首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously reported the molecular cloning of beta1, 3-galactosyltransferase-V (beta3GalT-V), which catalyzes the transfer of Gal to GlcNAc-based acceptors with a preference for the core3 O-linked glycan GlcNAc(beta1,3)GalNAc structure. Further characterization indicated that the recombinant beta3GalT-V enzyme expressed in Sf9 insect cells also utilized the glycolipid Lc3Cer as an efficient acceptor. Surprisingly, we also found that beta3GalT-V catalyzes the transfer of Gal to the terminal GalNAc unit of the globoside Gb4, thereby synthesizing the glycolipid Gb5, also known as the stage-specific embryonic antigen-3 (SSEA-3). The SSEA-3 synthase activity of beta3GalT-V was confirmed in vivo by stable expression of the human beta3GalT-V gene in F9 mouse teratocarcinoma cells, as detected with the monoclonal antibody MC-631 by flow cytometry analysis and immunostaining of extracted glycolipids. The biological relation between SSEA-3 formation and beta3GalT-V was further documented by showing that F9 cells treated with the differentiation-inducing agent retinoic acid induced the expression of both the SSEA-3 epitope and the endogenous mouse beta3GalT-V gene. This study represents the first example of a glycosyltransferase, which utilizes two kinds of sugar acceptor substrates without requiring any additional modifier molecule.  相似文献   

2.
A novel member of the human CMP-NeuAc:beta-galactoside alpha2, 3-sialyltransferase (ST) subfamily, designated ST3Gal VI, was identified based on BLAST analysis of expressed sequence tags, and a cDNA clone was isolated from a human melanoma line library. The sequence of ST3Gal VI encoded a type II membrane protein with 2 amino acids of cytoplasmic domain, 32 amino acids of transmembrane region, and a large catalytic domain with 297 amino acids; and showed homology to previously cloned ST3Gal III, ST3Gal IV, and ST3Gal V at 34, 38, and 33%, respectively. Extracts from L cells transfected with ST3Gal VI cDNA in a expression vector and a fusion protein with protein A showed an enzyme activity of alpha2, 3-sialyltransferase toward Galbeta1,4GlcNAc structure on glycoproteins and glycolipids. In contrast to ST3Gal III and ST3Gal IV, this enzyme exhibited restricted substrate specificity, i.e. it utilized Galbeta1,4GlcNAc on glycoproteins, and neolactotetraosylceramide and neolactohexaosylceramide, but not lactotetraosylceramide, lactosylceramide, or asialo-GM1. Consequently, these data indicated that this enzyme is involved in the synthesis of sialyl-paragloboside, a precursor of sialyl-Lewis X determinant.  相似文献   

3.
The MUC1 mucin is expressed on the luminal surface of most simple epithelial cells but in carcinomas, especially those of the breast and ovary, MUC1 is upregulated and aberrantly glycosylated. MUC1 contains a large amount of O-linked glycans which, in the mucin expressed by normal mammary epithelial cells, consist mainly of core 2 based structures carrying polylactosamine chains. However, the mucin expressed by breast carcinomas has shorter side-chains, often consisting of sialylated core 1 (Galbeta1-3GalNAc). in situ hybridization of primary breast tissue showed that a sialyltransferase (ST3Gal I), responsible for adding sialic acid to core 1 thereby terminating chain extension, is elevated in primary breast carcinomas when compared to normal or benign tissue. Furthermore, the level of mRNA expression encoding ST3Gal I is correlated to the intensity of staining seen with the antibody SM3, which specifically recognises underglycosylated, tumour associated MUC1. Thus, the aberrant glycosylation of MUC1 seen in breast carcinomas appears to be due, at least in part, to the elevation of ST3Gal I.  相似文献   

4.
5.
BLAST analysis of the human and mouse genome sequence databases using the sequence of the human CMP-sialic acid:beta-galactoside alpha-2,6-sialyltransferase cDNA (hST6Gal I, EC2.4.99.1) as a probe allowed us to identify a putative sialyltransferase gene on chromosome 2. The sequence of the corresponding cDNA was also found as an expressed sequence tag of human brain. This gene contained a 1590 bp open reading frame divided in five exons and the deduced amino-acid sequence didn't correspond to any sialyltransferase already known in other species. Multiple sequence alignment and subsequent phylogenic analysis showed that this new enzyme belonged to the ST6Gal subfamily and shared 48% identity with hST6Gal-I. Consequently, we named this new sialyltransferase ST6Gal II. A construction in pFlag vector transfected in COS-7 cells gave raise to a soluble active form of ST6Gal II. Enzymatic assays indicate that the best acceptor substrate of ST6Gal II was the free disaccharide Galbeta1-4GlcNAc structure whereas ST6Gal I preferred Galbeta1-4GlcNAc-R disaccharide sequence linked to a protein. The alpha2,6-linkage was confirmed by the increase of Sambucus nigra agglutinin-lectin binding to the cell surface of CHO transfected with the cDNA encoding ST6Gal II and by specific sialidases treatment. In addition, the ST6Gal II gene showed a very tissue specific pattern of expression because it was found essentially in brain whereas ST6Gal I gene is ubiquitously expressed.  相似文献   

6.
7.
Sequence information obtained by NH2-terminal sequence analysis of two molecular weight forms (45 and 48 kDa) of the porcine Gal beta 1,3GalNAc alpha 2,3-sialyltransferase was used to clone a full-length cDNA of the enzyme. The cDNA sequence revealed an open reading frame coding for 343 amino acids and a putative domain structure consisting of a short NH2-terminal cytoplasmic domain, a signal-anchor sequence, and a large COOH-terminal catalytic domain. This domain structure was confirmed by construction of a recombinant sialyltransferase in which the cytoplasmic domain and signal-anchor sequence of the enzyme was replaced with the cDNA of insulin signal sequence. Expression of the resulting construct in COS-1 cells produced an active sialyltransferase which was secreted into the medium in soluble form. Comparison of the cDNA sequence of the sialyltransferase with GenBank produced no significant homologies except with the previously described Gal beta 1,4GlcNAc alpha 2,6-sialyltransferase. Although the cDNA sequences of these two enzymes were largely nonhomologous, there was a 45-amino acid sequence which exhibited 65% identity. This observation suggests that the two sialyltransferases were derived, in part, from a common gene.  相似文献   

8.
The substrate specificity of an alpha2,3-sialyltransferase (v-ST3Gal I) obtained from myxoma virus infected RK13 cells has been determined. Like mammalian sialyltransferase enzymes, the viral enzyme contains the characteristic L- and S-sialyl motif sequences in its catalytic domain. Analysis of the deduced amino acid sequences of cloned sialyltransferases suggests that v-ST3Gal I is closely related to mammalian ST3Gal IV. v-ST3Gal I catalyzes the transfer of sialic acid from CMP-NeuAc to Type I (Galbeta1-3GlcNAcbeta) II (Galbeta1-4GlcNAcbeta) and III (Galbeta1-3GalNAcbeta) acceptors. In addition, the viral enzyme also transfers sialic acid to the fucosylated acceptors Lewis(x) and Lewis(a). This substrate specificity is unlike any sialyltransferases described to date, though it is most comparable with those of mammalian ST3Gal IV enzymes. The products from reactions with fucosylated acceptors were characterized by capillary zone electrophoresis, (1)H-NMR spectroscopy and mass spectrometry. They were shown to be 2,3-sialylated Lewis(x) and 2,3-sialylated Lewis(a), respectively.  相似文献   

9.
10.
Sialylation is a biosynthetic process occurring in the trans compartments of the Golgi apparatus. Corresponding evidence is based on localization and biochemical studies of alpha2, 6(N)-sialyltransferase (ST6Gal I) as previously reported. Here we describe generation and characterization of polyclonal antibodies to recombinant rat alpha2,3(N)-sialyltransferase (ST3Gal III) expressed as a soluble enzyme in Sf9 cells or as a beta-galactosidase-human-ST3Gal III fusion- protein from E.coli , respectively. These antibodies were used to localize ST3Gal III by immunofluorescence in various cell lines and rat kidney tissue sections. In transiently transfected COS cells the antibodies directed to soluble sialyltransferase or the sialyltransferase portion of the fusion-protein only recognized the recombinant antigen retained in the endoplasmic reticulum. However, an antibody fraction crossreactive with beta-galactosidase recognized natively expressed ST3Gal III which was found to be colocalized with beta1, 4-galactosyltransferase in the Golgi apparatus of several cultured cell lines. Antibodies affinity purified on the beta- galactosidase-ST3Gal III fusion-protein column derived from both antisera have then been used to localize the enzyme in perfusion-fixed rat kidney sections. We found strong staining of the Golgi apparatus of tubular epithelia and a brush-border-associated staining which colocalized with cytochemical staining of the H+ATPase. This subcellular localization was not observed for ST6Gal I which localized to the Golgi apparatus. These data show colocalization in the Golgi apparatus and different post-Golgi distributions of the two sialyltransferases.   相似文献   

11.
A single amino acid difference in the catalytic domain of two isoforms of the alpha2,6-sialyltransferase (ST6Gal I) leads to differences in their trafficking, processing, and oligomerization. The STtyr isoform is transiently localized in the Golgi and is ultimately cleaved and secreted, whereas the STcys isoform is stably localized in the Golgi and is not cleaved and secreted. The stable localization of STcys is correlated with its enhanced ability to oligomerize. To test the hypothesis that multiple signals can mediate Golgi localization and further evaluate the role of oligomerization in the localization process, we evaluated the effects of individually and simultaneously altering the cytosolic tail and transmembrane region of the STcys isoform. We found that the localization, processing, and oligomerization of STcys were not substantially changed when either the core amino acids of the cytosolic tail were deleted or the sequence and length of the transmembrane region were altered. In contrast, when these changes were made simultaneously, the STcys isoform was converted into a form that was processed, secreted, and weakly oligomerized like STtyr. We propose that STcys oligomerization is a secondary event resulting from its concentration in the Golgi via mechanisms independently mediated by its cytosolic tail and transmembrane region.  相似文献   

12.
13.
14.
15.
The CMP-Neu5Ac:Galbeta1-3GalNAc alpha2,3-sialyltransferase (ST3Gal I, EC 2.4.99.4) is a Golgi membrane-bound type II glycoprotein that catalyses the transfer of sialic acid residues to Galbeta1-3GalNAc disaccharide structures found on O-glycans and glycolipids. In order to gain further insight into the structure/function of this sialyltransferase, we studied protein expression, N-glycan processing and enzymatic activity upon transient expression in the COS-7 cell line of various constructs deleted in the N-terminal portion of the protein sequence. The expressed soluble polypeptides were detected within the cell and in the cell culture media using a specific hST3Gal I monoclonal antibody. The soluble forms of the protein consisting of amino acids 26-340 (hST3-Delta25) and 57-340 (hST3-Delta56) were efficiently secreted and active. In contrast, further deletion of the N-terminal region leading to hST3-Delta76 and hST3-Delta105 gave also rise to various polypeptides that were not active within the transfected cells and not secreted in the cell culture media. The kinetic parameters of the active secreted forms were determined and shown to be in close agreement with those of the recombinant enzyme already described (H. Kitagawa, J.C. Paulson, J. Biol. Chem. 269 (1994)). In addition, the present study demonstrates that the recombinant hST3Gal I polypeptides transiently expressed in COS-7 cells are glycosylated with complex and high mannose type glycans on each of the five potential N-glycosylation sites.  相似文献   

16.
alpha2,6-Sialyltransferase (ST6Gal I) functions in the Golgi to terminally sialylate the N-linked oligosaccharides of glycoproteins. Interestingly, rat ST6Gal I is expressed as two isoforms, STtyr and STcys, that differ by a single amino acid in their catalytic domains. In this article, our goal was to evaluate more carefully possible differences in the catalytic activity and intra-Golgi localization of the two isoforms that had been suggested by earlier work. Using soluble recombinant STtyr and STcys enzymes and three asialoglycoprotein substrates for in vitro analysis, we found that the STcys isoform was somewhat more active than the STtyr isoform. However, we found no differences in isoform substrate choice when these proteins were expressed in Chinese hamster ovary cells, and sialylated substrates were detected by lectin blotting. Immuno-fluorescence and immunoelectron microscopy revealed differences in the relative levels of the isoforms found in the endoplasmic reticulum (ER) and Golgi of transiently expressing cells but similar intra-Golgi localization. STtyr was restricted to the Golgi in most cells, and STcys was found in both the ER and Golgi. The ER localization of STcys was especially pronounced with a C-terminal V5 epitope tag. Ultrastructural and deconvolution studies of immunostained HeLa cells expressing STtyr or STcys showed that within the Golgi both isoforms are found in medial-trans regions. The similar catalytic activities and intra-Golgi localization of the two ST6Gal I isoforms suggest that the particular isoform expressed in specific cells and tissues is not likely to have significant functional consequences.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号