首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
Restoration of centrolobular injury induced by carbon tetrachloride (CCl4), when hepatocyte proliferation is inhibited by treatment with N-2-acetylaminofluorene (AAF), is accomplished by proliferation of ductular progenitor cells, that arise intraportally and extend into the liver lobule. This pattern contrasts to the restitutive proliferation of hepatocytes when AAF is not administered, and the proliferation of non-ductular periportal oval cells follows periportal necrosis induced by allyl alcohol. The expanding ducts stain for alphafetoprotein (AFP), OV-6, pan-cytokeratin (CKPan), and laminin. The neoductular proliferation is accompanied by fibronectin-positive Kupffer cells and desmin-positive stellate (Ito) cells, which may play critical roles not only in controlling proliferation and differentiation of ductular progenitor cells, but also in reestablishing hepatic cord structure. When AAF is discontinued 7 days after injury, clusters of small hepatocytes appear next to the neoductules. Some of these small hepatocytes, as well as some larger hepatocytes adjacent to the ducts, stain for AFP and for carbamoylphosphate synthetase I (CPS-I), suggesting that the ductular progenitor cells may differentiate into hepatocytes when AAF is withdrawn. The restitutive process is facilitated by clearing of the central necrotic zone by infiltrating macrophages and co-migration of mature hepatocytes, with Kupffer cells and stellate cells, into the necrotic zone.  相似文献   

2.
BACKGROUND INFORMATION: Partial hepatectomy (70%) induces cell proliferation until the original mass of the liver is restored. In the first 24 h after partial hepatectomy, drastic changes in the metabolism of the remaining liver have been shown to occur. To evaluate changes in hepatocyte ultrastructure within the hepatic acinus during the liver regenerative process, we investigated, by light and electron microscopy observations on specimens taken 0 h, 24 h and 96 h after partial hepatectomy, the hepatocyte structure and ultrastructure in the periportal and pericentral area of the hepatic acinus, with a particular emphasis on mitochondria ultrastructure. Moreover, some biochemical events that could affect the mitochondria ultrastructure and function were investigated. RESULTS: We found that, 24 h after partial hepatectomy, mitochondria with altered ultrastructure were preferentially localized in the periportal area. Periportal hepatocytes showed also an increase in the number of peroxisomes, free ribosomes, lysosomes and autophagosomes. Altered mitochondria showed swelling, an ultrastructural index of increased membrane permeability, a reduction in the number of cristae, and a rarefied, often vacuoled, matrix. Consistently, an increase in the mitochondrial oxidized/reduced glutathione ratio was found as well as calcium release from mitochondria in a manner inhibited by cyclosporin A. Interestingly, light and electron microscopy analysis showed that the hepatocytes in the periportal area were the cells with the major structural attributes to proliferate. At 96 h after partial hepatectomy, the preferential zonation of altered mitochondria was lost and the normal mitochondrial membrane permeability properties were restored. CONCLUSIONS: We suggest that 24 h after partial hepatectomy, a preferential zonation of altered mitochondria in the periportal hepatocytes could be involved in the changes of metabolic and functional heterogeneity of the hepatocytes within the hepatic acinus during the regenerative process.  相似文献   

3.
This review summarizes results of biochemical and immunohistochemical studies indicating the existence of functional heterogeneity of hepatocytes depending on their localization in the hepatic acinus; this determines characteristic features of metabolism of carbohydrates, lipids, and xenobiotics. The physiological significance of hepatocyte heterogeneity is discussed. According to the proposed model of intercellular communication, the metabolic specialization of hepatocytes is determined by secretory activity of hepatic resident macrophages (Kupffer cells) localized mainly in the periportal zone of the liver acinus. Macrophages participate in secretion of a wide spectrum of intercellular mediators (cytokines, prostaglandins, growth factors) and also in metabolism of numerous blood metabolites and biologically active substances (hormones, lipoproteins, etc.). In the sinusoid and in the space of Disse (also known as perisinusoidal space) they form a concentration gradient of regulatory factors and metabolites inducing the phenotypic differences between hepatocytes.  相似文献   

4.
The distribution of glucokinase in rat liver under both normal feeding and fasting-refeeding conditions was investigated immunohistochemically. Under normal feeding conditions, glucokinase immunoreactivity was observed in both nuclei and cytoplasm of parenchymal cells. The nuclei were stained intensely and evenly, whereas the cytoplasm showed weak immunoreactivity of different degrees of staining intensity depending on the location of the cells. The cytoplasm of perivenous hepatocytes was stained more intensely, though not so much more, than that of periportal hepatocytes. The cytoplasm of hepatocytes surrounding the terminal hepatic venule (THV), of hepatocytes surrounding the portal triad, and of some other hepatocytes showed a stronger immunoreactivity than that of residual hepatocytes. The nuclear immunoreactivity in hepatocytes surrounding the portal triad and in some other hepatocytes was weak or absent, and positive immunoreactivity was detected at the plasma membrane of some of these cells. After 72 h of fasting, glucokinase immunoreactivity was markedly decreased in all hepatocytes. After the start of refeeding, the cytoplasmic immunoreactivity began to increase first in the parenchymal cells surrounding the THV and extended to those in the intermediate zone followed by those in the periportal zone. In contrast, the increase in nuclear immunoreactivity started in hepatocytes situated in the intermediate zone adjacent to the perivenous zone and then extended to those in the perivenous zone followed by those in the periportal zone. Hepatocytes surrounding either THV or portal triad showed a distinctive change in immunoreactivity during the refeeding period. After 10 h of refeeding, strong immunoreactivity was observed in both the cytoplasm and the nuclei of all hepatocytes, and appreciable glucokinase immunoreactivity was detected at the plasma membrane of some hepatocytes. These findings are discussed from the standpoint of a functional role of glucokinase in hepatic glucose metabolism.  相似文献   

5.
The paper is concerned with the action of chalones, tissue-specific inhibitors of cell proliferation, on DNA synthesis and mitotic activity of hepatocytes in the intact and denervated liver during regeneration. Experiments were made on Wistar rats. Liver denervation was performed by bilateral subdiaphragmal vagotomy. In control and vagotomized animals, two thirds of the liver was resected. The data obtained indicate that chalones noticeably reduce the number of DNA-synthesizing cells and mitoses in the regenerating liver of intact animals. During regeneration of the denervated liver, chalones do not produce any inhibitory action on the intensity of proliferation. Analysis of the data obtained allows a conclusion that preservation of adequate innervation of the organ is needed for realization of the action of hepatic chalones.  相似文献   

6.
Summary The zonal distribution of phosphoenolpyruvate carboxykinase (PCK) and tyrosine aminotransferase (TAT) mRNA in liver was studied by in situ hybridization with radiolabelled cRNA probes and the abundance of PCK and TAT mRNA was quantified by Northern blot analysis of total RNA with biotinylated cRNA probes. Livers were taken from rats during a normal 12 h day/night rhythm, when they had access to food only during the dark period from 7 pm to 7 am, or during refeeding, when they had access to food after having been starved for 60 h. 1. Daily feeding rhythm: High levels of PCK mRNA were distributed mainly in the periportal and intermediate zone during the fasting period at noon and 6 pm. Feeding caused a rapid decrease in PCK mRNA level and a restriction of PCK mRNA localization to the periportal area within the first 2 h. No further alterations were observed during the following hours of the feeding period. TAT mRNA was distributed also in the periportal and intermediate zone during the fasting period. Feeding first reduced the mRNA level without changing the distribution pattern. Then towards the end of the feeding period TAt mRNA increased again to half-maximal levels and became restricted mainly to the periportal area. 2. Starvation-refeeding cycle: High amounts of PCK mRNA as well as of TAT mRNA were localized predominantly in the periportal and intermediate zone after 60 h of starvation. PCK and TAT mRNA both decreased markedly during the first 2 h of refeeding and then remained almost constant. Whereas the alterations in the overall abundance of the two mRNAs were similar, the distribution patterns of both mRNAs differed. While PCK mRNA became more and more restricted to a small area of periportal cells towards the end of refeeding, TAT mRNA was first evenly distributed in the periportal and perivenous area with higher amounts in the intermediate zone and then again was predominantly located in the periportal area. The present data indicate that the predominant periportal localization of PCK and TAT activity and enzyme protein is regulated mainly at the pretranslational level.  相似文献   

7.
The biochemical and functional heterogeneity of hepatocytes in different zones of the liver acinus may be related to the concentrations of hormones within the liver acinus. We examined the effects of hypophysectomy, which causes marked changes in plasma hormone levels and in activities of hepatic enzymes that are normally heterogeneously distributed, on the degree of metabolic zonation within the liver acinus. In hypophysectomized rats the activity of alanine aminotransferase was increased, but its normal zonation (predominance in the periportal zone) was preserved. The activity in cultured periportal and perivenous hepatocytes was increased by dexamethasone, but not by glucagon. Periportal hepatocytes from hypophysectomized rats expressed higher rates of gluconeogenesis in culture than did perivenous hepatocytes, irrespective of the absence or presence of dexamethasone, glucagon or insulin. Similar differences in rates of ketogenesis and in the mitochondrial redox state in response to glucagon were observed between periportal and perivenous hepatocytes from hypophysectomized rats as between cell populations from normal rats. Although hypophysectomy causes marked changes in hepatic enzyme activities, it does not alter the degree of zonation of alanine aminotransferase, gluconeogenesis or the mitochondrial redox state within the liver acinus.  相似文献   

8.
In order to examine the pathways of hepatic glycogen repletion in the periportal and perivenous zones of the liver, [1-13C]glucose (99% enriched) was infused intraduodenally into conscious, 24-h fasted rats for 3 h. The liver was then quickly perfused in situ, and the cytoplasmic contents of the periportal and perivenous hepatocytes were selectively sampled by modification of the dual-digitonin-pulse technique (Quistorff, B., and Grunnet, N. (1987) Biochem. J. 243, 87-95). The 13C isotopic enrichment at each carbon position of the glucosyl units of hepatic glycogen was determined by 13C NMR and that of the C-1 position by gas chromatography-mass spectroscopy. From comparison of hepatic glycogen repleted by direct incorporation of plasma glucose (glucose----glucose-6-P----glucose-1-P----UDP-glucose----glycogen) was calculated to be 29% in the periportal zone and 35% in the perivenous zone, assuming equal glycogen synthetic rates within the two zones. Thus, the majority of glycogen is derived by an indirect route (glucose--------3-carbon unit--------glucose --------UDP-glucose--------glycogen) in both the periportal zone and in the perivenous zone. In conclusion, in a 24-h fasted rat there does not appear to be a major difference between the periportal and perivenous hepatocytes in the percent of glycogen synthesized by the direct pathway following a glucose load.  相似文献   

9.
用大鼠肝脏门静脉或肝静脉周围的肝细胞来研究葡萄糖和酮体生成的区域分布。肝细胞通过毛地黄皂苷-胶原酶灌流技术分离。门静脉周围肝细胞的γ谷氨酰转肽酶的活性比肝静脉周围肝细胞高2.4倍;而谷氨酰胺合成酶的活性则相反,肝静脉周围肝细胞高出56倍。门静脉周围肝细胞的内源性葡萄糖合成比肝静脉周围肝细胞高1.57倍。给予刺激葡萄糖异生的底物,门静脉周围肝细胞的葡萄糖合成则增加1.7-2.1倍。肝静脉周围肝细胞的内源性酮体生成比门静脉周围肝细胞高1.3倍。给予能明显刺激酮体生成的辛酸盐,肝静脉周围肝细胞的酮体生成仅略为增加。我们的结果证实,在基础和刺激的条件下,葡萄糖的异生在门静脉周围肝细胞中优先,而酮体生成仅在肝静脉周围肝细胞占微弱的优势。  相似文献   

10.
Predominance of the vasopressin binding capacity in the hepatic perivenous area leads to the hypothesis that the metabolic effects of the hormone should also be more pronounced in this area. Until now this question has been approached solely by experiments with isolated hepatocytes where an apparent absence of metabolic zonation was found. We have reexamined this question using the bivascularly perfused liver. In this system periportal cells can be reached in a selective manner with substrates and effectors via the hepatic artery when retrograde perfusion (hepatic vein --> portal vein) is done. The action of vasopressin (1-10 nM) on glycogenolysis, initial calcium efflux, glycolysis and oxygen uptake were measured. The results revealed that the action of vasopressin in the liver is heterogeneously distributed. Glycogenolysis stimulation and initial calcium efflux were predominant in the perivenous area, irrespective of the vasopressin concentration. Oxygen uptake was stimulated in the perivenous area; in the periportal area it ranged from inhibition at low vasopressin concentrations to stimulation at high ones. Lactate production was generally greater in the perivenous zone, whereas the opposite occurred with pyruvate production. Analysis of these and other results suggests that at least three factors are contributing to the heterogenic response of the liver parenchyma to vasopressin: a) receptor density, which tends to favour the perivenous zone; b) cell-to-cell interactions, which tend to favour situations where the perivenous zone is amply supplied with vasopressin; and c) the different response capacities of perivenous and periportal cells.  相似文献   

11.
Zonation of fatty acid metabolism in rat liver.   总被引:3,自引:2,他引:1  
Fatty acid metabolism was studied in periportal and perivenous hepatocytes isolated by the method of Chen & Katz [Biochem. J. (1988) 255, 99-104]. The rate of fatty acid synthesis and the activity of acetyl-CoA carboxylase were markedly enhanced in perivenous hepatocytes as compared with periportal cells. However, the response of these two parameters to short-term modulation by cellular effectors such as the hormones insulin and glucagon, the phorbol ester 4 beta-phorbol 12 beta-myristate 13 alpha-acetate and the xenobiotics ethanol and acetaldehyde was similar in the two zones of the liver. In addition, perivenous hepatocytes showed a higher capacity of esterification of exogenous fatty acids into both cellular and very-low-density-lipoprotein lipids. Nevertheless, no difference between the two cell sub-populations seemed to exist in relation to the secretion of very-low-density lipoproteins. On the other hand, the rate of fatty acid oxidation was increased in periportal cells. This could be accounted for by a higher activity of carnitine palmitoyltransferase I and a lower sensitivity of this enzyme to inhibition by malonyl-CoA in the periportal zone. No differences were observed between periportal and perivenous hepatocytes in relation to the short-term response of fatty acid oxidation and carnitine palmitoyltransferase I activity to the cellular modulators mentioned above. In conclusion, our results show that: (i) lipogenesis is achieved at higher rates in the perivenous zone of the liver, whereas the fatty-acid-oxidative process occurs with a certain preference in the periportal area of this organ; (ii) the short-term response of the different fatty-acid-metabolizing pathways to cellular effectors is quantitatively similar in the two zones of the liver.  相似文献   

12.
The zonal distribution of phosphoenolpyruvate carboxykinase (PCK) and tyrosine aminotransferase (TAT) mRNA in liver was studied by in situ hybridization with radiolabelled cRNA probes and the abundance of PCK and TAT mRNA was quantified by Northern blot analysis of total RNA with biotinylated cRNA probes. Livers were taken from rats during a normal 12 h day/night rhythm, when they had access to food only during the dark period from 7 pm to 7 am, or during refeeding, when they had access to food after having been starved for 60 h. 1. Daily feeding rhythm: High levels of PCK mRNA were distributed mainly in the periportal and intermediate zone during the fasting period at noon and 6 pm. Feeding caused a rapid decrease in PCK mRNA level and a restriction of PCK mRNA localization to the periportal area within the first 2 h. No further alterations were observed during the following hours of the feeding period. TAT mRNA was distributed also in the periportal and intermediate zone during the fasting period. Feeding first reduced the mRNA level without changing the distribution pattern. Then towards the end of the feeding period TAT mRNA increased again to half-maximal levels and became restricted mainly to the periportal area. 2. Starvation-refeeding cycle: High amounts of PCK mRNA as well as of TAT mRNA were localized predominantly in the periportal and intermediate zone after 60 h of starvation. PCK and TAT mRNA both decreased markedly during the first 2 h of refeeding and then remained almost constant.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
N N Petrovichev 《Tsitologiia》1975,17(10):1221-1223
The distribution of mitotic activity inside the rat's liver lobe was found to depend on the time that elapsed after the injury. At the early stages, the maximal quantity of mitotic figures in hepatocytes was observed along the periphery of the lobe, being less in the middle parts. At the later stages, mitotic figures were noted around the central veins. With the prolonged injury of the liver, the maximal amount of dividing hepatic cells was localized in the middle sections of the liver.  相似文献   

14.
Summary Histochemical and immunohistochemical procedures have been used to examine the localization of three of the four hexokinase isoenzymes present in the liver of fed female Wistar rats. Distinctive distribution patterns were found for hexokinase type I and glucokinase but hexokinase type II was not detectable. Hexokinase type I was identified in sinusoidal cells and in bile duct epithelia, nerves and arteries in the portal triad. Glucokinase, the major isoenzyme, was confined to parenchymal cells where it was present in much higher amounts in perivenous compared with periportal hepatocytes. Staining within these two zones was not homogeneous and each had a mosaic appearance caused by the presence of a few hepatocytes containing little or no glucokinase amongst the majority of darkly stained cells in perivenous areas and a few darkly stained cells amongst the majority of unstained cells in periportal areas. Hence, hepatocytesin situ are a strikingly heterogeneous population of cells. Their metabolic status cannot be controlled simply by the differential supply of oxygen, substrates and hormones to different regions of the liver acini as proposed in the metabolic zonation model. Phenotypic differences may exist between cells within a given metabolic zone which influence their ability to respond to different environmental conditions.  相似文献   

15.
Whether hepatocytes can convert into biliary epithelial cells (BECs) during biliary injury is much debated. To test this concept, we traced the fate of genetically labeled [dipeptidyl peptidase IV (DPPIV)-positive] hepatocytes in hepatocyte transplantation model following acute hepato-biliary injury induced by 4,4’-methylene-dianiline (DAPM) and D-galactosamine (DAPM+D-gal) and in DPPIV-chimeric liver model subjected to acute (DAPM+D-gal) or chronic biliary injury caused by DAPM and bile duct ligation (DAPM+BDL). In both models before biliary injury, BECs are uniformly DPPIV-deficient and proliferation of DPPIV-deficient hepatocytes is restricted by retrorsine. We found that mature hepatocytes underwent a stepwise conversion into BECs after biliary injury. In the hepatocyte transplantation model, DPPIV-positive hepatocytes entrapped periportally proliferated, and formed two-layered plates along portal veins. Within the two-layered plates, the hepatocytes gradually lost their hepatocytic identity, proceeded through an intermediate state, acquired a biliary phenotype, and subsequently formed bile ducts along the hilum-to-periphery axis. In DPPIV-chimeric liver model, periportal hepatocytes expressing hepatocyte nuclear factor-1β (HNF-1β) were exclusively DPPIV-positive and were in continuity to DPPIV-positives bile ducts. Inhibition of hepatocyte proliferation by additional doses of retrorsine in DPPIV-chimeric livers prevented the appearance of DPPIV-positive BECs after biliary injury. Moreover, enriched DPPIV-positive BEC/hepatic oval cell transplantation produced DPPIV-positive BECs or bile ducts in unexpectedly low frequency and in mid-lobular regions. These results together suggest that mature hepatocytes but not contaminating BECs/hepatic oval cells are the sources of periportal DPPIV-positive BECs. We conclude that mature hepatocytes contribute to biliary regeneration in the environment of acute and chronic biliary injury through a ductal plate configuration without the need of exogenously genetic or epigenetic manipulation.  相似文献   

16.
Stem cells, cell transplantation and liver repopulation   总被引:3,自引:0,他引:3  
Liver transplantation is currently the only therapeutic option for patients with end-stage chronic liver disease and for severe acute liver failure. Because of limited donor availability, attention has been focused on the possibility to restore liver mass and function through cell transplantation. Stem cells are a promising source for liver repopulation after cell transplantation, but whether or not the adult mammalian liver contains hepatic stem cells is highly controversial. Part of the problem is that proliferation of mature adult hepatocytes is sufficient to regenerate the liver after two-thirds partial hepatectomy or acute toxic liver injury and participation of stem cells is not required. However, under conditions in which hepatocyte proliferation is blocked, undifferentiated epithelial cells in the periportal areas, called "oval cells", proliferate, differentiate into hepatocytes and restore liver mass. These cells are referred to as facultative liver stem cells, but they do not repopulate the normal liver after their transplantation. In contrast, epithelial cells isolated from the early fetal liver can effectively repopulate the normal liver, but they are already traversing the hepatic lineage and may not be true stem cells. Mesenchymal stem cells and embryonic stem cells can be induced to differentiate along the hepatic lineage in culture, but at present these cells are inefficient in repopulating the liver. This review will characterize these various cell types and compare the properties of these cells and the conditions under which they do or do not repopulate the liver following their transplantation.  相似文献   

17.
Alterations in the liver of rats subjected to 24 days of continuous administration of phenobarbitone have been supplied bu subcellular fractionation, conventional electron microscopy and morphometric analysis. The increase in wet weight of the liver was found to result from a combination of cellular hypertrophy, hyperplasia and an enlarged hepatic blood space. In the centrilobular zone all the hepatocytes underwent a substantial proliferation of total ER, became enlarged and had an increased blood supply. However, in the periportal zone phenobarbitone caused changes in only 45% of the hepatocytes, the remainder being apparently resistent or tardy. An overall dramatic increase in hepatic RER was both measured and observed but the response involved hepatocytes in which the RER had proliferated as well as those which were depleted of RER or had stacks and cisternae that were severely shortened and dispersed. These alterations are discussed in relation to changes in RER after administration of agents causing hepatonecrosis. Possible reasons for the inability of other workers to detect a phenobarbitone-induced increase in RER are also put forward. After subcellular fractionation and corection for centrifugation losses into the 9500 g pellet, using the microsomal marker cytochrome P-450, phenobarbitone-induced increase in total ER was substantially less than that found by morphometric analysis. This indicates that during the preparation of microsomes a substantial proportion of intracellular membranes, having different metabolic and synthetic properties to those finally isolated, are discarded and emphasizes the need to exercise care when using microsomal preparations.  相似文献   

18.
G Feldmann  J Y Scoazec  L Racine  D Bernuau 《Enzyme》1992,46(1-3):139-154
It is now well established that hepatocytes are the main liver cells responsible for the synthesis of plasma proteins produced by the liver. That these cells are not specialized in the production of the different plasma proteins is also well established. Presently the point still debated is whether a functional hepatocellular heterogeneity exists for plasma protein synthesis as for many other hepatocyte functions. Several physiological and pathological situations suggest that this heterogeneity takes place in the hepatocytes of two opposite hepatic lobular zones, the periportal and centrilobular zones. However, this zonal difference, which supposes different regulatory mechanisms, must be confirmed by techniques other than the now classical immunocytochemistry or the in situ hybridization technique recently proposed for the demonstration of mRNAs in hepatocytes. Another hepatocellular heterogeneity, the intercellular heterogeneity, which can be observed in the same lobular zone, is more difficult to analyze, but shows that from hepatocyte to hepatocyte a variation exists in the synthesis of a given plasma protein.  相似文献   

19.
M Sch?r  I P Maly  D Sasse 《Histochemistry》1985,83(2):147-151
The livers of 26 adult male and female trout were studied histochemically. G6Pase activity was always found to be heterotopically distributed with a constant maximum in the periportal area. In many cases the glycogen content and the activity of phosphorylase predominated in the periportal zone as well. Maximum activity of glucose-6-phosphate-dehydrogenase and malic enzyme, however, could be demonstrated preferentially in the perivenous area. Lactate dehydrogenase, succinate dehydrogenase, alcohol dehydrogenase, acid phosphatase and beta-glucuronidase were found equally in all liver cells. 3-Hydroxybutyrate dehydrogenase was absent. Thus, the principles of metabolic zonation have been established in trout liver, the architecture of which differs essentially from that of mammals. The course of the terminal afferent and efferent vessels is the decisive factor for the heterotopic localization of functional units rather than the tubular or plate-forming arrangement of the hepatocytes.  相似文献   

20.
Summary The mRNA for rat liver serine dehydratase, a gluconeogenic enzyme, exhibits a circadian rhythm with a maximum at the onset of darkness marking the end of the fasting period and a minimum at the onset of light that marks the end of the feeding period, when rats have free access to food and water.In situ hybridization with an antisense cRNA probe revealed that serine dehydratase mRNA was localized in the periportal area of rat liver parenchyma in the evening, whereas it was scarce in the liver in the morning. The predominant localization of serine dehydratase mRNA in the periportal area also occurred in livers of rats that underwent laparotomy, glucagon and dexamethasone administration, and streptozotocin-induced diabetes mellitus, all of which are known to induce serine dehydratase mRNA levels remarkably. Immunostaining revealed that the localization of serine dehydratase protein agreed with that of succinate dehydrogenase, another enzyme known to be predominant in the periportal zone. Thus, the periportal serine dehydratase gene expression strongly supports the idea of metabolic zonation that gluconeogenesis from amino acids occurs preferentially in the periportal parenchyma of rat liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号