首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
李焱剑  高鑫迪  孟杨  丁辰 《菌物学报》2018,37(10):1337-1348
金属离子参与真菌和哺乳动物众多重要的生长代谢过程。隐球菌利用金属离子参与毒力因子的形成;宿主利用金属离子进行自身代谢,增强机体免疫,抵御隐球菌感染。因此深入研究隐球菌金属离子代谢,以及探索宿主利用金属离子抵御隐球菌感染的调控机制是至关重要的,可为真菌感染的治疗提供理论依据。  相似文献   

2.
The interaction between pathogenic microbes and their host is determined by survival strategies on both sides, including competition for essential nutrients. During evolution, pathogenic microbes developed ways to access certain nutrients from the host, which, by contrast, can be exploited by the host for defence by restricting the availability of these nutrients. In this article, we review ecological aspects of the host-pathogen relationship and describe examples for competitive nutrient usage. We also discuss the beneficial probiotic microbes of the mammalian gut, which influence their environment including inflammatory host responses, and how they might be supported by prebiotic diets.  相似文献   

3.
In being both, a modifier of cellular immune effector pathways and an essential nutrient for microbes, iron is a critical determinant in host-pathogen interaction. Here, we investigated the metabolic changes of macrophage iron homeostasis and immune function following the infection of RAW264.7 murine macrophages with Salmonella typhimurium. We observed an enhanced expression of the principal iron export protein, ferroportin 1, and a subsequent increase of iron efflux in Salmonella-infected phagocytes. In parallel, the expression of haem oxygenase 1 and of the siderophore-binding peptide lipocalin 2 was markedly enhanced following pathogen entry. Collectively, these modulations reduced both the cytoplasmatic labile iron and the ferritin storage iron pool within macrophages, thus restricting the acquisition of iron by intramacrophage Salmonella. Correspondingly, limitation of macrophage iron decreased microbial survival, whereas iron supplementation impaired immune response pathways in Salmonella-infected macrophages (nitric oxide formation and tumour necrosis factor-alpha production) and promoted intracellular bacterial proliferation. Our findings suggest that the enhancement of ferroportin 1-mediated iron efflux, the upregulation of the haem-degrading enzyme haem oxygenase 1 and the induction of lipocalin 2 following infection concordantly aim at withholding iron from intracellular S. typhimurium and to increase antimicrobial immune effector pathways thus limiting pathogen proliferation.  相似文献   

4.
5.
Intracellular pathogens can manipulate host cellular pathways to create specialized organelles. These pathogen-modified vacuoles permit the survival and replication of bacterial and protozoan microorganisms inside of the host cell. By establishing an atypical organelle, intracellular pathogens present unique challenges to the host immune system. To understand pathogenesis, it is important to not only investigate how these organisms create unique subcellular compartments, but to also determine how mammalian immune systems have evolved to detect and respond to pathogens sequestered in specialized vacuoles. Recent studies have identified genes in the respiratory pathogen Legionella pneumophila that are essential for establishing a unique endoplasmic reticulum-derived organelle inside of mammalian macrophages, making this pathogen an attractive model system for investigations on host immune responses that are specific for bacteria that establish vacuoles disconnected from the endocytic pathway. This review will focus on the host immune response to Legionella and highlight areas of Legionella research that should help elucidate host strategies to combat infections by intracellular pathogens.  相似文献   

6.
This seventh Metals in Biology Thematic Series deals with the metal-based interactions of mammalian hosts with pathogens. Both pathogens and hosts have complex regulatory systems for metal homeostasis. Understanding these provides strategies for fighting pathogens, either by excluding essential metals from the microbes, by delivery of excess metals to cause toxicity, or by complexing metals in microorganisms. Intervention is possible by delivery of complexing reagents or by targeting the microbial regulatory apparatus.  相似文献   

7.
8.
Intracellular innate resistance to bacterial pathogens   总被引:2,自引:0,他引:2  
Mammalian innate immunity stimulates antigen-specific immune responses and acts to control infection prior to the onset of adaptive immunity. Some bacterial pathogens replicate within the host cell and are therefore sheltered from some protective aspects of innate immunity such as complement. Here we focus on mechanisms of innate intracellular resistance encountered by bacterial pathogens and how some bacteria can evade destruction by the innate immune system. Major strategies of intracellular antibacterial defence include pathogen compartmentalization and iron limitation. Compartmentalization of pathogens within the host endocytic pathway is critical for generating high local concentrations of antimicrobial molecules, such as reactive oxygen species, and regulating concentrations of divalent cations that are essential for microbial growth. Cytosolic sensing, autophagy, sequestration of essential nutrients and membrane attack by antimicrobial peptides are also discussed.  相似文献   

9.
Iron acquisition within host cells and the pathogenicity of Leishmania   总被引:4,自引:0,他引:4  
Iron is an essential cofactor for several enzymes and metabolic pathways, in both microbes and in their eukaryotic hosts. To avoid toxicity, iron acquisition is tightly regulated. This represents a particular challenge for pathogens that reside within the endocytic pathway of mammalian cells, because endosomes and lysosomes are gradually depleted in iron by host transporters. An important player in this process is Nramp1 (Slc11a1), a proton efflux pump that translocates Fe2 + and Mn2+ ions from macrophage lysosomes/phagolysosomes into the cytosol. Mutations in Nramp1 cause susceptibility to infection with the bacteria Salmonella and Mycobacteria and the protozoan Leishmania , indicating that an available pool of intraphagosomal iron is critical for the intracellular survival and replication of these pathogens . Salmonella and Mycobacteria are known to express iron transporter systems that effectively compete with host transporters for iron. Until recently, however, very little was known about the molecular strategy used by Leishmania for survival in the iron-poor environment of macrophage phagolysosomes. It is now clear that intracellular residence induces Leishmania amazonensis to express LIT1, a ZIP family membrane Fe2+ transporter that is required for intracellular growth and virulence.  相似文献   

10.
The NRAMP family of divalent-metal transporters plays a key role in the homeostasis of iron and other metals. NRAMP2 (DMT1) acts as an iron-uptake protein in both the duodenum and in peripheral tissues. NRAMP1 functions as a divalent-metal efflux pump at the phagosomal membrane of macrophages and neutrophils, and mutations in NRAMP1 cause susceptibility to several intracellular pathogens. NRAMP homologues have been identified in bacteria and are involved in acquiring divalent metals from the extracellular environment. Interestingly, bacterial and mammalian NRAMP proteins would compete for the same essential substrates within the microenvironment of the phagosome, at the interface of host-pathogen interactions.  相似文献   

11.
Tracy Nevitt 《Biometals》2011,24(3):547-558
Iron acquisition is a bona fide virulence determinant. The successful colonization of the mammalian host requires that microorganisms overcome the Fe aridity of this milieu in which the levels of circulating Fe are maintained exceedingly low both through the compartmentalization of this nutrient within cells as well as the tight binding of Fe to host circulating proteins and ligands. Microbes notoriously employ multiple strategies for high affinity Fe acquisition from the host that rely either on the expression of receptors for host Fe-binding proteins and ligands, its reduction by cell surface reductases or the utilization of siderophores, small organic molecules with very high affinity for Fe3+. This review will discuss the multiple mechanisms deployed by fungal pathogens in Fe acquisition focusing on the role of siderophore utilization in virulence as well as host immune strategies of iron withholding and emerging clinical evidence that human disorders of Fe homeostasis can act as modifiers of infectious disease.  相似文献   

12.
It is interesting to speculate that the evolutionary drive for microbes to develop pathogenic characteristics was to access the nutrient resources that animals provided. Animal environments that pathogens colonize have likely driven the evolution of new bacterial characteristics to maximize these new nutritional opportunities. This review focuses on genomic and functional aspects of pathogen metabolism that allow efficient utilization of nutrient resources provided by animals. Similar to genes encoding specific virulence traits, genes encoding metabolic functions have been horizontally acquired by pathogens to provide a selective advantage in host tissues. Selective advantage in host tissues can also be gained by loss of function mutations that alter metabolic capabilities. Greater understanding of bacterial metabolism within host tissues should be important for increased understanding of host-pathogen interactions and the development of future therapeutic strategies.  相似文献   

13.
Fungal infections are responsible for millions of human deaths annually. Copper, an essential but toxic trace element, plays an important role at the host-pathogen axis during infection. In this review, we describe how the host uses either Cu compartmentalization within innate immune cells or Cu sequestration in other infected host niches such as in the brain to combat fungal infections. We explore Cu toxicity mechanisms and the Cu homeostasis machinery that fungal pathogens bring into play to succeed in establishing an infection. Finally, we address recent approaches that manipulate Cu-dependent processes at the host-pathogen axis for antifungal drug development.  相似文献   

14.
The acquisition of iron from mammalian hosts is an important aspect of infection because microbes must compete with the host for this nutrient and iron perception often regulates virulence factor expression. For example, iron levels are known to influence the elaboration of two major virulence factors, the polysaccharide capsule and melanin, in the pathogenic fungus Cryptococcus neoformans. This pathogen, which causes meningoencephalitis in immunocompromised people, acquires iron through the use of secreted reductants, cell surface reductases, a permease/ferroxidase uptake system and siderophore transporters. In addition, a master regulator, Cir1, integrates iron sensing with the expression of virulence factors, with growth at 37°C and with signalling pathways that also influence virulence. The challenge ahead is to develop mechanistic views of the iron acquisition functions and regulatory schemes that operate when C. neoformans is in host tissue. Achieving these goals may contribute to an understanding of the notable predilection of the fungus for the mammalian central nervous system.  相似文献   

15.
白念珠菌是一种常见的条件致病性真菌。为了在宿主体内复杂的铁离子微环境中定居、生长和繁殖,该菌在长期的进化过程中演化出一系列复杂的铁离子稳态调控网络,包括位于细胞膜表面的铁离子吸收系统和位于细胞内的铁离子储存、转运及利用系统。本文结合课题组研究工作,简要综述近几年关于铁离子吸收、储存及转运机制的研究进展,主要关注细胞内铁离子的储存、转运,尤其是线粒体在胞内铁离子代谢及稳态维持方面的作用。  相似文献   

16.
Recent advances in research on iron metabolism have revealed the identity of a number of genes, signal transduction pathways, and proteins involved in iron regulation in mammals. The emerging paradigm is a coordination of homeostasis within a network of classical iron metabolic pathways and other cellular processes such as cell differentiation, growth, inflammation, immunity, and a host of physiologic and pathologic conditions. Iron, immunity, and infection are intricately linked and their regulation is fundamental to the survival of mammals. The mutual dependence on iron by the host and invading pathogenic organisms elicits competition for the element during infection. While the host maintains mechanisms to utilize iron for its own metabolism exclusively, pathogenic organisms are armed with a myriad of strategies to circumvent these measures. This review explores iron metabolism in mammalian host, defense mechanisms against pathogenic microbes and the competitive devices of microbes for access to iron.  相似文献   

17.
Insect symbioses lack the complexity and diversity of those associated with higher eukaryotic hosts. Symbiotic microbiomes are beneficial to their insect hosts in many ways, including dietary supplementation, tolerance to environmental perturbations and maintenance and/or enhancement of host immune system homeostasis. Recent studies have also highlighted the importance of the microbiome in the context of host pathogen transmission processes. Here we provide an overview of the relationship between insect disease vectors, such as tsetse flies and mosquitoes, and their associated microbiome. Several mechanisms are discussed through which symbiotic microbes can influence the ability of their host to transmit pathogens, as well as potential disease control strategies that harness symbiotic microbes to reduce pathogen transmission through an insect vector.  相似文献   

18.
Initially recognized in infection because of antimicrobial activity (‘tryptophan starvation’), indoleamine 2,3-dioxygenase (IDO) is widely involved in host immune homeostasis and even immune evasion by microbes that establish commensalism or chronic infection. This review deals with recent findings that could gain IDO a reputation of Jack-of-all-trades in mammalian host/microbe interactions.  相似文献   

19.
Microbial access to host nutrients is a fundamental aspect of infectious diseases. Pathogens face complex dynamic nutritional host microenvironments that change with increasing inflammation and local hypoxia. Since the host can actively limit microbial access to nutrient supply, pathogens have evolved various metabolic adaptations to successfully exploit available host nutrients for proliferation. Recent studies have unraveled an emerging paradigm that we propose to designate as ‘nutritional virulence’. This paradigm is based on specific virulence mechanisms that target major host biosynthetic and degradation pathways (proteasomes, autophagy and lysosomes) or nutrient‐rich sources, such as glutathione, to enhance host supply of limiting nutrients, such as cysteine. Although Cys is the most limiting cellular amino acid, it is a metabolically favourable source of carbon and energy for various pathogens that are auxotrophic for Cys but utilize idiosyncratic nutritional virulence strategies to generate a gratuitous supply of host Cys. Therefore, proliferation of some intracellular pathogens is restricted by a host nutritional rheostat regulated by certain limiting amino acids, and pathogens have evolved idiosyncratic strategies to short circuit the host nutritional rheostat. Deciphering mechanisms of microbial ‘nutritional virulence’ and metabolism in vivo will facilitate identification of novel microbialand host targets for treatment and prevention of infectious diseases. Host–pathogen synchronization of amino acid auxotrophy indicates that this nutritional synchronization has been a major driving force in the evolution of many intracellular bacterial pathogens.  相似文献   

20.
Iron is vital for almost all organisms because of its ability to donate and accept electrons with relative ease. It serves as a cofactor for many proteins and enzymes necessary for oxygen and energy metabolism, as well as for several other essential processes. Mammalian cells utilize multiple mechanisms to acquire iron. Disruption of iron homeostasis is associated with various human diseases: iron deficiency resulting from defects in the acquisition or distribution of the metal causes anemia, whereas iron surfeit resulting from excessive iron absorption or defective utilization causes abnormal tissue iron deposition, leading to oxidative damage. Mammals utilize distinct mechanisms to regulate iron homeostasis at the systemic and cellular levels. These involve the hormone hepcidin and iron regulatory proteins, which collectively ensure iron balance. This review outlines recent advances in iron regulatory pathways as well as in mechanisms underlying intracellular iron trafficking, an important but less studied area of mammalian iron homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号