首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M Pellegrini  D F Mierke 《Biochemistry》1999,38(45):14775-14783
The bimolecular complex of the C-terminal octapeptide of cholecystokinin, CCK-8, with the N-terminus of the CCK(A)-receptor, CCK(A)-R(1-47), has been structurally characterized by high-resolution NMR and computational refinement. The conformation of CCK(A)-R(1-47), within the lipid environment used for the spectroscopic studies, consists of a well-defined alpha-helix (residues 3-9) followed by a beta-sheet stabilized by a disulfide linkage between C18 and C29, leading to the first transmembrane alpha-helix (TM1). Titration of CCK(A)-R(1-47) with CCK-8 specifically affects the NMR signals of W39 of the receptor, in a saturable fashion. This association is specific for CCK-8; no association was observed upon titration of CCK(A)-R(1-47) with other peptide hormones. The ligand/receptor complex was characterized by intermolecular NOEs between Tyr(27) and Met(28) of CCK-8 and W39 of CCK(A)-R(1-47). These findings suggest that CCK-8 binds to CCK(A) with the C-terminus within the seven-helical bundle and the N-terminus of the ligand, projecting out between TM1 and TM7, forming specific interactions with the N-terminus of the CCK(A) receptor. This mode of ligand binding, consistent with published mutagenesis studies, requires variation of the interpretation of recent findings from photoaffinity cross-linking studies.  相似文献   

2.
Giragossian C  Mierke DF 《Biochemistry》2002,41(14):4560-4566
The structure of the third extracellular loop of the human cholecystokinin-2 receptor, CCK2-R(352-379), and its interactions with the C-terminal octapeptide of cholecystokinin (CCK-8) have been determined by high-resolution NMR and computer simulations. In the presence of dodecylphosphocholine micelles, the structure of the receptor fragment consisted of three helices, with the first and third corresponding to residues of the extracellular ends of transmembrane helices (TM) 6 and 7, respectively. The central, extracellular helix, consisting of residues 363-368, was found to be closely associated with the membrane mimetic used during the spectroscopic studies and molecular dynamics (MD) simulations. Upon titration of CCK-8 to the receptor domain, chemical shift perturbation and intermolecular NOEs (Trp30, Met31 of CCK-8 and P371, F374 of CCK2-R) indicated the formation of a stable complex and specific ligand/receptor interactions. Using the NOE-generated intermolecular contact points, extensive MD simulations of CCK-8 bound to the CCK2 receptor were carried out. The results, with CCK-8 in close proximity to TM7, differ from previous structural studies of CCK-8 association with CCK1-R, in which the ligand formed a number of interactions with TM6. These differences may play a role in the ligand specificity displayed by the CCK1 and CCK2 receptor subtypes.  相似文献   

3.
Cholecystokinin, like many peptide hormones, is present as multiple molecular forms. CCK-58 has been identified as the dominant form in the circulation, whereas most of the studies of CCK-receptor interactions have been performed with CCK-8. Despite both sharing the pharmacophoric region of CCK, representing its carboxy terminal heptapeptide amide, studies in vivo have demonstrated biological diversity of action of the two peptides, with CCK-58, but not CCK-8, stimulating pancreatic fluid secretion and lengthening the interval between meals. Here, we have directly studied the ability of these two CCK peptides to bind to the type 1 CCK receptor and to stimulate it to elicit an intracellular calcium response. The calcium response relative to receptor occupation was identical for CCK-58 and CCK-8, with the longer peptide binding with approximately fivefold lower affinity. We also examined the ability of the two peptides to elicit receptor internalization using morphological techniques and to disrupt the constitutive oligomerization of the CCK receptor using receptor bioluminescence resonance energy transfer. Here, both full agonist peptides had similar effects on these regulatory processes. These data suggest that both molecular forms of CCK act at the CCK1 receptor quite similarly and elicit similar regulatory processes for that receptor, suggesting that the differences in biological activity observed in vivo most likely reflect differences in the clearance and/or metabolism of these long and short forms of CCK peptides.  相似文献   

4.
We investigated the importance of sulfation of gastrin or cholecystokinin (CCK) on influencing their affinity for gastrin or CCK receptors by comparing the abilities of sulfated gastrin-17 (gastrin-17-II), desulfated gastrin-17 (gastrin-17-I), CCK-8 and desulfated CCK-8 [des(SO3)CCK-8] to interact with CCK or gastrin receptors on guinea pig pancreatic acini. For inhibiting binding of 125I-gastrin to gastrin receptors, gastrin-17-II (Kd 0.08 nM) greater than CCK-8 (Kd 0.4 nM) greater than gastrin-17-I (Kd 1.5 nM) greater than des(SO3)CCK-8 (Kd 28 nM). For inhibiting binding of 125I-Bolton Hunter-labeled CCK-8 to CCK receptors the relative potencies were: CCK-8 much greater than des(SO3)CCK-8 = gastrin-17-II greater than gastrin-17-I. Each peptide interacted with both high and low affinity CCK binding sites. The relative abilities of each peptide to interact with high affinity CCK receptors showed a close correlation with their abilities to cause half-maximal stimulation of enzyme secretion. These results demonstrate that, in contrast to older studies, sulfation of both CCK and gastrin increase their affinities for both gastrin and CCK receptors. Moreover, the gastrin receptor is relatively insensitive to the position of the sulfate moiety, whereas the CCK receptor is extremely sensitive to both the presence and exact position of the sulfate moiety.  相似文献   

5.
H Yu  D Wen  C Ma  Y Meng  S Li  Z Ni  B Cong 《PloS one》2012,7(7):e41860
Cholecystokinin octapeptide (CCK-8), a gut-brain peptide, regulates a variety of physiological behavioral processes. Previously, we reported that exogenous CCK-8 attenuated morphine-induced conditioned place preference, but the possible effects of CCK-8 on aversively motivated drug seeking remained unclear. To investigate the effects of endogenous and exogenous CCK on negative components of morphine withdrawal, we evaluated the effects of CCK receptor antagonists and CCK-8 on the naloxone-precipitated withdrawal-induced conditioned place aversion (CPA). The results showed that CCK2 receptor antagonist (LY-288,513, 10 μg, i.c.v.), but not CCK1 receptor antagonist (L-364,718, 10 μg, i.c.v.), inhibited the acquisition of CPA when given prior to naloxone (0.3 mg/kg) administration in morphine-dependent rats. Similarly, CCK-8 (0.1-1 μg, i.c.v.) significantly attenuated naloxone-precipitated withdrawal-induced CPA, and this inhibitory function was blocked by co-injection with L-364,718. Microinjection of L-364,718, LY-288,513 or CCK-8 to saline pretreated rats produced neither a conditioned preference nor aversion, and the induction of CPA by CCK-8 itself after morphine pretreatments was not significant. Our study identifies a different role of CCK1 and CCK2 receptors in negative affective components of morphine abstinence and an inhibitory effect of exogenous CCK-8 on naloxone-precipitated withdrawal-induced CPA via CCK1 receptor.  相似文献   

6.
Giragossian C  Mierke DF 《Biochemistry》2001,40(13):3804-3809
The interaction of the C-terminal octapeptide of cholecystokinin, CCK-8, with the third extracellular loop of human cholecystokinin-A receptor, CCK(A)-R(329-357), has been probed by high-resolution NMR and extensive computer simulations. The structure of CCK(A)-R(329-357) in the presence of dodecylphosphocholine micelles consists of three alpha-helices, with the first and third corresponding to the extracellular ends of transmembrane (TM) helices 6 and 7. The central helix, residues W335-R345, is found to lie on the zwitterionic surface. Titration with CCK-8 produces a stable complex with a number of intermolecular NOEs between the C-terminus of the ligand (Trp(30), Met(31), Asp(32)) and the interface of TM6 and the third extracellular loop (N333, A334, Y338) of the receptor fragment. The mode of ligand binding based on these intermolecular NOEs is in agreement with a number of published findings from receptor mutagenesis and photoaffinity cross-linking. Utilizing these ligand/receptor points of interaction, the structural features of CCK(A)-R(329-357), and also the structures of CCK-8 and CCK(A)-R(1-47) previously determined, extensive molecular dynamics simulations of the CCK-8/CCK(A)-R complex were carried out. The results provide unique insight into the molecular interactions and forces important for the binding of CCK-8 to CCK(A)-R.  相似文献   

7.
Yang YM  Chung JM  Rhim H 《Life sciences》2006,79(18):1702-1711
The peptide cholecystokinin (CCK) is one of the major neurotransmitters modulating satiety, nociception, and anxiety behavior. Although many behavioral studies showing anti-analgesic and anxiogenic actions of CCK have been reported, less is known about its cellular action in the central nervous system (CNS). Therefore, we examined the action of CCK in rat dorsolateral periaqueductal gray (PAG) neurons using slice preparations and whole-cell patch-clamp recordings. Application of CCK-8S produced an inward current accompanied by increased spontaneous synaptic activities. The CCK-8S-induced inward current (I(CCK)) was recovered after washout and reproduced by multiple exposures. Current-voltage plots revealed that I(CCK) reversed near the equilibrium potential for K(+) ions with a decreased membrane conductance. When several K(+) channel blockers were used, application of CdCl(2), TEA, or apamin significantly reduced I(CCK). I(CCK) was also significantly reduced by the CCK(2) receptor antagonist, L-365,260, while it was not affected by the CCK(1) receptor antagonist, L-364,718. Furthermore, we examined the effects of CCK-8S on miniature excitatory postsynaptic currents (mEPSCs) in order to determine the mechanism of CCK-mediated increase on synaptic activities. We found that CCK-8S increased the frequency of mEPSCs, but had no effect on mEPSC amplitude. This presynaptic effect persisted in the presence of CdCl(2) or Ca(2+)-free bath solution, but was completely abolished by pre-treatment with BAPTA-AM, thapsigargin or L-365,260. Taken together, our results indicate that CCK can excite PAG neurons at both pre- and postsynaptic loci via the activation of CCK(2) receptors. These effects may be important for the effects of CCK on behavior and autonomic function that are mediated via PAG neurons.  相似文献   

8.
So far, there are no known peptidic effective receptor antagonists of both peripheral and central effects of cholecystokinin (CCK). Here, we describe a synthetic peptide derivative of CCK, t-butyloxycarbonyl-Tyr(SO3-)-Met-Gly-D-Trp-Nle-Asp 2-phenylethyl ester 1 (where Nle is norleucine), which is a potent CCK receptor antagonist. In rat and guinea pig dispersed pancreatic acini, this peptide derivative did not alter amylase secretion, but was able to antagonize the stimulation caused by cholecystokinin-related agonists. It caused a parallel rightward shift in the dose-response curve for the stimulation of amylase secretion with half-maximal inhibition of CCK-8-stimulated amylase release at a concentration of about 0.1 microM. Compound 1 was able to inhibit the binding of labeled CCK-9 (the C-terminal nonapeptide of CCK) to rat and guinea pig pancreatic acini (IC50 = 5 X 10(-8) M) as well as to guinea pig cerebral cortical membranes (IC50 = 5 X 10(-7) M). These results indicate that Compound 1 is a potent competitive CCK receptor antagonist.  相似文献   

9.
Cholecystokinin (CCK) and its receptors are expressed in mammalian cardiomyocytes and are involved in cardiovascular system regulation; however, the exact effect and underlying mechanism of CCK in cardiomyocyte apoptosis remain to be elucidated. We examined whether sulfated CCK octapeptide (CCK-8) protects H9c2 cardiomyoblast cells against angiotensin II (Ang II)-induced apoptosis. The H9c2 cardiomyoblasts were subjected to Ang II with or without CCK-8 and the viability and apoptotic rate were detected using a Cell Counting Kit-8 assay, Hoechst 33342 staining, terminal deoxyribonucleotide transferase-mediated nick-end labeling assays, and flow cytometry. In addition, specific antiapoptotic mechanisms of CCK-8 were investigated using specific CCK1 (Devazepide) or CCK2 (L365260) receptor antagonists, or the PI3K inhibitor LY294002. The expression of CCK, CCK1 receptor, CCK2 receptor, Akt, p-Akt, Bad, p-Bad, Bax, Bcl-2, and caspase-3 were detected by Western blot analysis and real-time polymerase chain reaction. We found that CCK and its receptor messenger RNA (mRNA) and protein are expressed in H9c2 cardiomyoblasts. Ang II-induced increased levels of CCK mRNA and protein expression and decreased levels of CCK1 receptor protein and mRNA. Pretreatment of CCK-8 attenuated Ang II-induced cell toxicity and apoptosis. In addition, pretreatment of H9c2 cells with CCK-8 markedly induced expression of p-Akt, p-bad, and Bcl-2 and decreased the expression levels of Bax and caspase-3. The protective effects of CCK-8 were partly abolished by Devazepide or LY294002. Our results suggest that CCK-8 protects H9c2 cardiomyoblasts from Ang II-induced apoptosis partly via activation of the CCK1 receptor and the phosphatidyqinositol-3 kinase/protein kinase B (PI3K/Akt) signaling pathway.  相似文献   

10.
The effects of cholecystokinin (CCK) agonists and antagonists on spontaneous and electrically evoked endogenous GABA release from rat cerebral cortex slices were evaluated. Neither the nonselective and CCK(B)-selective receptor agonists CCK-8S (3-1,000 nM) and CCK-4 (3-1,000 nM), respectively, nor the selective CCK(B) and CCK(A) receptor antagonists GV 150013 (3-30 nM) and L-364,718 (10-100 nM), respectively, significantly affected spontaneous GABA release. CCK-8S (1-1,000 nM) and CCK-4 (1-1,000 nM) increased the electrically (5 and 10 Hz)-evoked GABA release. On the contrary, GV 150013 (10 and 30 nM) significantly decreased the electrically evoked GABA release only when the slices were stimulated at the higher 10 Hz frequency. The CCK-8S- and CCK-4-induced increases in electrically evoked GABA release were counteracted by GV 150013, but not by L-364,718. Furthermore, GV 150013 at 3 nM shifted to the right the CCK-4 concentration-response curve, whereas at the higher 10 nM concentration it dramatically flattened the curve. Finally, in cortical slices obtained from rats chronically treated with GV 150013, the concentration-response curve of CCK-4 was shifted to the left and the peak effect of the peptide was significantly higher than that observed in naive animals. These results suggest that CCK increases electrically evoked, but not spontaneous, endogenous GABA release from rat cortical slices, possibly by activating local CCK(B) receptors. In addition, chronic treatment with the novel CCK(B) receptor antagonist GV 150013 leads to an enhanced responsiveness of cortical slices to CCK-4 application.  相似文献   

11.
The binding of biologically active 125I-Bolton-Hunter-CCK-33 to bullfrog brain and pancreatic membrane particles was characterized. Both tissues exhibited time-dependent, saturable, reversible, and high affinity binding without evidence for cooperative interaction. Both bullfrog CCK receptors resembled their mammalian counterparts in having acidic pH optima for tracer binding and a Kd of about 0.5 nM. However, the receptors differed from their mammalian counterparts in that (1) the bullfrog brain membranes bound more tracer per mg protein than did the pancreatic membranes, (2) both bullfrog CCK receptors were relatively insensitive to dibutyryl cGMP, and (3) both bullfrog brain and pancreatic CCK receptors exhibited the same general specificity toward a variety of CCK and gastrin peptides. For both tissues, the relative order of receptor binding potency was CCK-8 greater than caerulein = CCK-33 greater than gastrin-17-II greater than CCK-8-ns = gastrin-17-I greater than caerulein-ns greater than gastrin-4 with the sulfated CCK peptides being 1000-fold more potent than their nonsulfated analogs. Sulfated gastrin was also relatively potent, being only 10-fold weaker than CCK-8. Gastrin-4 was 20 000-fold weaker than CCK-8 in interacting with the brain CCK receptor. The latter finding is in sharp contrast to the mammalian brain CCK receptor. We conclude that the bullfrog brain and pancreas contain similar CCK receptors of probable physiological significance and may represent an ancestral condition from which the two distinct CCK receptors present in mammalian brain and pancreas have evolved.  相似文献   

12.
CCK-8-induced desensitization of carbachol-stimulated amylase secretion occurred over a range of concentrations of CCK-8 that occupy low affinity CCK receptors. CCK-JMV-180 [BOC-Tyr(SO3)-Nle-Gly-Trp-Nle-Asp-2-phenylethylester] at concentrations up to 1 microM did not cause desensitization of enzyme secretion; however, the peptide was able to inhibit CCK-8-induced desensitization. Analysis of the relationship between receptor occupation and CCK-8-induced desensitization caused by CCK-8 and CCK-JMV-180 in combination also indicated that CCK-8-induced desensitization of carbachol-stimulated amylase secretion is caused by occupation of low affinity CCK receptors.  相似文献   

13.
14.
The neuropeptide cholecystokinin (CCK) has been implicated in fear and anxiety. CCK is found in the CNS in several molecular forms such as the tetrapeptide (CCK-4) and, mainly, the sulfated octapeptide (CCK-8s) fragments. Administration of CCK-4 induces panic attacks in humans and increases the expression of different anxiety-related behaviors in laboratory animals. The effects of CCK-8s on fear and anxiety are less straightforward and seem to be influenced, among other factors, by the route of the peptide administration and the animal model employed. In other to further investigate the role of CCK-8s in fear and anxiety, in the present study we analyzed the effect of CCK-8s in male Wistar rats submitted to the elevated T-maze. This animal model of anxiety was developed in order to separate generalized anxiety (inhibitory avoidance) and panic-like (escape) responses in the same rat. The effect of CCK-8s in this test was also investigated after injection of the peptide into the dorsal periaqueductal gray (DPAG). This brainstem area is rich in CCK receptors and has consistently been implicated in the mediation of fear and anxiety responses. The results showed that both the intraperitoneal and intra-DPAG injections of CCK-8s potentiated one-way escape behavior, suggesting a panicogenic action. In contrast, the injection of the CCK2 receptor antagonist CR2945 inhibited the expression of this behavior, a panicolytic-like effect. Therefore, the elevated T-maze, in contrast to other animal models of anxiety, can detect the anxiety-eliciting effects of CCK-8s both after its systemic and central administration. Also, the results provide further evidence about the involvement of a CCK-mediated mechanism within the DPAG in the regulation of panic-related defensive behaviors.  相似文献   

15.
The paradigm for the control of feeding behavior has changed significantly. Research has shown that leptin, in the presence of CCK, may mediate the control of short-term food intake. This interaction between CCK and leptin occurs at the vagus nerve. In the present study, we aimed to characterize the interaction between CCK and leptin in the vagal primary afferent neurons. Single neuronal discharges of vagal primary afferent neurons innervating the gastrointestinal tract were recorded from rat nodose ganglia. Three groups of nodose ganglia neurons were identified: group 1 responded to CCK-8 but not leptin; group 2 responded to leptin but not CCK-8; group 3 responded to high-dose CCK-8 and leptin. In fact, the neurons in group 3 showed CCK-8 and leptin potentiation, and they responded to gastric distention. To identify the CCK-A receptor (CCKAR) affinity states that colocalize with the leptin receptor OB-Rb, we used CCK-JMV-180, a high-affinity CCKAR agonist and low-affinity CCKAR antagonist. As expected, immunohistochemical studies showed that CCK-8 administration significantly potentiated the increase in the number of c-Fos-positive neurons stimulated by leptin in vagal nodose ganglia. Administration of CCK-JMV-180 eliminated the synergistic interaction between CCK-8 and leptin. We conclude that both low- and high-affinity CCKAR are expressed in nodose ganglia. Many nodose neurons bearing low-affinity CCKAR express OB-Rb. These neurons also respond to mechanical distention. An interaction between CCKAR and OB-Rb in these neurons likely facilitates leptin mediation of short-term satiety.  相似文献   

16.
八肽胆囊收缩素对抗mu和Kappa型受体介导的镇痛作用   总被引:3,自引:1,他引:3  
王霄虹  王晓京 《生理学报》1990,42(3):219-225
以往的资料表明,八肽胆襄收缩素(CCK-8)能对抗阿片镇痛,本实验进一步分析 CCK-8对抗哪一类型阿片受体激动剂的镇痛作用。给大鼠脊髓蛛网膜下腔(I.T.)注射 CCK-8(剂量4ng到1.0μg)既不产生痛敏也不产生镇痛。I.T.注射特异性的μ受体激动剂 PL01710 ng 或 k 受体激动剂 NDA P500 ng 引起的镇痛作用可被注射 CCK-8 4ng 所对抗。而L.T.注射δ受体激动剂 DPDPE(6.5,13.0和26.Oμg)引起的镇痛作用不能被 CCK-8(4ng,40ng I.T.)所对抗。但 CCK-8对抗 PL017和 NDAP 镇痛的作用可被 I.T.CCK 受体拮抗剂 proglumide(3μg)所翻转。以上结果表明,I.T.注射 CCK-8可有效地对抗μ和 k 受体介导的镇痛,并且这种对抗作用是经 CCK 受体介导而实现的。  相似文献   

17.
Solubilization and characterization of CCK receptors from mouse pancreas   总被引:3,自引:0,他引:3  
To study the characteristics of the CCK receptor, plasma membranes were prepared from mouse pancreatic acini, and CCK receptors solubilized with 1% digitonin. To measure hormone binding, the solubilized receptors were incubated with 125I-CCK at 4 degrees C and the hormone-receptor complex was precipitated with 10% polyethylene glycol. Specific 125I-CCK binding by the solubilized CCK receptor was compared to that by the plasma membrane-bound CCK receptor. Both the solubilized and the membrane-bound receptor displayed optimal binding at an acidic pH (between 6.0 and 7.0) and showed a similar sensitivity to monovalent and divalent cations. The solubilized receptors preserved their relative specificity for CCK molecules: CCK-8 greater than CCK-33 greater than desulfated CCK-8 greater than CCK-4. However, the soluble CCK receptor had a lower binding affinity than plasma membrane-bound receptor. Solubilized receptors preserved their relative specificity for inhibitors of CCK binding and action: dibutyryl cyclic GMP greater than N-CBZ-tryptophan greater than proglumide. Solubilized receptors had affinities for these antagonists that were similar to receptors on intact plasma membranes. These data indicate, therefore, that the specific binding properties of the CCK receptor are inherent to the solubilized glycoprotein molecules.  相似文献   

18.
Sulfated CCK-58 and CCK-8 have identical bioactive C-terminal primary sequences but distinct C-terminal solution structures and different bioactivities. To examine structural differences in greater detail, rat CCK-58 and -8 were synthesized with isotopic enrichment of C-terminal residues with (15)N at alpha-amino nitrogens. Proton and nitrogen chemical shift assignments of peptide solutions were obtained by homo- and heteronuclear NMR methods. These data show that the tertiary structure ensembles of C-terminal CCK-8 and CCK-58 differ significantly. Thus, distinct solution conformations may explain differences in CCK(A) and CCK(B) receptor interactions of large and small molecular forms of CCK.  相似文献   

19.
20.
Cholecystokinin (CCK) is a peptide hormone that is released from the gut in response to nutrients such as lipids to lower food intake. Here we report that a primary increase of CCK-8, the biologically active form of CCK, in the duodenum lowers glucose production independent of changes in circulating insulin levels. Furthermore, we show that duodenal CCK-8 requires the activation of the gut CCK-A receptor and a gut-brain-liver neuronal axis to lower glucose production. Finally, duodenal CCK-8 fails to lower glucose production in the early onset of high-fat diet-induced insulin resistance. These findings reveal a role for gut CCK that lowers glucose production through a neuronal network and suggest that intestinal CCK resistance may contribute to hyperglycemia in response to high-fat feeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号