the hypothesis that the twoDrosophila glutamine synthetase genes are derived from a duplication event that occurred near the time of divergence between Insecta and Vertebrata. Both isoforms catalyse all reactions catalysed by other glutamine synthetases, but the different kinetic parameters and the different cellular compartmentalisation suggest strong functional specialisation. In fact, mutations of the mitochondrial GS gene produce embryo-lethal female sterility, defining a function of the gene product essential for the early stages of embryonic development. Preliminary results show strikingly distinct spatial and temporal patterns of expression of the two isoforms at later stages of development.  相似文献   

16.
17.
18.
Glutamine synthetase, purified from Lupinus angustifolius legume nodules, was carboxymethylated and succinylated prior to chemical or enzymatic cleavage. Peptides were purified and sequenced. An oligonucleotide probe was constructed for the sequence MPGQW. This probe was used to identify a glutamine synthetase cDNA clone, pGS5, from a lupin nodule cDNA library constructed in pBR322. pGS5 was sequenced (1043 bp) and computer-assisted homology searching revealed a high degree of conservation between this lupin partial cDNA clone and other plant glutamine synthetases at both the amino acid (>90%) and nucleotide (>80%) level. Northern and Southern analyses using pGS5 supported the conclusion that a multigene glutamine synthetase family exists in lupin which is differentially expressed in both an organ-specific and temporal manner. Western and Northern blot analyses indicated the accumulation of a glutamine synthetase specific mRNA species during nodule development corresponded to the appearance of a novel glutamine synthetase polypeptide between 8 and 10 days after rhizobial inoculation.  相似文献   

19.
Nigerloxin, a new and potent lipoxygenase inhibitor, was discovered in our laboratory through solid-state fermentation of wheat bran by Aspergillus niger V. Teigh (MTCC-5166). The aim of this study is to investigate the possibility of using different agro-industrial residues as nutritional supplements along with wheat bran to enhance the production of nigerloxin. Nigerloxin produced by SSF was quantified spectrophotometrically at 292 nm. The results indicate that the inhibitor production was influenced by the type of solid substrate supplemented, moisture content, pH and size of the inoculum. Individually optimized supplements were tested in different combinations to determine their effects on nigerloxin production. A twofold increase in the production of nigerloxin (4.9 ± 0.3 mg gds−1) was achieved by supplementing wheat bran with 10% w/w sweet lemon peel and 5% v/w methanol at optimized process parameters, that is, an initial moisture content of 65% v/w and incubation period of 6 days with an initial inoculum size of 2 ml (8 × 105 spores gds−1). Nigerloxin production was stable between pH of 4 and 5.  相似文献   

20.
Batch cultures of Aspergillus niger grown from conidia on a medium with high C/N ratio accumulated gluconate from glucose with a yield of 57%. During almost the whole time of accumulation there was no net synthesis of total protein in the mycelium but the activity per flask and the specific activity of glucose oxidase (EC 1.1.3.4) in mycelial extracts increased whereas both values decreased for glucose dehydrogenase (EC 1.1.99.10) gluconate 6-phosphatase (cf. EC 3.1.3.1, 3.1.3.2), gluconokinase (EC 2.7.1.12), glucose 6-phosphate and phosphogluconate dehydrogenases (EC 1.1.1.49, EC 1.1.1.44), phosphoglucomutase (EC 2.7.5.1), and most enzymes of the Embden-Meyerhof pathway and the tricarboxylic acid cycle. Gluconate dehydratase (EC 4.2.1.39), gluconate dehydrogenase (EC 1.1.99.3) and enzymes of the Entner-Doudoroff pathway could not be detected. By cycloheximide the increase of glucose oxidase activity was inhibited. It is concluded that the high yield of gluconate was due mainly to the net (de novo) synthesis of glucose oxidase which occurred during protein turnover after the exhaustion of the nitrogen source, and which was not accompanied by a net synthesis of the other enzymes investigated. Some gluconate may also have been formed by hydrolytic cleavage of gluconate 6-phosphate.Abbreviations GOD glucose oxidase - GD glucose dehydrogenase - PP pentose phosphate - EM Embden-Meyerhof - TCA tricarboxylic acid  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号