首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adenosine is a neuromodulator known to inhibit the synaptic release of neurotransmitters, e.g., glutamate, and to hyperpolarize postsynaptic neurons. The release of adenosine is markedly enhanced under ischemic conditions. It may then act as an endogenous neuroprotectant against cerebral ischemia and excitotoxic neuronal damage. The mechanisms by which adenosine is released from nervous tissue are not fully known, particularly in the immature brain. We now characterized the release of [3H]adenosine from hippocampal slices from developing (7-day-old) and adult (3-month-old) mice using a superfusion system. The properties of the release differed only partially in the immature and mature hippocampus. The K+-evoked release was Ca2+ and Na+ dependent. Anion channels were also involved. Ionotropic glutamate receptor agonists potentiated the release in a receptor-mediated manner. Activation of metabotropic glutamate receptors enhanced the release in developing mice, with group II receptors alone being effective. The evoked adenosine release apparently provides neuroprotective effects against excitotoxicity under cell-damaging conditions. Taurine had no effect on adenosine release in adult mice, but depressed the release concentration dependently in the immature hippocampus.  相似文献   

2.
The novel type of neurotransmitter/neuromodulator nitric oxide (NO) is linked to activation of the N-methyl-D-aspartate (NMDA) class of glutamate receptors and has been shown to modify transmitter release in the brain. The inhibitory neuromodulator adenosine has been thought to act as an endogenous neuroprotectant against cerebral ischemia and neuronal damage. The effects of NO-generating compounds on the release of preloaded [3H]adenosine from hippocampal slices from developing (7-day-old) and adult (3-month-old) mice were investigated, using a superfusion system, under normal conditions and in vitro ischemia. The release of adenosine was markedly potentiated at both ages by the NO-producing compounds S-nitroso-N-acetylpenicillamine, sodium nitroprusside, and hydroxylamine. The evoked releases were reduced by the NO synthase inhibitors nitroarginine and 7-nitroindazole at both ages. They were also reduced by the inhibitor of soluble guanylyl cyclase 1H-(1,2,4-oxadiazolo(4,3a)quinoxalin-1-one (ODQ) in adults, indicating that the NO/cGMP pathway is involved in this release. Release of adenosine was also evoked when the cGMP levels were increased by superfusing slices with the phosphodiesterase inhibitor zaprinast. The markedly enhanced adenosine release under ischemic conditions was further potentiated by the ionotropic glutamate receptor agonists and NO-generating compounds, whereas zaprinast and ODQ had no effect, rendering unlikely the involvement of cGMP in the ischemic release. Moreover, NO was able to provoke substantial release of adenosine in the presence of NMDA under both normal and ischemic conditions, which could significantly add to the neuroprotective potential of this neuromodulator in both adult and developing hippocampus.  相似文献   

3.
The inhibitory neuromodulator taurine is involved in osmoregulation and cell volume adjustments in the central nervous system. In addition, taurine protects neural cells from excitotoxicity and prevents harmful metabolic events evoked by cell-damaging conditions. The release of taurine in nervous cell preparations is greatly enhanced by glutamate receptor agonists and various cell-damaging conditions. NO-generating compounds also increase taurine release in the mouse hippocampus. The further involvement of the NO/cGMP pathway and protein kinases in preloaded [3H]taurine release from hippocampal slices from adult (3-month-old) and developing (7-day-old) mice in normoxia and in ischemia was now studied using a superfusion system. The release was enhanced by 8-Br-cGMP and the phosphodiesterase inhibitor 2-(2-propyloxyphenyl)-8-azapurin-6-one (zaprinast), particularly in the immature hippocampus, indicating that increased cGMP levels induce taurine release. The release was also increased by the inhibitor of soluble guanylyl cyclase, 1H-(1,2,4)oxadiazolo-(4,3a)quinoxalin-1-one (ODQ) and the protein kinase C activator 4-phorbol 12-myristate 13-acetate (PMA), but only in the adult hippocampus. The ischemia-induced release was also enhanced by increased cGMP levels in both adult and developing mice, whereas protein kinase inhibitors had no effects in any conditions. The results demonstrate that cGMP is able to modulate hippocampal taurine release in both adult and developing mice, the rise in cGMP levels evoking taurine release in normoxia and in ischemia. This could be part of the neuroprotective properties of taurine, being thus important particularly in cell-damaging conditions and in preventing excitotoxicity.  相似文献   

4.
成年海马中神经发生及影响因素   总被引:1,自引:0,他引:1  
动物成年后在其中枢神经系统内仍有神经发生。成年神经发生的主要区域是海马齿状回的颗粒下层和脑室下区的侧脑室外侧壁。目前认为成年后的海马神经发生参与记忆的形成,尤其对癫痫和神经退行性疾病的缓解和治疗具有重要意义。成年海马的神经发生受多种生理、病理因素的调控。我们就近年来成年海马神经发生的影响因素及其可能机制进行综述。  相似文献   

5.
6.
Reproduction requires adequate energy stores for parents and offspring to survive. Kiss1 neurons, which are essential for fertility, have the potential to serve as the central sensors of metabolic factors that signal to the reproductive axis the presence of stored calories. Paradoxically, obesity is often accompanied by infertility. Despite excess circulating levels of insulin and leptin, obese individuals exhibit resistance to both metabolic factors in many neuron types. Thus, resistance to insulin or leptin in Kiss1 neurons could lead to infertility. Single deletion of the receptors for either insulin or the adipokine leptin from Kiss1 neurons does not impair adult reproductive dysfunction. However, insulin and leptin signaling pathways may interact in such a way as to obscure their individual functions. We hypothesized that in the presence of genetic or obesity-induced concurrent insulin and leptin resistance, Kiss1 neurons would be unable to maintain reproductive function. We therefore induced a chronic hyperinsulinemic and hyperleptinemic state in mice lacking insulin receptors in Kiss1 neurons through high fat feeding and examined the impact on fertility. In an additional, genetic model, we ablated both leptin and insulin signaling in Kiss1 neurons (IR/LepRKiss mice). Counter to our hypothesis, we found that the addition of leptin insensitivity did not alter the reproductive phenotype of IRKiss mice. We also found that weight gain, body composition, glucose and insulin tolerance were normal in mice of both genders. Nonetheless, leptin and insulin receptor deletion altered pubertal timing as well as LH and FSH levels in mid-puberty in a reciprocal manner. Our results confirm that Kiss1 neurons do not directly mediate the critical role that insulin and leptin play in reproduction. However, during puberty kisspeptin neurons may experience a critical window of susceptibility to the influence of metabolic factors that can modify the onset of fertility.  相似文献   

7.
8.
The adult hippocampus is involved in learning and memory. As a consequence, it is a brain region of remarkable plasticity. This plasticity exhibits itself both as cellular changes and neurogenesis. For neurogenesis to occur, a population of local stem cells and progenitor cells is maintained in the adult brain and these are able to proliferate and differentiate into neurons which contribute to the hippocampal circuitry. There is much interest in understanding the role of immature cells in the hippocampus, in relation to learning and memory. Methods and mechanisms that increase the numbers of these cells will be valuable in this research field. We show here that single injections of soluble factors into the lateral ventricle of adult rats and mice induces the rapid (within one week) increase in the number of putative stem cells/progenitor cells in the hippocampus. The established progenitor marker Sox2 together with the more recently established marker Hes3, were used to quantify the manipulation of the Sox2/Hes3 double-positive cell population. We report that in both adult rodent species, Sox2+/Hes3+ cell numbers can be increased within one week. The most prominent increase was observed in the hilus of the dentate gyrus. This study presents a fast, pharmacological method to manipulate the numbers of endogenous putative stem cells/progenitor cells. This method may be easily modified to alter the degree of activation (e.g. by the use of osmotic pumps for delivery, or by repeat injections through implanted cannulas), in order to be best adapted to different paradigms of research (neurodegenerative disease, neuroprotection, learning, memory, plasticity, etc).  相似文献   

9.
10.
Technological advances have made genetically modified mice, including transgenic and gene knockout mice, an essential tool in many research fields. Adult cardiomyocytes are widely accepted as a good model for cardiac cellular physiology and pathophysiology, as well as for pharmaceutical intervention. Genetically modified mice preclude the need for complicated cardiomyocyte infection processes to generate the desired genotype, which are inefficient due to cardiomyocytes’ terminal differentiation. Isolation and culture of high quantity and quality functional cardiomyocytes will dramatically benefit cardiovascular research and provide an important tool for cell signaling transduction research and drug development. Here, we describe a well-established method for isolation of adult mouse cardiomyocytes that can be implemented with little training. The mouse heart is excised and cannulated to an isolated heart system, then perfused with a calcium-free and high potassium buffer followed by type II collagenase digestion in Langendorff retrograde perfusion mode. This protocol yields a consistent result for the collection of functional adult mouse cardiomyocytes from a variety of genetically modified mice.  相似文献   

11.
The novel neurotransmitter/neuromodulator nitric oxide (NO), which is linked to the activation of the N-methyl-D-aspartate class of glutamate receptors, has been shown to modify transmitter release in brain tissue. Release of the inhibitory amino acid taurine is also markedly enhanced by N-methyl-D-aspartate and NO-producing agents under normal conditions in the mouse hippocampus. The release of preloaded [3H]taurine from hippocampal slices from adult (3-month-old) and developing (7-day-old) mice was characterized under ischemic conditions in the presence of different NO-generating compounds, hydroxylamine, sodium nitroprusside, and S-nitroso-N-acetylpenicillamine (SNAP), using a superfusion system. The ischemia-induced taurine release at both ages was markedly enhanced by 1.0 mM nitroprusside and 1.0 mM SNAP, whereas 5.0 mM hydroxylamine was effective only in adults. The nitroprusside- and SNAP-induced releases were reduced by the inhibitors of NO synthase (nitroarginine and 7-nitroindazole) and NO-sensitive soluble guanylyl cyclase [1H-(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one], suggesting involvement of the NO/cGMP pathway. The release in ischemia in the absence of Na+ was modified by NO compounds only in adults; the 0.1 mM N-methyl-D-aspartate stimulated taurine release at both ages. The enhanced release of taurine associated with NO production could be beneficial to brain tissue under cell-damaging conditions and corroborates the neuroprotective role of this amino acid, particularly in the immature brain.  相似文献   

12.
目的探讨组蛋白去乙酰化酶2(HDAC2)在成年C57BL/6小鼠海马内的分布及其与突触后致密区(PSD)蛋白成员的共定位,为揭示HDAC2与PSD蛋白复合物之间的内在联系及在海马相关的学习记忆过程中可能起到的调控作用提供形态学依据。方法应用免疫组化方法观察HDAC2在C57BL/6小鼠海马各区的表达分布。应用免疫荧光双标技术研究HDAC2与PSD蛋白成员N-甲基-D-天冬氨酸(NMDA)受体亚单位1(NR1)、PSD-95之间是否存在共定位。结果 HDAC2在小鼠海马CA1~CA3区锥体细胞和齿状回颗粒细胞均具有明显表达,而在各区的始层、辐射层、腔隙-分子层以及齿状回多形细胞层表达均较少。免疫荧光双标染色图片的重叠表明,HDAC2与NR1、PSD-95在小鼠海马CA1~CA3区锥体细胞层和齿状回颗粒细胞层内均可见显著共表达现象,其他区域偶见散在分布的双染神经元。结论 HDAC2在小鼠海马锥体细胞层和颗粒细胞层表达丰富,并与PSD蛋白成员间存在共定位现象。本实验结果为探讨HDAC2对谷氨酸能突触后神经元依赖的突触可塑性的调节机制提供了形态学依据。  相似文献   

13.
Li  Qifa  Zhang  Yue  Ge  Bi-Ying  Li  Na  Sun  Hai- Lun  Ntim  Michael  Sun  Yi-Ping  Wu  Xue-Fei  Yang  Jin-Yi  Li  Shao 《Neurochemical research》2020,45(10):2312-2323
Neurochemical Research - G protein-coupled receptor 50 (GPR50) belongs to the G protein-coupled receptor which is highly homologous with the sequence of melatonin receptor MT1 and MT2. GPR50...  相似文献   

14.

Background

Adult neurogenesis occurs in specific regions of the mammalian brain such as the dentate gyrus of the hippocampus. In the neurogenic region, neural progenitor cells continuously divide and give birth to new neurons. Although biological properties of neurons and glia in the hippocampus have been demonstrated to fluctuate depending on specific times of the day, it is unclear if neural progenitors and neurogenesis in the adult brain are temporally controlled within the day.

Methodology/Principal Findings

Here we demonstrate that in the dentate gyrus of the adult mouse hippocampus, the number of M-phase cells shows a day/night variation throughout the day, with a significant increase during the nighttime. The M-phase cell number is constant throughout the day in the subventricular zone of the forebrain, another site of adult neurogenesis, indicating the daily rhythm of progenitor mitosis is region-specific. Importantly, the nighttime enhancement of hippocampal progenitor mitosis is accompanied by a nighttime increase of newborn neurons.

Conclusions/Significance

These results indicate that neurogenesis in the adult hippocampus occurs in a time-of-day-dependent fashion, which may dictate daily modifications of dentate gyrus physiology.  相似文献   

15.
16.
Accumulation of beta amyloid (Aβ) in the brain is a primary feature of Alzheimer’s disease (AD) but the exact molecular mechanisms by which Aβ exerts its toxic actions are not yet entirely clear. We documented pathological changes 3 and 6 months after localised injection of recombinant, bi-cistronic adeno-associated viral vectors (rAAV2) expressing human Aβ40-GFP, Aβ42-GFP, C100-GFP or C100V717F-GFP into the hippocampus and cerebellum of 8 week old male mice. Injection of all rAAV2 vectors resulted in wide-spread transduction within the hippocampus and cerebellum, as shown by expression of transgene mRNA and GFP protein. Despite the lack of accumulation of Aβ protein after injection with AAV vectors, injection of rAAV2-Aβ42-GFP and rAAV2- C100V717F-GFP into the hippocampus resulted in significantly increased microgliosis and altered permeability of the blood brain barrier, the latter revealed by high levels of immunoglobulin G (IgG) around the injection site and the presence of IgG positive cells. In comparison, injection of rAAV2-Aβ40-GFP and rAAV2-C100-GFP into the hippocampus resulted in substantially less neuropathology. Injection of rAAV2 vectors into the cerebellum resulted in similar types of pathological changes, but to a lesser degree. The use of viral vectors to express different types of Aβ and C100 is a powerful technique with which to examine the direct in vivo consequences of Aβ expression in different regions of the mature nervous system and will allow experimentation and analysis of pathological AD-like changes in a broader range of species other than mouse.  相似文献   

17.
One of the fundamental goals in neurosciences is to elucidate the formation and retrieval of brain''s associative memory traces in real-time. Here, we describe real-time neural ensemble transient dynamics in the mouse hippocampal CA1 region and demonstrate their relationships with behavioral performances during both learning and recall. We employed the classic trace fear conditioning paradigm involving a neutral tone followed by a mild foot-shock 20 seconds later. Our large-scale recording and decoding methods revealed that conditioned tone responses and tone-shock association patterns were not present in CA1 during the first pairing, but emerged quickly after multiple pairings. These encoding patterns showed increased immediate-replay, correlating tightly with increased immediate-freezing during learning. Moreover, during contextual recall, these patterns reappeared in tandem six-to-fourteen times per minute, again correlating tightly with behavioral recall. Upon traced tone recall, while various fear memories were retrieved, the shock traces exhibited a unique recall-peak around the 20-second trace interval, further signifying the memory of time for the expected shock. Therefore, our study has revealed various real-time associative memory traces during learning and recall in CA1, and demonstrates that real-time memory traces can be decoded on a moment-to-moment basis over any single trial.  相似文献   

18.
Although it is widely accepted that ectopic lipid accumulation in the liver is associated with hepatic insulin resistance, the underlying molecular mechanisms have not been well characterized.Here we employed time resolved quantitative proteomic profiling of mice fed a high fat diet to determine which pathways were affected during the transition of the liver to an insulin-resistant state. We identified several metabolic pathways underlying altered protein expression. In order to test the functional impact of a critical subset of these alterations, we focused on the epoxyeicosatrienoic acid (EET) eicosanoid pathway, whose deregulation coincided with the onset of hepatic insulin resistance. These results suggested that EETs may be positive modulators of hepatic insulin signaling. Analyzing EET activity in primary hepatocytes, we found that EETs enhance insulin signaling on the level of Akt. In contrast, EETs did not influence insulin receptor or insulin receptor substrate-1 phosphorylation. This effect was mediated through the eicosanoids, as overexpression of the deregulated enzymes in absence of arachidonic acid had no impact on insulin signaling. The stimulation of insulin signaling by EETs and depression of the pathway in insulin resistant liver suggest a likely role in hepatic insulin resistance. Our findings support therapeutic potential for inhibiting EET degradation.Hepatosteatosis has a strong association with hepatic insulin resistance, which plays a major role in the early stages of type 2 diabetes. Although the contribution of the liver to total energy consumption is not as high as other tissues, the liver is the main organ responsible for endogenous glucose production through gluconeogenesis and glycogenolysis (1). The liver''s pivotal role in type 2 diabetes is underscored by a strong correlation between fasting hyperglycemia and endogenous glucose production in patients (2). Studies on the early stages of hepatosteatosis and hepatic insulin resistance are complicated by the fact that patients are often unaware of their impaired insulin sensitivity. Therefore, the transition of the liver to an insulin resistant state is not as well studied as other aspects of the disease.To study early stage hepatic insulin resistance in an unbiased fashion, we analyzed the transition of the liver to an insulin-resistant state in a mouse model fed a high fat diet (HFD)1, rich in safflower oil, on the proteome level. Phenotypic characterization in combination with proteomic profiling resulted in the identification of alterations in protein patterns, which were correlated with hepatic insulin resistance in a time-resolved manner. Protein expression was monitored using state of the art LC-MS/MS based proteomics, employing non-targeted discovery as well as targeted strategies.The comparison of expression profiles from HFD-fed mice with standard diet-fed controls directed us to a group of eicosanoid lipid mediators - epoxyeicosatrienoic acids (EET). Our proteomic approach uncovered a down-regulation of the EET pathway at the protein level through HFD feeding in insulin resistant mouse liver. In order to link expression patterns to signaling alterations and connect alterations on the level of signaling pathways to insulin sensitivity we proceeded to investigate the influence of these eicosanoids on insulin signaling in primary hepatocytes. Up to now, EETs have been extensively studied in the biology of blood vessels (3) and have been found to have profound influence on intracellular signaling (46) and ion channel activity (7) in endothelial as well as smooth muscle cell. Their vasodilating (7), anti-inflammatory (8) and proliferation inducing effects on endothelial cells (5, 6) have made inhibition of the EET degrading enzyme Ephx2 an attractive pharmacological strategy for the treatment of hypertension, with clinical trials already in progress (9).Recent studies using genetic mouse models have shown that knockdown or overexpression of EET pathway enzymes affect insulin secretion (10) and glucose homeostasis (11, 12) and point to as yet poorly understood effects of EETs on insulin sensitivity (10, 11). Moreover, EETs have been implicated in activating insulin signaling directly by increasing insulin receptor (IR) phosphorylation (11). In line with this model, medium supplementation, but not acute stimulation of the human hepatoma cell line HepG2 with high doses (30 μm) of EETs, has been shown to increase insulin mediated activation of Akt, the central protein kinase in insulin signaling (13).We show here that acute application of 4 μm of exogenous EETs but not overexpression of the EET pathway enzymes in absence of arachidonic acid had a strong positive effect on insulin mediated phosphorylation of Akt in primary mouse hepatocytes. The activation was not associated with changes in IR or insulin receptor substrate-1 (IRS-1) tyrosine phosphorylation through EETs. These results indicate that EET influence insulin signaling downstream of IRS-1 and upstream of Akt rather than at the level of the IR.  相似文献   

19.
The Developmental Origins of Health and Disease (DOHaD) Theory proposes that the environment encountered during fetal life and infancy permanently shapes tissue physiology and homeostasis such that damage resulting from maternal stress, poor nutrition or exposure to environmental agents may be at the heart of adult onset disease. Interference with endogenous developmental functions of the aryl hydrocarbon receptor (AHR), either by gene ablation or by exposure in utero to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent AHR ligand, causes structural, molecular and functional cardiac abnormalities and altered heart physiology in mouse embryos. To test if embryonic effects progress into an adult phenotype, we investigated whether Ahr ablation or TCDD exposure in utero resulted in cardiac abnormalities in adult mice long after removal of the agent. Ten-months old adult Ahr-/- and in utero TCDD-exposed Ahr+/+ mice showed sexually dimorphic abnormal cardiovascular phenotypes characterized by echocardiographic findings of hypertrophy, ventricular dilation and increased heart weight, resting heart rate and systolic and mean blood pressure, and decreased exercise tolerance. Underlying these effects, genes in signaling networks related to cardiac hypertrophy and mitochondrial function were differentially expressed. Cardiac dysfunction in mouse embryos resulting from AHR signaling disruption seems to progress into abnormal cardiac structure and function that predispose adults to cardiac disease, but while embryonic dysfunction is equally robust in males and females, the adult abnormalities are more prevalent in females, with the highest severity in Ahr-/- females. The findings reported here underscore the conclusion that AHR signaling in the developing heart is one potential target of environmental factors associated with cardiovascular disease.  相似文献   

20.
In humans, age-related macular degeneration and diabetic retinopathy are the most common disorders affecting cones. In retinitis pigmentosa (RP), cone cell death precedes rod cell death. Systemic administration of insulin delays the death of cones in RP mouse models lacking rods. To date there are no studies on the insulin receptor signaling in cones; however, mRNA levels of IR signaling proteins are significantly higher in cone-dominant neural retina leucine zipper (Nrl) knock-out mouse retinas compared with wild type rod-dominant retinas. We previously reported that conditional deletion of the p85α subunit of phosphoinositide 3-kinase (PI3K) in cones resulted in age-related cone degeneration, and the phenotype was not rescued by healthy rods, raising the question of why cones are not protected by the rod-derived cone survival factors. Interestingly, systemic administration of insulin has been shown to delay the death of cones in mouse models of RP lacking rods. These observations led to the hypothesis that cones may have their own endogenous neuroprotective pathway, or rod-derived cone survival factors may be signaled through cone PI3K. To test this hypothesis we generated p85α−/−/Nrl−/− double knock-out mice and also rhodopsin mutant mice lacking p85α and examined the effect of the p85α subunit of PI3K on cone survival. We found that the rate of cone degeneration is significantly faster in both of these models compared with respective mice with competent p85α. These studies suggest that cones may have their own endogenous PI3K-mediated neuroprotective pathway in addition to the cone viability survival signals derived from rods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号