首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A cascade formed by phosphorylation events of mitogen-activated protein kinases (MAPKs) takes part in plant stress responses. However, the roles of these MAPKs in resistance of potato (Solanum tuberosum) against Phytophthora pathogens is not well studied. Our previous work showed that a Phytophthora infestans RXLR effector targets and stabilizes the negative regulator of MAPK kinase 1 of potato (StMKK1). Because in Arabidopsis thaliana the AtMPK4 is the downstream phosphorylation target of AtMKK1, we performed a phylogenetic analysis and found that potato StMPK4/6/7 are closely related and are orthologs of AtMPK4/5/11/12. Overexpression of StMPK4/7 enhances plant resistance to P. infestans and P. parasitica. Yeast two-hybrid analysis revealed that StMPK7 interacts with StMKK1, and StMPK7 is phosphorylated on flg22 treatment and by expressing constitutively active StMKK1 (CA-StMKK1), indicating that StMPK7 is a direct downstream signalling partner of StMKK1. Overexpression of StMPK7 in potato enhances potato resistance to P. infestans. Constitutively active StMPK7 (CA-StMPK7; StMPK7D198G, E202A) was found to promote immunity to Phytophthora pathogens and to trigger host cell death when overexpressed in Nicotiana benthamiana leaves. Cell death triggered by CA-StMPK7 is SGT1/RAR1-dependent. Furthermore, cell death triggered by CA-StMPK7 is suppressed on coexpression with the salicylate hydroxylase NahG, and StMPK7 activation promotes salicylic acid (SA)-responsive gene expression. We conclude that potato StMPK7 is a downstream signalling component of the phosphorelay cascade involving StMKK1 and StMPK7 plays a role in immunity to Phytophthora pathogens via an SA-dependent signalling pathway.  相似文献   

2.
The wild tomato species Solanum chilense is divided into geographically and genetically distinct populations that show signs of defense gene selection and differential phenotypes when challenged with several phytopathogens, including the oomycete causal agent of late blight Phytophthora infestans. To better understand the phenotypic diversity of this disease resistance in S. chilense and to assess the effect of plant genotype versus pathogen isolate, respectively, we evaluated infection frequency in a systematic approach and with large sample sizes. We studied 85 genetically distinct individuals representing nine geographically separated populations of S. chilense. This showed that differences in quantitative resistance can be observed between but also within populations at the level of individual plants. Our data also did not reveal complete immunity in any of the genotypes. We further evaluated the resistance of a subset of the plants against P. infestans isolates with diverse virulence properties. This confirmed that the relative differences in resistance phenotypes between individuals were mainly determined by the plant genotype under consideration with modest effects of pathogen isolate used in the study. Thus, our report suggests that the observed quantitative resistance against P. infestans in natural populations of a wild tomato species S. chilense is the result of basal defense responses that depend on the host genotype and are pathogen isolate‐unspecific.  相似文献   

3.
Determinance of resistance was studied in four different varieties of Solanum tuberosum using biochemical and molecular parameters. It was clearly evident that due to infection of P. infestans, the total protein, total phenol and lignin were induced in all four verities; however, the induction was found more in resistant varieties compared to susceptible varieties. Induction of proteins was also determined by SDS-PAGE analysis. Deposition of lignin was showed by histological comparison using Phloroglucinol HCl staining. Higher deposition of lignin in resistant varieties could be considered as reliable characters related to disease resistance and could be used as biochemical markers for late blight resistance. The RAPD profile generated using eight different decameric primers showed both, polymorphic as well as monomorphic bands. There were many unique bands found only in resistant varieties. These polymorphic bands could also be served as molecular markers for screening of LB resistance potato varieties.  相似文献   

4.
The mechanisms of induced resistance and susceptibility of potato (Solanum tuberosum L.) tubers to late blight agent (Phytophthora infestans Mont de Bary) were studied using an elicitor chitosan and an immunosuppressor laminarin. It was elucidated that treatment of disks from potato tubers with chitosan resulted in salicyclic acid (SA) accumulation due to activation of benzoate-2-hydroxylase and hydrolysis of SA conjugates. Such SA accumulation in potato tissues inhibited one of the antioxidant enzymes, catalase, inducing an oxidative burst and resistance development. The mechanisms of induced susceptibility to the late blight causal agent were studied using an unspecific immunosuppressor, laminarin, an analogue of natural specific suppressor of potato immune responses, β-1,3,β-1,6-glucan. It was established that the development of immunosuppression in tissues treated with laminarin did not affect the SA level in tissues. However, catalase sensitivity to SA reduced in laminarin-treated tissues, and the enzyme activity increased. In its turn, this might result in the reduced level of hydrogen peroxide in the cells and, as a sequence, in the increased potato susceptibility to late blight.  相似文献   

5.
Late blight caused by the oomycete Phytophthora infestans is the most destructive disease in potato cultivation worldwide. New, more virulent P. infestans strains have evolved which overcome the genetic resistance that has been introgressed by conventional breeding from wild potato species into commercial varieties. R genes (for single-gene resistance) and genes for quantitative resistance to late blight are present in the germplasm of wild and cultivated potato. The molecular basis of single-gene and quantitative resistance to late blight is unknown. We have cloned R1, the first gene for resistance to late blight, by combining positional cloning with a candidate gene approach. The R1 gene is member of a gene family. It encodes a protein of 1293 amino acids with a molecular mass of 149.4 kDa. The R1 gene belongs to the class of plant genes for pathogen resistance that have a leucine zipper motif, a putative nucleotide binding domain and a leucine-rich repeat domain. The most closely related plant resistance gene (36% identity) is the Prf gene for resistance to Pseudomonas syringae of tomato. R1 is located within a hot spot for pathogen resistance on potato chromosome V. In comparison to the susceptibility allele, the resistance allele at the R1 locus represents a large insertion of a functional R gene.  相似文献   

6.
Late blight, caused by the oomycete pathogen Phytophthora infestans, is the most devastating disease for potato cultivation. Here, we describe the positional cloning of the Rpi-blb1 gene from the wild potato species Solanum bulbocastanum known for its high levels of resistance to late blight. The Rpi-blb1 locus, which confers full resistance to complex isolates of P. infestans and for which race specificity has not yet been demonstrated, was mapped in an intraspecific S. bulbocastanum population on chromosome 8, 0.3 cM from marker CT88. Molecular analysis of a bacterial artificial chromosome (BAC) clone spanning the Rpi-blb1 locus identified a cluster of four candidate resistance gene analogues of the coiled coil, nucleotide-binding site, leucine-rich repeat (CC-NBS-LRR) class of plant resistance (R) genes. One of these candidate genes, designated the Rpi-blb1 gene, was able to complement the susceptible phenotype in a S. tuberosum and tomato background, demonstrating the potential of interspecific transfer of broad-spectrum late blight resistance to cultivated Solanaceae from sexually incompatible host species. Paired comparisons of synonymous and non-synonymous nucleotide substitutions between different regions of Rpi-blb1 paralogues revealed high levels of synonymous divergence, also in the LRR region. Although amino acid diversity between Rpi-blb1 homologues is centred on the putative solvent exposed residues of the LRRs, the majority of nucleotide differences in this region have not resulted in an amino acid change, suggesting conservation of function. These data suggest that Rpi-blb1 is relatively old and may be subject to balancing selection.  相似文献   

7.
Differential gene expression was analyzed after infection with Phytophthora infestans in six potato cultivars with different levels of resistance to late blight. To verify the infection of the potato leaflets, the amount of phytopathogen mRNA within the plant material was quantified by real-time quantitative PCR. The expression of 182 genes selected from two subtracted cDNA libraries was studied with cDNA array hybridization using RNA from non-infected and infected potato leaflets. Gene up- and down-regulation were clearly detectable in all cultivars 72 h post inoculation. Gene expression patterns in susceptible cultivars differed from those in potato varieties with a higher level of resistance. In general, a stronger gene induction was observed in the susceptible cultivars compared to the moderately to highly resistant potato varieties. Five genes with the highest homology to stress and/or defence-related genes were induced specifically in the susceptible cultivars. Four genes responded to pathogen attack independently of the level of resistance of the cultivar used, and three genes were repressed in infected tissue of most cultivars. Even in the absence of P. infestans infection, six genes showed higher expression levels in the somewhat resistant cultivars Bettina and Matilda. Possible reasons for the different levels of gene expression are discussed.  相似文献   

8.
Under controlled field conditions, a Solanum backcross population segregated for resistance to Phytophthora infestans. The population (`BCT') had been derived previously by crossing the Solanum tuberosum dihaploid USW2230 × Solanum berthaultii PI473331 to obtain the hybrid M200-30, and then backcrossing the hybrid to the S. tuberosum dihaploid HH1-9. Resistance was assessed from analyses of epidemics in small plots of each individual genotype, and data were recorded as area under the disease progress curve (AUDPC). The parents of the original cross (USW2230 and a selection from PI473331) were not included in the test, but the hybrid was incompatible and HH1-9 was compatible with the tester strain of P. infestans (US-8 lineage). Somewhat more than half of the progeny also were incompatible with the tester strain, indicating the presence of an R gene. This gene segregated from the S. berthaultii parent and mapped 4.8 cm from the RFLP marker TG63 on chromosome 10. We deduce that the R gene is not R-1, R-2, R-3, R-6, or R-7 and is probably not R-4, R-5, or R-10. Among the remaining, compatible progeny, there was a wide range of quantitative resistance. All were more resistant than the susceptible cultivar Superior, and most individuals were much more resistant than the moderately resistant cultivar Kennebec. AUDPC values among the sub-population of compatible genotypes ranged from about 400 to 1500 units the first year and from 400 to 1760 units the second year. At least five quantitative trait loci (QTLs) were detected in this sub-population in both 1997 and 1998, including one detected through segregation of alleles from both the hybrid parent and the recurrent S. tuberosum parent. A model of main and epistatic effects explained 56% and 66% of the variation observed for quantitative resistance to late blight in 1997 and 1998, respectively. Several of the QTLs for late blight resistance were located in regions of the genome to which QTLs for late maturity have previously been mapped.  相似文献   

9.
Studies of infection by Phytophthora infestans—the causal agent of potato late blight—in wild species can provide novel insights into plant defense responses, and indicate how wild plants might be influenced by recurrent epidemics in agricultural fields. In the present study, our aim was to investigate if different clones of Solanum dulcamara (a relative of potato) collected in the wild differ in resistance and tolerance to infection by a common European isolate of P. infestans. We performed infection experiments with six S. dulcamara genotypes (clones) both in the laboratory and in the field and measured the degree of infection and plant performance traits. In the laboratory, the six evaluated genotypes varied from resistant to susceptible, as measured by degree of infection 20 days post infection. Two of the four genotypes susceptible to infection showed a quadratic (concave downward) relationship between the degree of infection and shoot length, with maximum shoot length at intermediate values of infection. This result suggests overcompensation, that is, an increase in growth in infected individuals. The number of leaves decreased with increasing degree of infection, but at different rates in the four susceptible genotypes, indicating genetic variation for tolerance. In the field, the inoculated genotypes did not show any disease symptoms, but plant biomass at the end of the growing season was higher for inoculated plants than for controls, in‐line with the overcompensation detected in the laboratory. We conclude that in S. dulcamara there are indications of genetic variation for both resistance and tolerance to P. infestans infection. Moreover, some genotypes displayed overcompensation. Learning about plant tolerance and overcompensation to infection by pathogens can help broaden our understanding of plant defense in natural populations and help develop more sustainable plant protection strategies for economically important crop diseases.  相似文献   

10.
Potato late blight is an example of a re‐emerging disease of plants. Phytophthora infestans was first introduced into Europe during the 19th century, where it caused the Irish potato famine. During the 20th century several additional introduction events have been suspected, especially in the mid‐70s due to the import of large quantities of potato needed after the shortage caused by drought in 1976. Here, we investigate the genetic population structure of Phytophthora infestans, at the first stages of a recent invasion process in France. A total of 220 isolates was collected from 20 commercial fields of the potato susceptible cultivar Bintje, during two consecutive years (2004 and 2005). Clustering analyses based on eight recently developed microsatellite markers reveal that French P. infestans populations are made of two differentiated genetic clusters of isolates (FST = 0.19). This result suggests multiple introductions of P. infestans into France, either through the introduction of a composite population of isolates or through the successive introduction of isolates having differentiated genetic backgrounds. Both clusters identified have a strong clonal structure and are similar regarding genetic diversity and mating type composition. The maintenance of differentiation between the two genetic clusters should result from the low or non‐existent contribution of sexual reproduction in French P. infestans populations.  相似文献   

11.
Summary Resistance of potato leaflets to culture filtrates of Phytophthora infestans is correlated with lower growth of the congenial parasite but not with lower sporulation.  相似文献   

12.
Infection of hairy nightshade ( Solanum sarrachoides Sendt.) by Phytophthora infestans has been reported. However, the epidemiological significance of hairy nightshade to potato late blight is not well known. Disease development and infection rates of P. infestans were quantified on hairy nightshade relative to tomato (cv. Brandywine) and potato (cv. Shepody) hosts to evaluate infection potential at 14, 18, 22 and 26°C and 72, 82, 87, and 92% relative humidity (RH). The susceptibility of hairy nightshade to inoculum levels, weed ontogeny, and sporangia production potential were also investigated. Late blight development varied among hairy nightshade, tomato and potato hosts. Pathogen infection rates ranged from 0.0325 to 0.4674 gompits/day (unit for quantifying infection rates), and were significantly (P < 0.05) greater on potato and tomato than on hairy nightshade. Late blight severity was variably affected by RH. Disease levels on hairy nightshade varied with inoculum load; and ranged from 9 to 26% and 26 to 37% at low (5 × 103) and high (25 × 103) sporangia concentrations, respectively. Late blight was recorded irrespective of hairy nightshade ontogeny, and was significantly greater on 8–10 than 4–6-week-old plants. These results indicate that pathogen, environmental and host factors affect late blight development on hairy nightshade.  相似文献   

13.
Pseudomonas strains have shown promising results in biological control of late blight caused by Phytophthora infestans. However, the mechanism(s) and metabolites involved are in many cases poorly understood. Here, the role of the cyclic lipopeptide massetolide A of Pseudomonas fluorescens SS101 in biocontrol of tomato late blight was examined. Pseudomonas fluorescens SS101 was effective in preventing infection of tomato (Lycopersicon esculentum) leaves by P. infestans and significantly reduced the expansion of existing late blight lesions. Massetolide A was an important component of the activity of P. fluorescens SS101, since the massA-mutant was significantly less effective in biocontrol, and purified massetolide A provided significant control of P. infestans, both locally and systemically via induced resistance. Assays with nahG transgenic plants indicated that the systemic resistance response induced by SS101 or massetolide A was independent of salicylic acid signalling. Strain SS101 colonized the roots of tomato seedlings significantly better than its massA-mutant, indicating that massetolide A was an important trait in plant colonization. This study shows that the cyclic lipopeptide surfactant massetolide A is a metabolite with versatile functions in the ecology of P. fluorescens SS101 and in interactions with tomato plants and the late blight pathogen P. infestans.  相似文献   

14.
15.
Plants can be infected by multiple pathogens concurrently in natural systems. However,pathogen–pathogen interactions have rarely been studied. In addition to the oomycete Phytophthora sojae, fungi such as Fusarium spp. also cause soybean root rot. In a 3-year field investigation, we discovered that P. sojae and Fusarium spp. frequently coexisted in diseased soybean roots. Out of 336 P. sojae–soybean–Fusarium combinations,more than 80% aggravated disease. Different Fusarium species all enhanced P...  相似文献   

16.
Induction of sexual reproduction in Opalina sudafricana by injecting its host Bufo regularis with gibberellic acid. International Journal for Parasitology4, 203–206. Opalina sudafricana parasitic in the rectum of Bufo regularis was induced to reproduce sexually when its host was injected subcutaneously with 0·3 mg of gibberellin-A3. This plant growth substance had no effect on the induction of encystation in the parasites in vitro. Urine of toads injected with gibberellin-A3 induced sexual reproduction (encystation) in the opalinids in vitro. It is speculated that the plant hormone must either be broken down into an active substance by the toad or cause the toad to excrete its own gonadal hormones (or other hormones) into the urine. This active substance or the excreted hormones may induce division in the parasites resulting in the formation of small forms which encyst.  相似文献   

17.
A method is described for using young field slugs Deroceras reticulatum (Muller) in a bioassay study of biochemical resistance of potato (Solanum tuberosum L.) cultivars to slugs. Tuber parts or an artificial diet were provided as food sources. Comparisons were made of feeding, survival and weight gain between the susceptible cultivar Maris Piper and the resistant cultivar Pentland Dell. Biochemical analyses were made of these two cultivars and the resistant cultivars Stormont Enterprise and Majestic. Comparisons of tuber sections and peelings as food sources indicated factors affecting growth were located in the surface layers of the tubers. Phenolics and glycoalkaloids were concentrated in the surface layers but the amounts were similar in the susceptible and resistant cultivars and the bioassays indicated that neither acting alone could explain resistance. The amounts and distribution of free amino acids also did not correlate with resistance although when supplied in the artificial diet they partly inhibited feeding. Proteinaceous inhibitors of slug gut proteolytic enzymes were present throughout the tubers but were not concentrated in the surface layers and the amounts were similar in the different cultivars thus they too did not explain the difference in susceptibility between the cultivars. Bioassays using acetone extracts (low molecular weight substances) and acetone powders (high molecular weight substances) either alone or in combination indicated that the resistant cultivar Pentland Dell contained a high molecular weight substance which together with a low molecular weight substance from either the same cultivar or the susceptible Maris Piper could confer resistance. Bioassays using protein extracts supplied in the presence or absence of chlorogenic acid indicated that this mechanism could comprise enzymic oxidation of phenolics. Assays of phenolase confirmed this since activity was highest in the outer layers of the tubers and was highest in the three resistant cultivars. Thus the chief resistance factor identified was high phenolase activity acting rapidly on phenolics when the slug first bites the tuber surface. The quantity of phenolics per se did not control the resistance. Thus while phenolics must be available, resistance is compatible with low blackening on cutting the tuber.  相似文献   

18.
Abstract. 1. The hypotheses that genetic variation in host plant resistance of the arroyo willow affected leaf folder ( Phyllocolpa sp.) (Hymenoptera: Tenthredinidae) density and that genetic variation in shoot length and leaf length was correlated with resistance were tested.
2. Willows grown in pots and exposed to ovipojsition by the leaf folding sawfly in cages had significantly different densities among clones, indicating variation in resistance caused by genetic differences among conspecific host plants.
3. There was a general correspondence between leaf folder density on potted cuttings and on the plants in the field that were the sources of cuttings.
4. In behavioural choice experiments, susceptible clones (with highest leaf fold densities) had the highest oviposition activity of female leaf folders compared to clones that were resistant to the leaf folder.
5. Clones differed significantly in shoot length and leaf length among clones grown in pots, among clones in the field, and between shoots with galls and shoots without galls on clones in the field.
6. Leaf folder density was significantly positively correlated with mean shoot length on field clones in 1985 and 1986, but was not correlated with leaf length, although leaf length and shoot length were correlated.
7. Leaf length variation among willow clones accounted for a significant portion of the variation in resistance of potted willows, but shoot length was unimportant.  相似文献   

19.
Summary Somatic fusions between the cultivated potato Solanum tuberosum and the wild species S. circaeifolium subsp. circaeifolium Bitter were produced in order to incorporate desirable traits into the potato gene pool. Selection of the putative hybrids was based on a difference in callus morphology between the hybrids and their parents, with the hybrids showing typical purple-colored cells in otherwise green calli. In all, 17 individual calli regenerated to plants. Of the nine plants that could be transferred to the greenhouse, eight showed a hybrid and one a parental morphology. Restriction fragment length polymorphism (RFLP) analysis confirmed the hybrid character in the former group. Chloroplast counts in stomatal guard cells and flow cytometric determination of nuclear DNA content showed that four hybrid plants were tetraploid (4x), one was mixoploid (5x–8x), and the others were polyploid (6x; 8x). Three out of four tetraploid hybrids were found to be fully resistant to Phytophthora infestans, and all four hybrids were resistant to Globodera pallida pathotypes Pa2 and Pa3. It was further observed that the type and amount of steroidal glycoalkaloids varied among the tubers of the parents and the hybrids. Using the hybrids as female parents in crosses with S. tuberosum, viable seeds could be obtained. This demonstrates the potential of these hybrids in practical plant breeding.  相似文献   

20.
Several studies demonstrate that natural enemies (e.g. parasites) have profound negative effects on the life-history traits of their hosts. If the host can compensate for the negative effects of parasitic infection by altering its life history, these modifications may partly form the basis of resistance or tolerance against parasites. Thus, parasites may be of considerable importance in shaping the evolution of life-history traits of their hosts. To examine if previous parasitism is associated with differences in life-history traits of the host, I conducted a common garden experiment with Urtica dioica plants originating from eight populations of which four were unparasitized, and four parasitized by the holoparasitic plant, Cuscuta europaea. A field survey indicated no differences between unparasitized and parasitized populations in, for example, the number of plant species and nutrient levels in the soil. Thus, it seems reasonable to assume that differences in life-history traits between the two population types in the common garden would reflect the effects of previous selection by the parasite. In the common garden, plants from parasitized populations started to flower later and allocated less biomass to asexual reproduction (measured as the production of stolons, i.e. clonal propagation) compared to plants from unparasitized populations. These results thus indicate that selection by the parasite may have favoured later onset of flowering, and may have selected against asexual reproduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号