首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Life history and acoustic signaling of a Central Asian species Deracantha onos (Pall.) are described. Males and females produce calling signals and protest sounds. For the first time, electronograms of stridulatory files, oscillograms, and frequency spectra of some acoustic signals are given.  相似文献   

2.
The cicada Okanagana rimosa (Say) has an acoustic communication system with three types of loud timbal sounds: (i) A calling song lasting several seconds to about 1 min which consists of a sequence of chirps at a repetition rate of 83 chirps per second. Each chirp of about 6 ms duration contains 4-5 pulses. The sound level of the calling song is 87-90 dB SPL at a distance of 15 cm. (ii) An amplitude modulated courtship song with increasing amplitude and repetition rate of chirps and pulses. (iii) A protest squawk with irregular chirp and pulse structure. The spectra of all three types are similar and show main energy peaks at 8-10 kHz. Only males sing, and calling song production is influenced by the songs of other males, resulting in an almost continuous sound in dense populations. In such populations, the calling songs overlap and the temporal structure of individual songs is obscured within the habitat. The calling song of the broadly sympatric, closely related species O. canadensis (Provander) is similar in frequency content, but distinct in the temporal pattern (24 chirps per second, 24 ms chirp duration, eight pulses per chirp) which is likely important for species separation in sympatric populations. The hearing threshold of the auditory nerve is similar for females and males of O. rimosa and most sensitive at 4-5 kHz. Experiments in the field show that female phonotaxis of O. rimosa depends on parameters of the calling song. Most females are attracted to calling song models with a 9 kHz carrier frequency (peak frequency of the calling song), but not to models with a 5 kHz carrier frequency (minimum hearing threshold). Phonotaxis depends on temporal parameters of the conspecific song, especially chirp repetition rate. Calling song production is influenced by environmental factors, and likelihood to sing increases with temperature and brightness of the sky. Correspondingly, females perform phonotaxis most often during sunny conditions with temperatures above 22 degrees C. Non-mated and mated females are attracted by the acoustic signals, and the percentage of mated females performing phonotaxis increases during the season.  相似文献   

3.
Natural selection is known to produce convergent phenotypes through mimicry or ecological adaptation. It has also been proposed that social selection—i.e., selection exerted by social competition—may drive convergent evolution in signals mediating interspecific communication, yet this idea remains controversial. Here, we use color spectrophotometry, acoustic analyses, and playback experiments to assess the hypothesis of adaptive signal convergence in two competing nonsister taxa, Hypocnemis peruviana and H. subflava (Aves: Thamnophilidae). We show that the structure of territorial songs in males overlaps in sympatry, with some evidence of convergent character displacement. Conversely, nonterritorial vocal and visual signals in males are strikingly diagnostic, in line with 6.8% divergence in mtDNA sequences. The same pattern of variation applies to females. Finally, we show that songs in both sexes elicit strong territorial responses within and between species, whereas songs of a third, allopatric and more closely related species (H. striata) are structurally divergent and elicit weaker responses. Taken together, our results provide compelling evidence that social selection can act across species boundaries to drive convergent or parallel evolution in taxa competing for space and resources.  相似文献   

4.
Vibrational communication is important for successful mating in various stink bugs species. The vibrational signals from males and females of Dichelops melacanthus Dallas (Hemiptera: Pentatomidae) are recorded from a nonresonant substrate (i.e. a loudspeaker membrane) to characterize the temporal and spectral properties of these vibrational signals, as well as on a resonant substrate (i.e. bean plants) to obtain information about how these signals are altered when they are transmitted through the plants. On the loudspeaker membrane, D. melacanthus males and females emit only one male or one female song, respectively. However, when the insects are placed on bean leaves, a more complex repertoire is recorded, with three different songs for each sex. The first female and male songs appear to have calling functions and the third male and female songs are emitted during courtship. The second female and male songs are emitted after the first song, although their functions in mating behaviour are not clear. The identified repertoire is similar to those of other Neotropical stink bugs, starting with songs 1 and 2 and developing into song 3. Frequency modulation is observed in the female songs recorded from the loudspeaker membrane and the plants. The signals recorded from plants present higher harmonic peaks compared with the signals recorded from the loudspeaker membrane. The presence of species and sex‐specific songs during mating confirms the important role of vibrational communication in mate location and recognition. The temporal and spectral characteristic signals are influenced by the substrate used to record the songs emitted by D. melacanthus.  相似文献   

5.

Background

Members of the subfamily Galleriinae have adapted to different selective environmental pressures by devising a unique mating process. Galleriinae males initiate mating by attracting females with either chemical or acoustic signals (or a combination of both modalities). Six compounds considered candidates for the sex pheromone have recently been identified in the wing gland extracts of Aphomia sociella males. Prior to the present study, acoustic communication had not been investigated. Signals mediating female attraction were likewise unknown.

Methodology/Principal Findings

Observations of A. sociella mating behaviour and recordings of male acoustic signals confirmed that males initiate the mating process. During calling behaviour (stationary wing fanning and pheromone release), males disperse pheromone from their wing glands. When a female approaches, males cease calling and begin to produce ultrasonic songs as part of the courtship behaviour. Replaying of recorded courting songs to virgin females and a comparison of the mating efficiency of intact males with males lacking tegullae proved that male ultrasonic signals stimulate females to accept mating. Greenhouse experiments with isolated pheromone glands confirmed that the male sex pheromone mediates long-range female attraction.

Conclusion/Significance

Female attraction in A. sociella is chemically mediated, but ultrasonic communication is also employed during courtship. Male ultrasonic songs stimulate female sexual display and significantly affect mating efficiency. Considerable inter-individual differences in song structure exist. These could play a role in female mate selection provided that the female''s ear is able to discern them. The A. sociella mating strategy described above is unique within the subfamily Galleriinae.  相似文献   

6.
Comparison of calling and courtship songs and mating strategies in different groups of Orthoptera shows that acoustic signals in bush crickets (Tettigonioidea) are used for searching conspecific mates at a distance, and song evolution is primarily driven by the acoustic surroundings and simultaneously singing other species. The role of sexual selection in the evolution of acoustic signals in bush crickets is much less important than in the evolution of other nonacoustic signals employed during direct contact. Acoustic signals of crickets (Grylloidea) are involved in both distant and short-range communication. Acoustic courtship signals, along with other courtship components, may offer the material for sexual selection, although, essentially, evolution of acoustic signals in crickets is determined by the acoustic surroundings. Acoustic communication in the grasshoppers of the subfamily Gomphocerinae is mainly a short-distance communication. Acoustic signals of Gomphocerinae are highly variable and elaborate in temporal parameters, and therefore can serve for evaluation of the mate "quality". Song evolution in this group is to a greater extent driven by sexual selection than by the acoustic surroundings and, therefore, could proceed faster than in other groups of Orthoptera and play a major role in speciation.  相似文献   

7.
Insects have evolved a variety of structures and mechanisms to produce sounds, which are used for communication both within and between species. Among acoustic insects, cicada males are particularly known for their loud and diverse sounds which function importantly in communication. The main method of sound production in cicadas is the tymbal mechanism, and a relative small number of cicada species possess both tymbal and stridulatory organs. However, cicadas of the genus Karenia do not have any specialized sound-producing structures, so they are referred to as “mute”. This denomination is quite misleading, as they indeed produce sounds. Here, we investigate the sound-producing mechanism and acoustic communication of the “mute” cicada, Karenia caelatata, and discover a new sound-production mechanism for cicadas: i.e., K. caelatata produces impact sounds by banging the forewing costa against the operculum. The temporal, frequency and amplitude characteristics of the impact sounds are described. Morphological studies and reflectance-based analyses reveal that the structures involved in sound production of K. caelatata (i.e., forewing, operculum, cruciform elevation, and wing-holding groove on scutellum) are all morphologically modified. Acoustic playback experiments and behavioral observations suggest that the impact sounds of K. caelatata are used in intraspecific communication and function as calling songs. The new sound-production mechanism expands our knowledge on the diversity of acoustic signaling behavior in cicadas and further underscores the need for more bioacoustic studies on cicadas which lack tymbal mechanism.  相似文献   

8.
It has been proposed that intraspecific ultrasonic communication observed in some moths evolved, through sexual selection, subsequent to the development of ears sensitive to echolocation calls of insectivorous bats. Given this scenario, the receiver bias model of signal evolution argues that acoustic communication in moths should have evolved through the exploitation of receivers'' sensory bias towards bat ultrasound. We tested this model using a noctuid moth Spodoptera litura, males of which were recently found to produce courtship ultrasound. We first investigated the mechanism of sound production in the male moth, and subsequently the role of the sound with reference to the female''s ability to discriminate male courtship songs from bat calls. We found that males have sex-specific tymbals for ultrasound emission, and that the broadcast of either male songs or simulated bat calls equally increased the acceptance of muted males by the female. It was concluded that females of this moth do not distinguish between male songs and bat calls, supporting the idea that acoustic communication in this moth evolved through a sensory exploitation process.  相似文献   

9.
10.
Song complexity in many songbirds is a trait subject to sexual selection. It is often associated with male territorial defence. Empirical studies testing differential male responses to rival song in vocally complex songbirds have, however, been scarce. We conducted playback experiments of the endemic New Zealand Tui Prosthemadera novaeseelandiae to test the aggressive response of territorial male Tui to rival songs with differing complexity levels. Overall, complex songs evoked significantly stronger responses from territorial males than did simple songs. Following playback of complex songs, focal males approached the playback more closely and rapidly, and responded with songs of higher complexity than they did to playback of simple songs. This suggests males could both distinguish between different levels of complexity within the Tui repertoire, and perceive a more complex song as a greater territorial threat. Our study is one of the first to demonstrate strong aggressive responses to increased levels of song complexity in a songbird species with highly complex vocalizations.  相似文献   

11.
Many bird species produce low‐amplitude acoustic signals that have been poorly studied in comparison with loud, broadcast songs used for mate attraction and repelling rivals. In some birds, these soft signals were found to be emitted in an antagonistic context and were the most reliable predictor of a subsequent physical attack. The function of this signal is poorly understood, and several hypotheses have been proposed to explain the mechanisms and possible functions of such low‐amplitude signals. The subject of this study is the ortolan bunting, a small passerine species that produces soft songs during territorial defence. In this study, we aim to study whether the soft songs of the ortolan bunting are a signal of increased aggressiveness by testing if they meet the context, prediction and response criteria of aggressive signals. We simulated stranger male intrusion into a focal male territory with three different playback experiments. We found no significant differences in the male responses to the taxidermic model regardless of whether they were or were not producing soft songs in response. The males responded more strongly to loud songs than to soft songs during the simulated intrusions, and the males did not treat soft songs as a predictor of conflict escalation. Although soft songs clearly appeared during territorial encounters and were not present during spontaneous singing before the intrusions, our results did not support the hypothesis that soft songs indicate aggressive character. We suggest that soft songs in the ortolan bunting are intentionally used by birds to modify their intentions or target‐specific individuals within a close range.  相似文献   

12.
In many passerines, males have repertoires of different songs of which some songs are often shared with other males. Sharing of song repertoires among males can provide insights into the context in which songs were acquired and on the role of song repertoires in inter- and intrasexual communication. Here we studied repertoire sharing in male territorial thrush nightingales ( Luscinia luscinia ). We compared male vocal repertoires of the basic song components, full songs, and the sequencing of songs in a bout. The results show that males differed significantly in the size of their song repertoires but not in the size of the repertoire of basic song components. Moreover, they shared almost all (80%) the repertoire of song components but only 30% of their song types. Neighboring males shared significantly more song types than did non-neighboring males but interestingly they did not share more basic song components than non-neighboring males. These results show that the repertoire of basic song components is under much less sexual selection than the size of song repertoires. Sharing of song repertoires among neighbors presumably results from repertoire conversion over time and from males returning to their territories in the following season. Repertoire sharing then can be an indicator of territory tenure and thus it can be important in repelling rivals and in female choice.  相似文献   

13.
Anthropogenic noise produced by human activities affects acoustic communication in animals living in urban habitats. We recorded the calling songs of the cicada Cryptotympana takasagona in the Kaohsiung metropolitan areas of southern Taiwan to investigate possible acoustic adaptations to anthropogenic noise. C. takasagona did not call more in noise gaps. Acoustic features (peak frequency, quartile 25%, quartile 50%, and quartile 75%) of calling songs significantly increased with ambient noise levels. C. takasagona shifted the energy distribution of calling songs to higher frequencies in the presence of higher noise levels. We suggest that the acoustic adaptation by which song frequencies increase with levels of anthropogenic noise in C. takasagona may result from a size-dependent calling strategy in which small-sized males call more in noise conditions or large-sized males adjust their song frequency by changing their abdominal cavities.  相似文献   

14.
Geographic variation in birdsong and differential responses of territorial males to local and non‐local song variants have been documented in a number of songbird species in which males learn their songs through imitation. Here, we investigated geographic song variation and responses to local and non‐local song in the grasshopper sparrow (Ammodramus savannarum), a species in which males develop song by improvisation rather than imitation, as a first step toward understanding how the extent and salience of geographic song variation is related to the mode of song development. To describe the geographic variation in song, we compared songs from populations in eastern Maryland and central Ohio, USA, using multiple acoustic analysis techniques. We then conducted a playback experiment in Maryland using local and non‐local (Ohio) songs to test how territorial males responded to this geographic variation. We found acoustic differences between songs from the two sites. However, males responded similarly to playback of these songs, suggesting that this geographic variation is not behaviorally salient in a territorial context. Together with previous studies, our results suggest that across species, geographic song variation and the extent to which this variation functions in communication may be correlated with the accuracy with which song models are imitated during song development.  相似文献   

15.
In Tettigoniidae (Orthoptera: Ensifera), hearing organs are essential in mate detection. Male tettigoniids usually produce calling songs by tegminal stridulation, whereas females approach the males phonotactically. This unidirectional communication system is the most common one among tettigoniids. In several tettigoniid lineages, females have evolved acoustic replies to the male calling song which constitutes a bidirectional communication system. The genus Poecilimon (Tettigoniidae: Phaneropterinae) is of special interest because the ancestral state of bidirectional communication, with calling males and responding females, has been reversed repeatedly to unidirectional communication. Acoustic communication is mediated by hearing organs that are adapted to the conspecific signals. Therefore, we analyse the auditory system in the Tettigoniidae genus Poecilimon for functional adaptations in three characteristics: (i) dimension of sound‐receiving structures (tympanum and acoustic spiracle), (ii) number of auditory sensilla and (iii) hearing sensitivity. Profound differences in the auditory system correlate with uni‐ or bidirectional communication. Among the sound‐receiving structures, the tympana scale with body size, whereas the acoustic spiracle, the major sound input structure, was drastically reduced in unidirectional communicating species. In the unidirectional P. ampliatus group, auditory sensilla are severely reduced in numbers, but not in the unidirectional P. propinquus group. Within the P. ampliatus group, the number of auditory sensilla is further reduced in P. intermedius which lost acoustic signalling due to parthenogenesis. The auditory sensitivity correlated with the size of the acoustic spiracle, as hearing sensitivity was better with larger spiracles, especially in the ultrasonic range. Our results show a significant reduction in auditory structures, shaped by the differing sex roles during mate detection.  相似文献   

16.
Long‐distance acoustic signals are widely used in animal communication systems and, in many cases, are essential for reproduction. The acoustic adaptation hypothesis (AAH) implies that acoustic signals should be selected for further transmission and better content integrity under the acoustic constraints of the habitat in which they are produced. In this study, we test predictions derived from the AAH in frogs. Specifically, we focus on the difference between torrent frogs and frogs calling in less noisy habitats. Torrents produce sounds that can mask frog vocalizations and constitute a major acoustic constraint on call evolution. We combine data collected in the field, material from scientific collections and the literature for a total of 79 primarily Asian species, of the families Ranidae, Rhacophoridae, Dicroglossidae and Microhylidae. Using phylogenetic comparative methods and including morphological and environmental potential confounding factors, we investigate putatively adaptive call features in torrent frogs. We use broad habitat categories as well as fine‐scale habitat measurements and test their correlation with six call characteristics. We find mixed support for the AAH. Spectral features of torrent frog calls are different from those of frogs calling in other habitats and are related to ambient noise levels, as predicted by the AAH. However, temporal call features do not seem to be shaped by the frogs’ calling habitats. Our results underline both the complexity of call evolution and the need to consider multiple factors when investigating this issue.  相似文献   

17.
J. Alcock    W. J. Bailey 《Journal of Zoology》1995,237(3):337-352
Males of the Australian whistling moth Hecatesia exultans produce ultrasonic acoustical signals while perched on low vegetation. Some males call more or less continuously for several hours during midday with individuals occupying the same general calling area for up to several weeks. The nearest neighbour of calling males is typically 15 to 25m distant, at the outer edge of the estimated range at which neighbours can detect each other's ultrasonic signals. Calling male intruders occasionally enter an occupied territory, resulting in aerial clashes with nearly continuous signalling by both combatants. Males respond to playback of taped signals by flying toward the speaker and sometimes by calling while perched on or near the speaker. Females sometimes visit calling males, with copulation following very soon after the female alights on vegetation near the male's perch. Males increase the rate of sound production by about 11% when presented with moving pinned specimens or paper models of conspecifics. These observations and experiments indicate that males use ultrasound as long-distance communication signals designed to attract sexually receptive females and to establish territorial residency in competition with other males.  相似文献   

18.
Animals use acoustic signals to defend resources against rivals and attract breeding partners. As with many biological traits, acoustic signals may reflect ancestry; closely related species often produce more similar signals than do distantly related species. Whether this similarity in acoustic signals is biologically relevant to animals is poorly understood. We conducted a playback experiment to measure the physical and vocal responses of male songbirds to the songs of both conspecific and allopatric‐congeneric animals that varied in their acoustic and genetic similarity. Our subjects were territorial males of four species of neotropical Troglodytes wrens: Brown‐throated Wrens (Troglodytes brunneicollis), Cozumel Wrens (T. beani), Clarion Wrens (T. tanneri) and Socorro Wrens (T. sissonii). Our results indicate that birds respond to playback of both conspecific and allopatric‐congeneric animals; that acoustic differences increase with genetic distance; and that genetic divergence predicts the strength of behavioural responses to playback, after removing the effects of acoustic similarity between subjects’ songs and playback stimuli. Collectively, these results demonstrate that the most distantly related species have the most divergent songs; that male wrens perceive divergence in fine structural characteristics of songs; and that perceptual differences between species reflect evolutionary history. This study offers novel insight into the importance of acoustic divergence of learned signals and receiver responses in species recognition.  相似文献   

19.
Male signals are frequently studied in a single behavioral context, but in some cases they may assist multiple functions, namely for both male–male competition and female mate choice. Boatwhistles are known as the mate attraction calls of toadfishes typically produced during the breeding season. However, recent observations with the Lusitanian toadfish Halobatrachus didactylus (Batrachoididae) indicate that the emission of boatwhistles is not restricted to this period, which suggests a function in other behavioral contexts such as agonistic territorial interactions. We experimentally manipulated the social context of toadfish males to investigate whether boatwhistles are produced during territorial defense, by introducing ‘intruders’ in an experimental tank containing nesting ‘resident’ males. Furthermore, we examined whether parental care (eggs in the nest) affected the behavioral responses of resident males during territorial defense. Resident males defended their shelters producing sounds, mostly boatwhistles, towards intruders. Parental males revealed higher aggression levels, exhibiting additional threatening and attack behaviors. Boatwhistles registered during agonistic events were compared with the mate advertising boatwhistles recorded from small aggregations of nesting males in a natural breeding intertidal area. Agonistic boatwhistles were produced in lower and variable calling rates comparing with the advertising ones that were typically emitted in long series of calls. Agonistic boatwhistles were similar in duration and frequency harmonic structure (with a middle tonal phase) to the advertising calls, but presented less amplitude modulation, and lower dominant and fundamental frequencies. These acoustic differences were probably related to differences in calling rates and broadcast demands associated to the distance to the intended receiver. We provide first evidence that, apart from attracting mates, the toadfish boatwhistles also function as active ‘keep‐out’ signals during territorial defense.  相似文献   

20.
Acoustic Neighbour‐Stranger (N‐S) discrimination is widespread in birds and has evolved to settle territorial disputes with low costs. N‐S discrimination was found both in song‐learning oscines and non‐song‐learning bird taxa, irrespective of the repertoire sizes they have. Therefore, it seems that more than just a single mechanism enable N‐S discrimination. Species with larger repertoires, where males have unique phrases or syllables may rely on such interindividual differences. The majority of birds have rather small repertoires, which often are shared among neighbours. In this case, males are facing the problem of individual recognition when rivals produce songs, at least superficially, identical. To better understand the acoustic basis of N‐S discrimination in species with small and shared repertoires, I studied the ortolan bunting (Emberiza hortulana). Males of this small oscine species are able to N‐S discrimination based on a single song rendition when presented in a playback experiment, regardless of song‐type diversity and song‐sharing level within a particular population. It was also found that songs of the same type sung by different males differ in the frequency of the initial song phrases and these differences persist over years. Here, I tested whether males are able to discriminate among the natural songs and the artificially modified songs of their neighbours in which the frequency was experimentally changed by relatively small value in comparison with the variation range found in this population. Subjects responded significantly more aggressively to the songs with an artificially modified frequency, suggesting that males treat such songs as having come from the repertoire of a non‐neighbour. These results confirm an earlier prediction that differences in the frequency of shared song types enable N‐S discrimination. The study presents one of the possible mechanisms enabling N‐S discrimination in songbirds with small repertoires and stress the role of within‐song‐type variation, which is still understudied song characteristic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号