首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Lactate oxidation catalysed by pig heart lactate dehydrogenase was studied in the presence of inhibitory concentrations of pyruvate. Experimental results show the presence of an intermediate which occurs immediately after the hydride transfer step, but before the dissociation of pyruvate and the H+ produced by the reaction. The rate constant for pyruvate dissociation and the dissociation constant for pyruvate from the ternary complex differ from those obtained in pyruvate reduction experiments. 2.In single-turnover pyruvate reduction by pig heart lactate dehydrogenase at pH8.0 pyruvate can bind to the enzyme before a H+ is taken up, and the subsequent uptake of a H+ is governed by a step that is also rate-limiting for single-turnover and steady-state NADH oxidation. 3. Observation of various intermediates in the single-turnover pyruvate reduction experiments has made it possible to determine separately the dissociation constant and Km value for pyruvate at pH8.0, and also the catalytic turnover rate and Km for pyruvate under first-order conditions at different pH values. 4. Further studies on single-turnover pyruvate reduction carried out in 2H2O, or in water at low temperature, show another step which, under these conditions, is slower than that controlling H+ uptake and rate-limiting for NADH oxidation. A scheme is presented which explains these results.  相似文献   

2.
Hybridoma I.13.17 was grown in semicontinuous culture in an attempt to investigate the steady-state concentrations of key components of monoclonal antibody (MAb) synthesis (e.g., intracellular MAb, IgG messenger RNAs) at different dilution rates between 0.008 and 0.055 h(-1). There was a general trend of increasing steady-state levels of total cytoplasmic RNA, total cell-associated MAb or cytoplasmic MAb, DNA synthesis rate, cellular metabolic activity, heavy (H-) and light (L-) chain IgG mRNAs with the increase in dilution rates. Increase in the half-lives of H- and L-chain mRNAs with increase in dilution rates may be sufficient to account for their increasing levels found under the same conditions. The specific growth rate was profoundly affected by the dilution rate, particularly near the lower end of the dilution rate range. Linear relationships were observed between the steady-state amounts of total cell-associated MAb and the relative levels of H- and L-chain mRNAs. Material balances on intracellular MAb demonstrated an increasing percentage of antibody not released into the growth medium (e.g., stored within the cell or anchored to the cell membrane) with increasing dilution rate. The MAb production rate per cell decreased significantly with the increase in dilution rates. No correlation was found between the relative levels of H- or L-chain mRNAs and the specific MAb production rate. Possible implications of rate-limiting steps in MAb synthesis and secretion are discussed.  相似文献   

3.
Transient-kinetic studies of pig muscle lactate dehydrogenase   总被引:9,自引:8,他引:1  
1. The very fast pre-steady-state formation of NADH catalysed by pig M(4) lactate dehydrogenase was equivalent to the enzyme-site concentration at pH values greater than 8.0 and to one-half the site concentration at pH6.8. 2. The rate of dissociation of NADH from the enzyme at pH8.0 (450s(-1)) in the absence of other substrates is faster than the steady-state oxidation of lactate (80s(-1)). The latter process is therefore controlled by a step before NADH dissociation but subsequent to the hydride transfer. 3. The oxidation of enzyme-NADH by excess of pyruvate was studied as a first-order process at pH9.0. There was no effect of NADD on this reaction and it was concluded that the ternary complex undergoes a rate-limiting change before the hydride-transfer step. 4. Some conclusions about the reactions catalysed by the M(4) isoenzyme were drawn from a comparison of these results with those obtained with the H(4) isoenzyme and liver alcohol dehydrogenase.  相似文献   

4.
A three-state variable model for phosphate-limited phytoplankton growth in a continuously lit continuous culture is proposed. In the model, the phosphate uptake rate per cell is a Michaelis-Mententype hyperbolic function of ambient nutrient concentration and the growth rate is a Droop-type hyperbolic function of cell quota. Steady-state and short-term uptake experiments with unialgal cultures of Monochrysis lutheri Droop, a marine chrysophyte, were used to calibrate the proposed model. For the long-term unsteady experiments, the model predicts well the culture's dynamic response in terms of cell density to steps down and up in influent concentration of limiting nutrient. For step changes in dilution rate, the model predicts well the culture's response to a step down but predicts poorly the culture's response to a step up. The long-term responses of the cultures to impulses in influent concentration show that the model fails to predict, even qualitatively, the behavior of the phytoplankton. Not unexpectedly, the model fails most dramatically in those experiments involving a rapid increase in cell quota, thereby demonstrating both the inherent flaws in the concept of the instantaneous growth rate as a function of instantaneous cell quota and the need for further dynamic characterization of phytoplankton behavior.  相似文献   

5.
During semicontinuous culture, a sample of fixed volume is removed at regular time intervals to make measurements and/or harvest culture components, and an equal volume of fresh medium is immediately added to the culture, thereby instantaneously enhancing nutrient concentrations and diluting cell concentration. The resulting cell concentration versus time curve (i.e., the actual cell growth curve) has a saw-toothed appearance because of the periodic dilution of cell concentration. The observed cell concentrations correspond to the peaks of the saw-toothed curve. Cell growth rates are estimated from the locus of observed cell concentrations (i.e., from the apparent growth curve obtained by connecting the peaks of the saw-toothed curve). The sole preexisting model (Fencl's mode) for estimating cell growth rate is valid only when the cells are growing exponentially at a constant rate between samplings. This model has limited validity: despite the periodic enhancement of nutrient concentration, cell growth between samplings eventually causes nutrient depletion, and the cells cease to grow exponentially. Failure to recognize the limits of validity for Fencl' model has resulted in many erroneous applications of the model and, consequently, many incorrect estimates of cell growth rates. To provide a means for correctly estimating cell growth rates, Fencl's exponential model was extended, and a new model that describes the effects of nutrient depletion on cell growth in semi-continuous culture was obtained. The new model shows that exhaustion of a single growth-limiting nutrient in semicontinuous culture causes the locus of cell concentrations observed at time intervals of Deltat to follow a logistic growth curve. The actual cell growth rate was shown to equal the apparent logistic growth rate plus the effective dilution rate -Deltat(-1) In (1 - f), where f is the ratio of sample volume to total culture volume. Moreover, the model predicts that both the apparent logistic growth rate and the apparent steady-state cell concentration should rise linearly with the concentration of growth-limiting nutrient in the input medium, but fall linearly with increases in the effective dilution rate. The new logistic model for nutrient-limited cell growth in semicontinuous culture was successfully tested using published data for Asterionella formosa, Cyclotella meneghiniana, Daucus carota, and strain L mouse cells.  相似文献   

6.
Selenomonas ruminantium produced one mole of D(-)-lactate per mole of glucose used at all dilution rates in ammonia-limited continuous culture. In contrast, lactate production varied according to the dilution rate when glucose was the limiting nutrient. At dilution rates of less than 0.2 h-1, acetate and propionate were the main fermentation products and lactate production was low. At dilution rates above 0.2 h-1, the pattern changed to one of high lactate production similar to that under ammonia limitation. Experiments with cell-free extracts of S. ruminantium showed that D(-)-lactate dehydrogenase had sigmoidal kinetics consistent with homotropic activation of the enzyme by its substrate, pyruvate. This feature allows S. ruminantium to amplify the effects of relatively small changes in the intracellular concentration of pyruvate to cause much larger changes in the rate of production of lactate. Some confirmation that this mechanism of control occurs under physiological conditions was obtained in glucose-limited culture, in which the sigmoidal increase in lactate production was accompanied by a linear increase in pyruvate excretion as the dilution rate increased.  相似文献   

7.
Using ball milled cellulose as the only carbon source Trichoderma viride was grown in a continuous flow culture at pH = 5.0 and T = 30°C. Steady-state values for cell protein, cellulose, and cellulase for different substrate concentrations (4–11 g/liter) and dilution rates (0.033–0.080 hr?1) were obtained. Under steady-state conditions, 50–75% of the cellulose was consumed indicating a critical dilution rate on 0.17 hr?1. Cellulase activity (U/ml) in the fermentation broth increased slightly with increasing substrate concentration and decreased with increasing dilution rate, while the specific cellulase productivity (U/mg cell protein·hr) was fairly independent of the dilution rate, with a maximum around D = 0.05 hr?1. Following step changes in substrate concentration and dilution rate, new steady-state values were reached after three to five residence times (cell protein and cellulose) and four to six residence times (celullase activity).  相似文献   

8.
The pink yeast Rhodotorula rubra of marine origin was found to be capable of extended growth at very low phosphate concentrations (K(0.5) = 10.8 nm). Average intracellular phosphate concentrations, based on isotope exchange techniques, were 15 to 200 nm, giving concentration gradients across the cell envelope of about 10(6). Sensitivity to metabolic inhibitors occurred at micromolar concentrations. Inability of the phosphate transport system, K(s) = 0.5 to 2.8 mum, V(max) = 55 mumoles per g of cells per min, to discriminate against arsenate transport led to arsenate toxicity at 1 to 10 nm, whereas environmental arsenate levels are reportedly much higher. Phosphate competitively prevented arsenate toxicity. The K(i) for phosphate inhibition of arsenate uptake was 0.7 to 1.2 mum. Phosphate uptake experiments showed that maximal growth rates could be achieved with approximately 4% of the total phosphate-arsenate transport system. Organisms adapted to a range both of concentration of NaCl and of pH. Maximal affinity for phosphate occurred at pH 4 and at low concentrations of NaCl; however, V(max) for phosphate transport was little affected. Maximal specific growth rates on minimal medium were consistent in batch culture but gradually increased to the much higher rates found with yeast extract media when the population was subjected to long-term continuous culture with gradually increasing dilution rates. Phosphate initial uptake rates that were in agreement with the steady-state flux in continuous culture were obtained by using organisms and medium directly from continuous culture. This procedure resulted in rates about 500 times greater than one in which harvested batch-grown cells were used. Discrepancies between values found and those reported in the literature for other organisms were even larger. Growth could not be sustained below a threshold phosphate concentration of 3.4 nm. Such thresholds are explained in terms of a system where growth rate is set by intracellular nutrient concentrations. Threshold concentrations occur in response to nutrient sinks not related to growth, such as efflux and endogenous metabolism. Equations are presented for evaluation of growth rate-limiting substrate concentrations in the presence of background substrate and for evaluating low inhibitor concentration inhibition mechanisms by substrate prevention of inhibitor flux.  相似文献   

9.
WILSON  G. 《Annals of botany》1976,40(5):919-932
Operational and constructional details are given of a relativelysimple and inexpensive chemostat designed for the continuousculture of plant cells in suspension. This apparatus permitscontrol of the growth rate of sycamore, Acer pseudoplatanusL. cells in steady-state conditions. By alteration of the rateof input of medium different steady-state growth rates wereobtained over a wide range (mean doubling times from 182 h to36 h). In order to establish a growth-limiting nutrient thetime course of nutrient uptake in batch culture was measured.In batch culture the maximum growth obtained was proportionalto the initial concentration of phosphate when this was belowa concentration of 17 µg P per ml (as phosphate). It isalso shown in chemostat culture that the steady-state cell densityis proportional to the phosphate concentration in the mediumwhen this is below 17 µg P per ml (as phosphate). Phosphatewas therefore established to be the growth rate-limiting nutrientin chemostat culture at a concentration of 8•5 µgP per ml (as phosphate).  相似文献   

10.
With carrot cells grown in semicontinuous culture with phosphate as limiting nutrient. Dougall and Weyrauch (1980) found that the steady-state culture density was different at different dilution rates. They suggested that the yield constant for biomass was different at different dilution rates. Here the yield constant for biomass for PO(4) (3-), NH(4) (+), Mg(2+), and glucose-limited semicontinuous cultures has been measured directly at two dilution rates. The yield constants for PO(4) (3-), NH(4) (+), and Mg(2+) but not for glucose are different at the two dilution rates. The effects of pH and temperature on the biomass yield constant was measured to extend the number of system parameters examined. Biomass yield constant was changed little with change from 25 to 28 degrees C or from pH 4.2 to pH 5.5. The steady-state levels of anthocyanin were also measured. The responses of anthocyanin levels to the system parameters are different to the biomass responses. The data suggest that at different values of each of the system parameters, the composition and metabolic activities of the cells at steady state in semicontinuous cultures are different.  相似文献   

11.
A clonal derivative of a transfectant of the SP2/O myeloma cell line producing a chimeric monoclonal antibody was maintained in steady-state, continuous culture at dilution rates ranging from 0.21 to 1.04 day(-1). The steady-state values for nonviable and total cell concentrations increased as the dilution rate decreased, while the viable cell concentration was roughly independent of the dilution rate. At steady state, the specific growth rate increased and the specific death rate decreased as the dilution rate increased. The maximum specific growth rate was 1.15 day(-1). Antibody production was growth associated and the specific rate of antibody production increased linearly as the specific growth rate increased.  相似文献   

12.
Physiological state multiplicity was observed in continuous cultures of the hybridoma cell line ATCC CRL-1606 cultivated in glutamine-limited steady state chemostats. At the same dilution rate (0.04 h-1), two physiologically different cultures were obtained which exhibited similar growth rates and viabilities but drastically different cell concentrations (7.36 x 10(5) and 1.36 x 10(6) cells/mL). Metabolic flux analysis conducted using metabolite and gas exchange rate measurements revealed a more efficient culture for the steady state with the higher cell concentration, as measured by the fraction of pyruvate carbon flux shuttled into the TCA cycle for energy generation. The low-efficiency steady state was achieved after innoculation by growing the cells in a nutrient rich environment, first in batch mode followed by a stepwise increase of the dilution rate to its set point at 0.04 h-1. The high-efficiency steady state was achieved by reducing the dilution rate to progressively lower values to 0.01 h-1 resulting in conditions of stricter nutrient limitation. The high energetic efficiency attained under such conditions was preserved upon increasing the chemostat dilution rate back to 0.04 h-1 with a higher nutrient consumption, resulting in approximate doubling of the steady state cell concentration. This metabolic adaptation is unlikely due to favorable genetic mutations and could be implemented for improving cell culture performance by inducing cellular metabolic shifts to more efficient flux distribution patterns.  相似文献   

13.
In connection with the bistability of pyruvate formation in ammonium limited continuous cultures of E. coli ML 30 (Bergter u. Roth 1977) the transient behaviour of cell density and pyruvate concentration were studied. Immediately after a shift up in the dilution rate from D = 0.15 h-1 to D = 0.6 h-1 the bacteria excreted pyruvate into the medium, followed by a resumption of pyruvate. The specific pyruvate formation rate as well as the specific growth rate reached the new steady state with damped oscillations. Possibly the excretion of pyruvate after the shift is caused by the higher non limiting concentrations of ammonium during the first of the transition. This hypothesis is supported by the transient behaviour of an ammonium limited continuous culture after a pulse of ammonium to the culture. The relations between ammonium metabolism and pyruvate formation are discussed.  相似文献   

14.
Continous culture experiments with the obligatory methanotroph, Methylosinus trichosporium OB3b, were conducted to study the whole-cell methane monooxygenase (MMO) and nitrogenase activities in a nitrate minimal salts medium under oxygen-limited conditions with methane as the carbone source. The important variables investigated were the feed medium concentrations of copper and nitrate, CO(2) addition, the agitation speed, and the dilution rate. M. trichosporium OB3b required quantitative amounts of copper (2.6 x 10(-4) g Cu/g dry cell Wt) for the exclusive production of particulate MMo during continous culture growth. When the feed medium nitrate concentration was varied in the range of 5-50 mM, the whole-cell specific pMMO activity exhibited a maximum at 40 mM. The elimination of external CO(2) gassing decreased pMMO activity by more than 30%. The steady-state cell density increased continuously over a 300-700 rpm range of agitation speed, whereas, the pMMO activity became maximal at 400 rpm. Also, the pMMO activity increased with the dilution rate up to 0.06 h(-1) and remained constant thereafter. Maximal continuous pMMO productivity was, thus, achieved in Higgin's medium containing 10 muM Cu, 80 muM Fe, and 40 mM nitrate with an agitation speed of 500 rpm and a dilution rate of 0.06 h(-1). Nitrogenase activity, on the other hand, increased over a feed medium copper concentration of 2-15 muM, falling sharply at 20 muM, and it exhibited a minimum at 20 mM when the feed medium nitrate concentration was varied. (c) 1992 John Wiley & Sons, Inc.  相似文献   

15.
Exponentially fed-batch cultures (EFBC) of a murine hybridoma in T-flasks were explored as a simple alternative experimental tool to chemostats for the study of metabolism, growth and monoclonal antibody (MAb) production kinetics. EFBC were operated in the variable volume mode using an exponentially increasing and predetermined stepwise feeding profile of fresh complete medium. The dynamic and steady-state behaviors of the EFBC coincided with those reported for chemostats at dilution rates below the maximum growth rate. In particular, steady-state for growth rate and concentration of viable cells, glucose, and lactate was attained at different dilution rates between 0.005 and 0.05 h–1. For such a range, the glucose and lactate metabolic quotients and the steady-state glucose concentration increased, whereas total MAb, volumetric, and specific MAb production rates decreased 65-, 6-, and 3-fold, respectively, with increasing dilution rates. The lactate from glucose yield remained relatively constant for dilution rates up to 0.03 h–1, where it started to decrease. In contrast, viability remained above 80% at high dilution rates but rapidly decreased at dilution rates below 0.02 h–1. No true washout occurred during operation above the maximum growth, as concluded from the constant viable cell number. However, growth rate decreased to as low as 0.01 h–1, suggesting the requirement of a minimum cell density, and concomitant autocrine growth factors, for growth. Chemostat operation drawbacks were avoided by EFBC in T-flasks. Namely, simple and stable operation was obtained at dilution rates ranging from very low to above the maximum growth rate. Furthermore, simultaneous operation of multiple experiments in reduced size was possible, minimizing start-up time, media and equipment costs.Abbreviations EFBC exponentially-fed batch culture - CSC continuous suspended culture - MAb monoclonal antibody - D dilution rate - q i metabolic quotient or specific rate of consumption or production of i  相似文献   

16.
The efficiency of the bioconversion process and the achievable end-product concentration decides the economic feasibility of microbial 2,3-butanediol (2,3-BDO) production. In 2,3-BDO production, optimization of culture condition is required for cell growth and metabolism. Also, the pH is an important factor that influences microbial performance. For different microorganisms and substrates, it has been shown that the distribution of the metabolites in 2,3-BDO fermentation is greatly affected by pH, and the optimum pH for 2,3-BDO production seems dependently linked to the particular strain and the substrate employed. Quantification analysis of intracellular metabolites and metabolic flux analysis (MFA) were used to investigate the effect of pH on the Klebsiella oxytoca producing 2,3-BDO and other organic acids. The main objectives of MFA are the estimation of intracellular metabolic fluxes and the identification of rate-limiting step and the key enzymes. This study was conducted under continuous aerobic conditions at different dilution rates (0.1, 0.2, and 0.3 h?1) and different pH values (pH 5.5 and 7.0) for the steady-state experimental data. In order to obtain the flux distribution, the extracellular specific rates were calculated from the experimental data using the metabolic network model of K. oxytoca. Intracellular metabolite concentration profiles were generated using ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry.  相似文献   

17.
Hybrids between naturally occurring wine yeast strains and laboratory strains were formed as a method of increasing genetic variability to improve the ethanol tolerance of yeast strains. The hybrids were subjected to competition experiments under continuous culture controlled by pH with increasing ethanol concentrations over a wide range to select the fastest-growing strain at any concentration of ethanol. The continuous culture system was obtained by controlling the dilution rate of a chemostat connected to a pH-meter. The nutrient pump of the chemostat was switched on and off in response to the pH of the culture, which was thereby kept near a critical value (pHc). Under these conditions, when the medium was supplemented with ethanol, the ethanol concentration of the culture increased with each pulse of dilution. A hybrid strain was selected by this procedure that was more tolerant than any of the highly ethanol-tolerant wine yeast strains at any concentration of ethanol and was able to grow at up to 16% (vol/vol) ethanol. This improvement in ethanol tolerance led to an increase in both the ethanol production rate and the total amount of ethanol produced.  相似文献   

18.
19.
Summary Three different stirred bioreactors of 0.5 to 12 l volume were used to scale up the production of a human monoclonal antibody. Inoculation density and stirrer speed were evaluated in batch cultures, whereas dilution rate and pH were optimized in chemostat cultures with respect to high specific antibody production rate and high antibody yield per time and reactor volume. The cell line used for the experiments was a heterohybridoma, producing immunoglobulin M (IgM) against lipopolysaccharide of Pseudomonas aeruginosa. Cells were cultured in spinner flasks of 500 ml liquid volume for adaptation to stirred culture conditions. Subsequently cells were transferred to the 1.5-1 KLF 2000 bioreactor and to the 12-1 NLF 22 bioreactor for pilot-scale cultures. Chemostat experiments were done in the 1.5-1 KLF bioreactor. Cell density, viability, glucose and lactate and antibody concentration were measured during culture experiments. In batch cultures in all three stirred bioreactors, comparable maximal cell densities and specific growth rates were achieved. Chemostat experiments showed that at a pH of 6.9 and a dilution rate of 0.57 per day the specific antibody production rate was threefold higher than similar experiments done at pH 7.2 with a dilution rate of 0.36 per day. By optimizing pH and dilution rate in chemostat cultures the daily yield of human IgM increased nearly threefold from 6 to 16 mg/day and per litre of reactor volume. The yield per litre of medium increased twofold. Correspondence to: U. Schürch  相似文献   

20.
Ascorbic acid displays the characteristics of an ideal inducer of tissue-specific function in primary avian tendon cells in culture. It is a highly specific, potent stimulator of collagen synthesis, it demonstrates slow reversible kinetics, and it has no effect on growth rate of the cultured cells. Kinetic analysis of ascorbate induction of collagen synthesis was used to determine the critical steps in this complex biosynthetic pathway. Full hydroxylation of the proline residues in collagen, although probably a necessary step for collagen induction, was in itself not sufficient for achieving either increased secretion or increased synthesis. On the other hand, an increase in secretion rate, which required both the presence of ascorbate and a high cell density, did correlate with the later stimulation in procollagen production. The process of procollagen secretion, therefore, meets the minimal requirements for the rate-limiting step. The fact that the cells maintained a large pool of intracellular procollagen despite changes in the rates of translation or secretion led us to postulate a possible feedback between the level of the internal procollagen pool and the rate of procollagen synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号