首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 470 毫秒
1.
Pseudomonas syringae employs a type III secretion system to inject 20–30 different type III effector (T3SE) proteins into plant host cells. A major role of T3SEs is to suppress plant immune responses and promote bacterial infection. The YopJ/HopZ acetyltransferases are a superfamily of T3SEs found in both plant and animal pathogenic bacteria. In P. syringae, this superfamily includes the evolutionarily diverse HopZ1, HopZ2 and HopZ3 alleles. To investigate the roles of the HopZ family in immunomodulation, we generated dexamethasone-inducible T3SE transgenic lines of Arabidopsis for HopZ family members and characterized them for immune suppression phenotypes. We show that all of the HopZ family members can actively suppress various facets of Arabidopsis immunity in a catalytic residue-dependent manner. HopZ family members can differentially suppress the activation of mitogen-activated protein (MAP) kinase cascades or the production of reactive oxygen species, whereas all members can promote the growth of non-virulent P. syringae. Localization studies show that four of the HopZ family members containing predicted myristoylation sites are localized to the vicinity of the plasma membrane while HopZ3 which lacks the myristoylation site is at least partially nuclear localized, suggesting diversification of immunosuppressive mechanisms. Overall, we demonstrate that despite significant evolutionary diversification, all HopZ family members can suppress immunity in Arabidopsis.  相似文献   

2.
Pseudomonas syringae utilizes the type III secretion system to translocate effector proteins into plant cells, where they can contribute to the pathogen's ability to infect and cause disease. Recognition of these effectors by resistance proteins induces defense responses that typically include a programmed cell death reaction called the hypersensitive response. The YopJ/HopZ family of type III effector proteins is a common family of effector proteins found in animal- and plant-pathogenic bacteria. The HopZ family in P. syringae includes HopZ1a(PsyA2), HopZ1b(PgyUnB647), HopZ1c(PmaE54326), HopZ2(Ppi895A) and HopZ3(PsyB728a). HopZ1a is predicted to be most similar to the ancestral hopZ allele and causes a hypersensitive response in multiple plant species, including Arabidopsis thaliana. Therefore, it has been proposed that host defense responses have driven the diversification of this effector family. In this study, we further characterized the hypersensitive response induced by HopZ1a and demonstrated that it is not dependent on known resistance genes. Further, we identified a novel virulence function for HopZ2 that requires the catalytic cysteine demonstrated to be required for protease activity. Sequence analysis of the HopZ family revealed the presence of a predicted myristoylation sequence in all members except HopZ3. We demonstrated that the myristoylation site is required for membrane localization of this effector family and contributes to the virulence and avirulence activities of HopZ2 and HopZ1a, respectively. This paper provides insight into the selective pressures driving virulence protein evolution by describing a detailed functional characterization of the diverse HopZ family of type III effectors with the model plant Arabidopsis.  相似文献   

3.
4.
The eukaryotic cytoskeleton is essential for structural support and intracellular transport, and is therefore a common target of animal pathogens. However, no phytopathogenic effector has yet been demonstrated to specifically target the plant cytoskeleton. Here we show that the Pseudomonas syringae type III secreted effector HopZ1a interacts with tubulin and polymerized microtubules. We demonstrate that HopZ1a is an acetyltransferase activated by the eukaryotic co-factor phytic acid. Activated HopZ1a acetylates itself and tubulin. The conserved autoacetylation site of the YopJ / HopZ superfamily, K289, plays a critical role in both the avirulence and virulence function of HopZ1a. Furthermore, HopZ1a requires its acetyltransferase activity to cause a dramatic decrease in Arabidopsis thaliana microtubule networks, disrupt the plant secretory pathway and suppress cell wall-mediated defense. Together, this study supports the hypothesis that HopZ1a promotes virulence through cytoskeletal and secretory disruption.  相似文献   

5.
The type III secretion systems (T3SS) and secreted effectors (T3SEs) are essential virulence factors in Gram‐negative bacteria. During the arms race, plants have evolved resistance (R) genes to detect specific T3SEs and activate defence responses. However, this immunity can be efficiently defeated by the pathogens through effector evolution. HopZ1 of the plant pathogen Pseudomonas syringae is a member of the widely distributed YopJ T3SE family. Three alleles are known to be present in P. syringae, with HopZ1a most resembling the ancestral allelic form. In this study, molecular mechanisms underlying the sequence diversification‐enabled HopZ1 allelic specificity is investigated. Using domain shuffling experiments, we present evidence showing that a central domain upstream of the conserved catalytic cysteine residue determines HopZ1 recognition specificity. Random and targeted mutagenesis identified three amino acids involved in HopZ1 allelic specificity. Particularly, the exchange of cysteine141 in HopZ1a with lysine137 at the corresponding position in HopZ1b abolished HopZ1a recognition in soybean. This position is under strong positive selection, suggesting that the cysteine/lysine mutation might be a key step driving the evolution of HopZ1. Our data support a model in which sequence diversification imposed by the plant R gene‐associated immunity has driven HopZ1 evolution by allowing allele‐specific substrate‐binding.  相似文献   

6.
Pseudomonas syringae is a bacterial phytopathogen that utilizes the type III secretion system to inject effector proteins into plant host cells. Pseudomonas syringae can infect a wide range of plant hosts, including agronomically important crops such as tomatoes and beans. The ability of P. syringae to infect such numerous hosts is caused, in part, by the diversity of effectors employed by this phytopathogen. Over 60 different effector families exist in P. syringae; one such family is HopF, which contains over 100 distinct alleles. Despite this diversity, research has focused on only two members of this family: HopF1 from P. syringae pathovar phaseolicola 1449B and HopF2 from P. syringae pathovar tomato DC3000. In this study, we review the research on HopF family members, including their host targets and molecular mechanisms of immunity suppression, and their enzymatic function. We also provide a phylogenetic analysis of this expanding effector family which provides a basis for a proposed nomenclature to guide future research. The extensive genetic diversity that exists within the HopF family presents a great opportunity to study how functional diversification on an effector family contributes to host specialization.  相似文献   

7.
Plant resistance (R) proteins provide a robust surveillance system to defend against potential pathogens. Despite their importance in plant innate immunity, relatively few of the ∼170 R proteins in Arabidopsis have well-characterized resistance specificity. In order to identify the R protein responsible for recognition of the Pseudomonas syringae type III secreted effector (T3SE) HopZ1a, we assembled an Arabidopsis R gene T–DNA Insertion Collection (ARTIC) from publicly available Arabidopsis thaliana insertion lines and screened it for plants lacking HopZ1a-induced immunity. This reverse genetic screen revealed that the Arabidopsis R protein HOPZ-ACTIVATED RESISTANCE 1 (ZAR1; At3g50950) is required for recognition of HopZ1a in Arabidopsis. ZAR1 belongs to the coiled-coil (CC) class of nucleotide binding site and leucine-rich repeat (NBS–LRR) containing R proteins; however, the ZAR1 CC domain phylogenetically clusters in a clade distinct from other related Arabidopsis R proteins. ZAR1–mediated immunity is independent of several genes required by other R protein signaling pathways, including NDR1 and RAR1, suggesting that ZAR1 possesses distinct signaling requirements. The closely-related T3SE protein, HopZ1b, is still recognized by zar1 Arabidopsis plants indicating that Arabidopsis has evolved at least two independent R proteins to recognize the HopZ T3SE family. Also, in Arabidopsis zar1 plants HopZ1a promotes P. syringae growth indicative of an ancestral virulence function for this T3SE prior to the evolution of recognition by the host resistance protein ZAR1. Our results demonstrate that the Arabidopsis resistance protein ZAR1 confers allele-specific recognition and virulence attenuation of the Pseudomonas syringae T3SE protein HopZ1a.  相似文献   

8.
Rohmer L  Guttman DS  Dangl JL 《Genetics》2004,167(3):1341-1360
Many gram-negative pathogenic bacteria directly translocate effector proteins into eukaryotic host cells via type III delivery systems. Type III effector proteins are determinants of virulence on susceptible plant hosts; they are also the proteins that trigger specific disease resistance in resistant plant hosts. Evolution of type III effectors is dominated by competing forces: the likely requirement for conservation of virulence function, the avoidance of host defenses, and possible adaptation to new hosts. To understand the evolutionary history of type III effectors in Pseudomonas syringae, we searched for homologs to 44 known or candidate P. syringae type III effectors and two effector chaperones. We examined 24 gene families for distribution among bacterial species, amino acid sequence diversity, and features indicative of horizontal transfer. We assessed the role of diversifying and purifying selection in the evolution of these gene families. While some P. syringae type III effectors were acquired recently, others have evolved predominantly by descent. The majority of codons in most of these genes were subjected to purifying selection, suggesting selective pressure to maintain presumed virulence function. However, members of 7 families had domains subject to diversifying selection.  相似文献   

9.
Pathogenicity of Xanthomonas campestris pathovar (pv.) vesicatoria and most other Gram-negative bacterial plant pathogens largely depends on a type III secretion (TTS) system which is encoded by hypersensitive response and pathogenicity (hrp) genes. These genes are induced in the plant and are essential for the bacterium to be virulent in susceptible hosts and for the induction of the hypersensitive response (HR) in resistant host and non-host plants. The TTS machinery secretes proteins into the extracellular milieu and effector proteins into the plant cell cytosol. In the plant, the effectors presumably interfere with cellular processes to the benefit of the pathogen or have an avirulence activity that betrays the bacterium to the plant surveillance system. Type III effectors were identified by their avirulence activity, co-regulation with the TTS system and homology to known effectors. A number of effector proteins are members of families, e.g., the AvrBs3 family in Xanthomonas. AvrBs3 localizes to the nucleus of the plant cell where it modulates plant gene expression. Another family that is also present in Xanthomonas is the YopJ/AvrRxv family. The latter proteins appear to act as SUMO cysteine proteases in the host. Here, we will present an overview about the regulation of the TTS system and its substrates and discuss the function of the AvrRxv and AvrBs3 family members in more detail.  相似文献   

10.
GacS/GacA is a conserved two-component system that functions as a master regulator of virulence-associated traits in many bacterial pathogens, including Pseudomonas spp., that collectively infect both plant and animal hosts. Among many GacS/GacA-regulated traits, type III secretion of effector proteins into host cells plays a critical role in bacterial virulence. In the opportunistic plant and animal pathogen Pseudomonas aeruginosa, GacS/GacA negatively regulates the expression of type III secretion system (T3SS)-encoding genes. However, in the plant pathogenic bacterium Pseudomonas syringae, strain-to-strain variation exists in the requirement of GacS/GacA for T3SS deployment, and this variability has limited the development of predictive models of how GacS/GacA functions in this species. In this work we re-evaluated the function of GacA in P. syringae pv. tomato DC3000. Contrary to previous reports, we discovered that GacA negatively regulates the expression of T3SS genes in DC3000, and that GacA is not required for DC3000 virulence inside Arabidopsis leaf tissue. However, our results show that GacA is required for full virulence of leaf surface-inoculated bacteria. These data significantly revise current understanding of GacS/GacA in regulating P. syringae virulence.  相似文献   

11.
The concept of the coevolutionary arms race holds a central position in our understanding of pathogen–host interactions. Here we identify the molecular mechanisms and follow the stepwise progression of an arms race in a natural system. We show how the evolution and function of the HopZ family of type III secreted effector proteins carried by the plant pathogen Pseudomonas syringae are influenced by a coevolutionary arms race between pathogen and host. We surveyed 96 isolates of P. syringae and identified three homologs (HopZ1, HopZ2, and HopZ3) distributed among ~45% of the strains. All alleles were sequenced and their expression was confirmed. Evolutionary analyses determined that the diverse HopZ1 homologs are ancestral to P. syringae, and have diverged via pathoadaptive mutational changes into three functional and two degenerate forms, while HopZ2 and HopZ3 have been brought into P. syringae via horizontal transfer from other ecologically similar bacteria. A PAML selection analysis revealed that the C terminus of HopZ1 is under strong positive selection. Despite the extensive genetic variation observed in this family, all three homologs have cysteine–protease activity, although their substrate specificity may vary. The introduction of the ancestral hopZ1 allele into strains harboring alternate alleles results in a resistance protein-mediated defense response in their respective hosts, which is not observed with the endogenous allele. These data indicate that the P. syringae HopZ family has undergone allelic diversification via both pathoadaptive mutational changes and horizontal transfer in response to selection imposed by the host defense system. This genetic diversity permits the pathogen to avoid host defenses while still maintaining a virulence-associated protease, thereby allowing it to thrive on its current host, while simultaneously impacting its host range.  相似文献   

12.
Plant pathogens secrete effector proteins to manipulate the host and facilitate infection. Cognate hosts trigger strong defence responses upon detection of these effectors. Consequently, pathogens and hosts undergo rapid coevolutionary arms races driven by adaptive evolution of effectors and receptors. Because of their high rate of turnover, most effectors are thought to be species-specific and the evolutionary trajectories are poorly understood. Here, we investigate the necrosis-inducing protein 1 (NIP1) effector in the multihost pathogen genus Rhynchosporium. We retraced the evolutionary history of the NIP1 locus using whole-genome assemblies of 146 strains covering four closely related species. NIP1 orthologues were present in all species but the locus consistently segregated presence–absence polymorphisms suggesting long-term balancing selection. We also identified previously unknown paralogues of NIP1 that were shared among multiple species and showed substantial copy-number variation within R. commune. The NIP1A paralogue was under significant positive selection suggesting that NIP1A is the dominant effector variant coevolving with host immune receptors. Consistent with this prediction, we found that copy number variation at NIP1A had a stronger effect on virulence than NIP1B. Our analyses unravelled the origins and diversification mechanisms of a pathogen effector family shedding light on how pathogens gain adaptive genetic variation.  相似文献   

13.
Bacterial plant pathogens manipulate their hosts by injection of numerous effector proteins into host cells via type III secretion systems. Recognition of these effectors by the host plant leads to the induction of a defense reaction that often culminates in a hypersensitive response manifested as cell death. Genes encoding effector proteins can be exchanged between different strains of bacteria via horizontal transfer, and often individual strains are capable of infecting multiple hosts. Host plant species express diverse repertoires of resistance proteins that mediate direct or indirect recognition of bacterial effectors. As a result, plants and their bacterial pathogens should be considered as two extensive coevolving groups rather than as individual host species coevolving with single pathovars. To dissect the complexity of this coevolution, we cloned 171 effector-encoding genes from several pathovars of Pseudomonas and Ralstonia. We used Agrobacterium tumefaciens-mediated transient assays to test the ability of each effector to induce a necrotic phenotype on 59 plant genotypes belonging to four plant families, including numerous diverse accessions of lettuce (Lactuca sativa) and tomato (Solanum lycopersicum). Known defense-inducing effectors (avirulence factors) and their homologs commonly induced extensive necrosis in many different plant species. Nonhost species reacted to multiple effector proteins from an individual pathovar more frequently and more intensely than host species. Both homologous and sequence-unrelated effectors could elicit necrosis in a similar spectrum of plants, suggesting common effector targets or targeting of the same pathways in the plant cell.  相似文献   

14.
15.
The battle between phytopathogenic bacteria and their plant hosts has revealed a diverse suite of strategies and mechanisms employed by the pathogen or the host to gain the higher ground. Pathogens continually evolve tactics to acquire host resources and dampen host defences. Hosts must evolve surveillance and defence systems that are sensitive enough to rapidly respond to a diverse range of pathogens, while reducing costly and damaging inappropriate misexpression. The primary virulence mechanism employed by many bacteria is the type III secretion system, which secretes and translocates effector proteins directly into the cells of their plant hosts. Effectors have diverse enzymatic functions and can target specific components of plant systems. While these effectors should favour bacterial fitness, the host may be able to thwart infection by recognizing the activity or presence of these foreign molecules and initiating retaliatory immune measures. We review the diverse host cellular systems exploited by bacterial effectors, with particular focus on plant proteins directly targeted by effectors. Effector–host interactions reveal different stages of the battle between pathogen and host, as well as the diverse molecular strategies employed by bacterial pathogens to hijack eukaryotic cellular systems.  相似文献   

16.
Pseudomonas syringae strains deliver diverse type III effector proteins into host cells, where they can act as virulence factors. Although the functions of the majority of type III effectors are unknown, several have been shown to interfere with plant basal defense mechanisms. Type III effectors also could contribute to bacterial virulence by enhancing nutrient uptake and pathogen adaptation to the environment of the host plant. We demonstrate that the type III effector HopAM1 (formerly known as AvrPpiB) enhances the virulence of a weak pathogen in plants that are grown under drought stress. This is the first report of a type III effector that aids pathogen adaptation to water availability in the host plant. Expression of HopAM1 makes transgenic Ws-0 Arabidopsis hypersensitive to abscisic acid (ABA) for stomatal closure and germination arrest. Conditional expression of HopAM1 in Arabidopsis also suppresses basal defenses. ABA responses overlap with defense responses and ABA has been shown to suppress defense against P. syringae pathogens. We propose that HopAM1 aids P. syringae virulence by manipulation of ABA responses that suppress defense responses. In addition, host ABA responses enhanced by type III delivery of HopAM1 protect developing bacterial colonies inside leaves from osmotic stress.  相似文献   

17.
18.
Homologs of the Yersinia virulence factor YopJ are found in both animal and plant bacterial pathogens, as well as in plant symbionts. The conservation of this effector family indicates that several pathogens may use YopJ-like proteins to regulate bacteria-host interactions during infection. YopJ and YopJ-like proteins share structural homology with cysteine proteases and are hypothesized to functionally mimic small ubiquitin-like modifier (SUMO) proteases in eukaryotic cells. Strains of the phytopathogenic bacterium Xanthomonas campestris pv. vesicatoria are known to possess four YopJ-like proteins, AvrXv4, AvrBsT, AvrRxv, and XopJ. In this work, we have characterized AvrXv4 to determine if AvrXv4 functions like a SUMO protease in planta during Xanthomonas-plant interactions. We provide evidence that X. campestris pv. vesicatoria secretes and translocates the AvrXv4 protein into plant cells during infection in a type III-dependent manner. Once inside the plant cell, AvrXv4 is localized to the plant cytoplasm. By performing AvrXv4 deletion and mutational analysis, we have identified amino acids required for type III delivery and for host recognition. We show that AvrXv4 recognition by resistant plants requires a functional protease catalytic core, the domain that is conserved in all of the putative YopJ-like cysteine proteases. We also show that AvrXv4 expression in planta leads to a reduction in SUMO-modified proteins, demonstrating that AvrXv4 possesses SUMO isopeptidase activity. Overall, our studies reveal that the YopJ-like effector AvrXv4 encodes a type III SUMO protease effector that is active in the cytoplasmic compartment of plant cells.  相似文献   

19.
Type III protein secretion in Pseudomonas syringae   总被引:1,自引:0,他引:1  
The type III secretion system is an essential virulence system used by many Gram-negative bacterial pathogens to deliver effector proteins into host cells. This review summarizes recent advancements in the understanding of the type III secretion system of Pseudomonas syringae, including regulation of the type III secretion genes, assembly of the Hrp pilus, secretion signals, the putative type III effectors identified to date, and their virulence action after translocation into plant cells.  相似文献   

20.
The AvrE superfamily of type III effectors (T3Es) is widespread among type III‐dependent phytobacteria and plays a crucial role during bacterial pathogenesis. Members of the AvrE superfamily are vertically inherited core effectors, indicating an ancestral acquisition of these effectors in bacterial plant pathogens. AvrE‐T3Es contribute significantly to virulence by suppressing pathogen‐associated molecular pattern (PAMP)‐triggered immunity. They inhibit salicylic acid‐mediated plant defences, interfere with vesicular trafficking and promote bacterial growth in planta. AvrE‐T3Es elicit cell death in both host and non‐host plants independent of any known plant resistance protein, suggesting an original interaction with the plant immune system. Recent studies in yeast have indicated that they activate protein phosphatase 2A and inhibit serine palmitoyl transferase, the first enzyme of the sphingolipid biosynthesis pathway. In this review, we describe the current picture that has emerged from studies of the different members of this fascinating large family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号