首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arginine residues (5.5 out of 6) of the trypsin-kallikrein inhibitor from bovine organs (Kunitz inhibitor) were selectively modified by reaction with 1, 2-cyclohexanedione in sodium borate buffer, pH 9.0. The modified inhibitor is still highly active in inhibiting trypsin and chymotrypsin at 1:1 inhibitor: enzyme molar ratio and full inhibition was achieved at slightly higher molar ratio. The extent of correct refolding, upon reoxidation, of the reduced, arginine-modified inhibitor is diminished and regeneration of two arginines occurred under the reduction conditions. The stability constants and the standard-free energies of binding of the complexes between trypsin, or chymotrypsin, and the native, the arginine-modified and the reduced and reoxidized arginine-modified inhibitor have been determined from inhibitory assays.  相似文献   

2.
Heparin forms a complex with chymotrypsin which is active towards glutaryl-L-phenylalanine-p-nitroanilide (GPANA) and glutaryl-L-phenylalanine-beta-naphthylamide (GPNA) at pH 7.6. The activity of chymotrypsin towards GPANA at pH 7.6 is enhanced in the presence of heparin. Heparin does not bind at the active site of the enzyme since proflavin is not displaced from the active site of chymotrypsin upon complex formation. The heparin-chymotrypsin complex migrates under basic polyacrylamide disc gel electrophoresis conditions to a position intermediate between heparin and free chymotrypsin. The complex is dissociable under acidic polyacrylamide gel electrophoresis conditions. It is estimated that one to three molecules of heparin can bind to each chymotrypsin molecule on the basis of electrophoretic and enzymic activity data.  相似文献   

3.
A general method is outlined that determines quantitatively the extent to which tight ligand binding to an enzyme active site is facilitated by the adoption of a stabler macromolecular conformation in the complex. The method therefore rejects the general assumption that competitive inhibitor binding to enzyme active sites involves only local (active site) interactions. The procedure involves comparing the unfolding transition state free energies of the free and complexed enzyme from physiological conditions. For the interaction of the transition state analog coformycin with bovine adenosine deaminase we observed that the binding free energy by the physiological enzyme was ~92% due to the assumption of a stabler enzyme conformation in the complex. The significance of these findings in terms of general enzyme catalysis is discussed.  相似文献   

4.
A general method is outlined that determines quantitatively the extent to which tight ligand binding to an enzyme active site is facilitated by the adoption of a stabler macromolecular conformation in the complex. The method therefore rejects the general assumption that competitive inhibitor binding to enzyme active sites involves only local (active site) interactions. The procedure involves comparing the unfolding transition state free energies of the free and complexed enzyme from physiological conditions. For the interaction of the transition state analog coformycin with bovine adenosine deaminase we observed that the binding free energy by the physiological enzyme was approximately 92% due to the assumption of a stabler enzyme conformation in the complex. The significance of these findings in terms of general enzyme catalysis is discussed.  相似文献   

5.
Human alpha 1-antichymotrypsin reacts with bovine chymotrypsin to form an equimolar complex and this reaction is accompanied by the formation of a free, modified form of the inhibitor. Time-course studies, performed on mixtures containing an excess of native inhibitor and kept at 0 degree C or at 25 degrees C, show that the equimolar complex dissociates spontaneously; this dissociation results in the release of inactive modified alpha 1-antichymotrypsin and of some active enzyme, which is able to recycle with active inhibitor in excess. When all the native inhibitor is used up, the released active enzyme degrades the remaining intact complex into intermediate forms. At the endpoint of the reaction only inactive modified inhibitor and some active chymotrypsin remain. Immunochemical data indicate that, in the complex, a steric hindrance of the antigenic determinants of the inhibitor prevents the formation of the precipitate with specific antiserum. Inactive modified inhibitor, which has dissociated from the complex, has retained antigenic determinants of the native alpha 1-antichymotrypsin.  相似文献   

6.
Hexokinase able to bind to mitochondria was purified to homogeneity from rat brain by two successive DEAE-cellulose chromatographic steps. The enzyme lost only the binding ability with almost undetectable change in molecular weight on mild chymotrypsin digestion. The bindable hexokinase was adsorbed to a Phenyl-Sepharose column and eluted with a Lubrol PX gradient, whereas non-bindable hexokinase and yeast hexokinase were not adsorbed under the similar conditions. These results suggest that mitochondria-bindable hexokinase has a hydrophobic region on its surface, which is responsible for the specific interaction with mitochondria.  相似文献   

7.
The effects of various inhibitors of carnitine palmitoyltransferase I were examined in mitochondria from rat liver and skeletal muscle. Three types of inhibitors were used: malonyl-CoA (reversible), tetradecylglycidyl-CoA and three of its analogues (irreversible), and 2-bromopalmitoyl-CoA (essentially irreversible when added with carnitine). Competitive binding studies between labeled and unlabeled ligands together with electrophoretic analysis of sodium dodecyl sulfate-solubilized membranes revealed that in mitochondria from both tissues all of the inhibitors interacted with a single protein. While the binding capacity for inhibitors was similar in liver and muscle (6-8 pmol/mg of mitochondrial protein) the proteins involved were of different monomeric size (Mr 94,000 and 86,000, respectively). Treatment of mitochondria with the detergent, octyl glucoside, yielded a soluble form of carnitine palmitoyltransferase and residual membranes that were devoid of enzyme activity. The solubilized enzyme displayed the same activity regardless of whether carnitine palmitoyltransferase I of the original mitochondria had first been exposed to an irreversible inhibitor or destroyed by chymotrypsin. It eluted as a single activity peak through four purification steps. The final product from both liver and muscle migrated as single band on sodium dodecyl sulfate-polyacrylamide electrophoresis with Mr of approximately 80,000. The data are consistent with the following model. The inhibitor binding protein is carnitine palmitoyltransferase I itself (as opposed to a regulatory subunit). The hepatic monomer is larger than the muscle enzyme. Each inhibitor interacts via its thioester group at the palmitoyl-CoA binding site of the enzyme but also at a second locus that is probably different for each agent and dictated by the chemical substituent on carbon 2. Disruption of the mitochondrial inner membrane by octyl glucoside causes inactivation of carnitine palmitoyltransferase I while releasing carnitine palmitoyltransferase II in active form. The latter is readily purified, is a smaller protein than carnitine palmitoyltransferase I, and has the same molecular weight in liver and muscle. It is insensitive to inhibitors where on or off the mitochondrial membrane.  相似文献   

8.
NMR and ESR spectroscopies have been used to examine the plasma protease inhibitor pregnancy zone protein (PZP) and its complex with chymotrypsin. The 1H NMR spectrum of PZP shows relatively few sharp resonances, which, by analogy with human alpha 2-macroglobulin, probably arise from the proteolytically sensitive bait region. Upon reaction with chymotrypsin to form a 1:1 protease.PZP tetramer complex, there is a large increase in the intensity of sharp resonances due to an increase in mobility of these residues. 35Cl NMR has been used to follow binding of zinc and manganese to apo-PZP. Zinc binding causes a linear broadening of the bulk Cl-, consistent with access of Cl- to PZP-bound zinc. Since zinc in the two highest affinity sites in human alpha 2-macroglobulin causes no broadening of Cl-, it is concluded that these zinc sites are absent from PZP. The mobility of chymotrypsin in the PZP.chymotrypsin complex was examined by covalently attaching a nitroxide spin label at the serine residue in the active site of the enzyme and examining the appearance of the ESR spectrum. The chymotrypsin is rigidly held by the PZP to which it is covalently bound. In an analogous experiment performed previously on alpha 2-macroglobulin, chymotrypsin, bound in the presence of methylamine and therefore largely noncovalently bound, was found to be free to rotate inside the cage formed by the protease inhibitor.  相似文献   

9.
An inhibitor of neutral proteinases was purified from porcine PMN leukocytes by gel filtration on Sephadex G-75 superfine and ion-exchange chromatography on Mono S. Thus an inhibitor preparation with a specific inhibitory activity against chymotrypsin of 10 IU/mg was obtained. In dodecyl sulfate gel electrophoresis a single protein band with an apparent molecular mass of 40 kDa was found under reducing conditions. Under non-reducing conditions the inhibitor forms higher molecular mass aggregates. On isoelectric focusing several protein bands with isoelectric points between pH 7.0 and 7.5 could be separated. The amino-acid composition of the inhibitory protein was determined. The inhibition mechanism was studied and association rate constants (kon) were measured and calculated for the reaction with chymotrypsin as well as leukocyte and pancreatic elastase. In Western blot analysis and in enzyme immunoassay studies crossreactivity between antibodies directed against porcine leukocyte neutral proteinase inhibitor and the corresponding inhibitor of bovine PMN leukocytes could be demonstrated.  相似文献   

10.
An immobilized double-headed inhibitor from Phaseolus vulgaris L. selectively binds the trypsin-like enzyme produced by Streptomyces griseus. Binding takes place at pH 8.0, and at pH 2.0 the protease can be quantitatively released from the complex. Purified by affinity chromatography, the trypsin-like enzyme is homogeneous according to polyacrylamide gel electrophoresis and ultracentrifugation data. Physico-chemical and enzymic properties of the enzyme are identical to those exhibited by the enzyme purified by ion-exchange chromatography. Chymoelastases from Str. griseus as well as the subtilisin-like enzyme do not interact with an immobilized inhibitor. In solution, the inhibitor from P. vulgaris gives a stable ternary complex with bovine trypsin and chymotrypsin, whereas with an immobilized inhibitor the trypsin, if present, tends to displace chymotrypsin in an chymotrypsin inhibitor complex. This evidence suggests that immobilization results in considerable changes in inhibitor properties.  相似文献   

11.
The proton nuclear magnetic resonance signal of the His57-Asp102 hydrogen bonded proton in the charge relay system of chymotrypsinogen A and chymotrypsin Aδ has been monitored to determine the influence of substrate analogues and competitive inhibitors on the electronic state of the active site regions. Borate ion, benzene boronic acid and 2-phenylethylboronic acid, when bound to chymotrypsin at pH 9.5 shift the resonance position of the His-Asp hydrogen bonded proton to ?15.9, ?16.3 and ?17.2 parts per million, respectively. These positions are intermediate between the low pH position in the free enzyme of ?18.0 parts per million and the high pH position of ?14.9 parts per million. The presence of these analogues prevents the His-Asp proton resonance from titrating in the region of pH 6 to 9.5. Similar low field shifts are observed for the hydrogen bonded proton resonance of subtilisin BPN′ when complexed with these boronic acids. The results support the chemical and crystallographic data which show that negatively charged tetrahedral adducts of the boronic acid substrate analogues are formed at the active sites of these enzymes. When combined with similar nuclear magnetic resonance data for the binding of N-acetyl-l-tryptophan to chymotrypsin Aδ, they suggest that a direct interaction occurs between the active site histidine and the atom occupying the leaving group position of the substrate, presumably a hydrogen bond.The His-Asp proton resonance was also monitored in complexes of chymotrypsin Aδ with bovine pancreatic trypsin inhibitor over the pH range 4 to 9. In the complex the low field proton resonance had a field position of ?14.9 parts per million over the pH range 4 to 9 indicating that His57 is in the neutral form, similar to the active enzyme at high pH.  相似文献   

12.
Sporocysts from the protozoan parasite, Eimeria tenella, were isolated, preincubated with sodium taurocholate, and treated with various preparations of pancreatic enzymes. Crude trypsin, crude lipase, and purified alpha-chymotrypsin all could break the shells of sporocysts and release sporozoites. Purified trypsin was much less active than crude trypsin and purified lipase showed no activity at all. Specific inhibitors of chymotrypsin, tosyl-L-phenylalanyl chloromethane, diphenylcarbamyl chloride, and chymostatin inhibited the release of sporozoites by all the enzyme samples, whereas tosyl-L-lysyl chloromethane, a specific inhibitor of trypsin, exerted no inhibitory effect. It is thus postulated that chymotrypsin, not trypsin, is an essential enzyme involved in excystation of E. tenella. Purified chymotrypsin is recommended to replace crude trypsin in the vitro excystation of E. tenella as a likely improved procedure.  相似文献   

13.
Complexation of the small serine protease inhibitor Schistocerca gregaria chymotrypsin inhibitor (SGCI), a member of the pacifastin inhibitor family, with bovine chymotrypsin was followed by NMR spectroscopy. (1)H-(15)N correlation (HSQC) spectra of the inhibitor with increasing amounts of the enzyme reveal tight and specific binding in agreement with biochemical data. Unexpectedly, and unparalleled among canonical serine protease inhibitors, not only residues in the protease-binding loop of the inhibitor, but also some segments of it located spatially far from the substrate-binding cleft of the enzyme were affected by complexation. However, besides changes, some of the dynamical features of the free inhibitor are retained in the complex. Comparison of the free and complexed inhibitor structures revealed that most, but not all, of the observed chemical shift changes can be attributed to minor structural transitions. We suggest that the classical 'scaffold + binding loop' model of canonical inhibitors might not be fully valid for the inhibitor family studied. In our view, this feature allows for the emergence of both taxon-specific and nontaxon-specific inhibitors in this group of small proteins.  相似文献   

14.
An off-lattice dynamic Monte Carlo (MC) method is used to investigate the conformational dynamics of chymotrypsin inhibitor 2 (CI2) and subtilisin in both free and complex forms over two time windows, referring to short and long time scales. The conformational dynamics of backbone bonds analysed from several independent trajectories reveal that: Both the inhibitor and the enzyme are restricted in their bond rotations, excluding a few bonds, upon binding; the effect being greatest for the loop regions, and for the inhibitor. A cooperativity in the near-neighbor bond rotations are observed on both time scales, whereas the cooperative rotations of the bonds far along the sequence appear only in the long time window, and the latter time window is where most of the interactions between the inhibitor and the enzyme are observed. Upon binding, the cooperatively rotating parts of the inhibitor and the enzyme are readjusted compared to their free forms, and new correlations appear. The binding loop, although it is the closest contact region, is not the only part of the inhibitor involved in the interactions with the enzyme. Loops 3 and 8 and the helices F and G in bound enzyme and the binding loop of the inhibitor contribute at the most to the collective motions of whole structure on the slow time scale and are apparently important for enzyme-inhibitor interactions and function. The results in general provide evidence for the contribution of the loops with cooperative motions to the extensive communication network of the complex.  相似文献   

15.
E A Sergienko  F Jordan 《Biochemistry》2001,40(25):7382-7403
The widely quoted kinetic model for the mechanism of yeast pyruvate decarboxylase (YPDC, EC 4.1.1.1), an enzyme subject to substrate activation, is based on data for the wild-type enzyme under optimal experimental conditions. The major feature of the model is the obligatory binding of substrate in the regulatory site prior to substrate binding at the catalytic site. The activated monomer would complete the cycle by irreversible decarboxylation of the substrate and product (acetaldehyde) release. Our recent kinetic studies of YPDC variants substituted at positions D28 and E477 at the active center necessitate some modification of the mechanism. It was found that enzyme without substrate activation apparently is still catalytically competent. Further, substrate-dependent inhibition of D28-substituted variants leads to an enzyme form with nonzero activity at full saturation, requiring a second major branch point in the mechanism. Kinetic data for the E477Q variant suggest that three consecutive substrate binding steps may be needed to release product acetaldehyde, unlikely if YPDC monomer is the minimal catalytic unit with only two binding sites for substrate. A model to account for all kinetic observations involves a functional dimer operating through alternation of active sites. In the context of this mechanism, roles are suggested for the active center acid-base groups D28, E477, H114, and H115. The results underline once more the enormous importance that both aromatic rings of the thiamin diphosphate, rather than only the thiazolium ring, have in catalysis, a fact little appreciated prior to the availability of the 3-dimensional structure of these enzymes.  相似文献   

16.
Factor IX is the zymogen of the serine protease factor IXa involved in blood coagulation. In addition to a catalytic domain homologous to the chymotrypsin family, it has Ca2+, phospholipid, and factor VIIIa binding regions needed for full biologic activity. We isolated a nonfunctional factor IX protein designated factor IXEagle Rock (IXER) from a patient with hemophilia B. The variant protein is indistinguishable from normal factor IX (IXN) in its migration on sodium dodecyl sulfate-gel electrophoresis, isoelectric point in urea, carbohydrate content and distribution, number of gamma-carboxyglutamic acid residues, and beta-OH aspartic acid content, and in its binding to an anti-IXN monoclonal antibody which has been shown previously to inhibit the interaction of factor VIIIa with factor IXaN. Further, IXER is cleaved to yield a factor IXa-like molecule by factor XIa/Ca2+ at a rate similar to that observed for IXN. However, in contrast to IXaN, IXaER does not bind to antithrombin-III (specific inhibitor of IXaN) and does not catalyze the activation of factor X (substrate) to factor Xa. To identify the mutation in IXER, all eight exons of IXN and IXER gene were amplified by the polymerase chain reaction technique and cloned. A single point mutation (G----T) which results in the replacement of Val for Gly363 in the catalytic domain of IXER was identified. Gly363 in factor IXa corresponds to the universally conserved Gly193 in the active site sequence of the chymotrypsin serine protease family. X-ray crystallographic data in the literature demonstrate a critical role of this Gly in stabilizing the active conformation of chymotrypsin/trypsin in two major ways: 1) in the formation of the substrate binding site; and 2) in the development of the oxyanion hole. Our computer structural data support a concept that the Gly363----Val change prevents the development of the active site conformation in factor IXa such that the substrate binding site and the oxyanion hole are not formed in the mutated enzyme.  相似文献   

17.
Association constants, enthalpies, and stoichiometries of Bowman-Birk soybean inhibitor for trypsin and alpha-chymotrypsin were measured in the pH range 4-8 at 25 degrees, 0.01 M Ca2+. The results are quoted in terms of moles of protease active sites, from active site titration. Enthalpies were obtained from calorimetry. The inhibitor was modified by carboxyl group modification, and by tryptic and chymotryptic attack. Association thermodynamics and stoichiometries of the modified inhibitors with both proteases were also determined. There is one independent site for each protease on the inhibitor protein. Modification decreases association to some extent, but does not appear to change stoichiometry or protease binding site independency. In the pH 4 region the association enthalpies are endothermic, of the order 6 kcal/mol for both trypsin and chymotrypsin. With increasing pH, the enthalpies decrease and become exothermic at pH 8 for chymotrypsin. Positive entropies, 50 cal mol-1 deg-1, occur at pH 4-5. They decrease as pH increases, but are always positive in sign. The observed to accompany the overall reaction, such as H+ transfer steps. The enthalpies and entropies probably compensate over the pH range 4-8, with a characteristic temperature of 390 plus or minus 30 degrees K. Estimates were made of the macromolecular Coulomb charge products in inhibitor-protease interaction. These range from about +5 to -60, over pH range 4-8, depending on the protease. Although intermolecular Coulombic forces cannot be easily delineated at the specific side chain level, they may operate at the macromolecule level.  相似文献   

18.
Abstract

An off-lattice dynamic Monte Carlo (MC) method is used to investigate the conformational dynamics of chymotrypsin inhibitor 2 (CI2) and subtilisin in both free and complex forms over two time windows, referring to short and long time scales. The conformational dynamics of backbone bonds analysed from several independent trajectories reveal that: Both the inhibitor and the enzyme are restricted in their bond rotations, excluding a few bonds, upon binding; the effect being greatest for the loop regions, and for the inhibitor. A cooperativity in the near-neighbor bond rotations are observed on both time scales, whereas the cooperative rotations of the bonds far along the sequence appear only in the long time window, and the latter time window is where most of the interactions between the inhibitor and the enzyme are observed. Upon binding, the cooperatively rotating parts of the inhibitor and the enzyme are readjusted compared to their free forms, and new correlations appear. The binding loop, although it is the closest contact region, is not the only part of the inhibitor involved in the interactions with the enzyme. Loops 3 and 8 and the helices F and G in bound enzyme and the binding loop of the inhibitor contribute at the most to the collective motions of whole structure on the slow time scale and are apparently important for enzyme-inhibitor interactions and function. The results in general provide evidence for the contribution of the loops with cooperative motions to the extensive communication network of the complex.  相似文献   

19.
Limited chymotryptic cleavage of the α subunits in the solubilized ATPase from Streptococcus faecalis is accompanied by loss of membrane binding capacity (Abrams, A., Morris, D., Jensen, C. (1976) Biochem. 15, 5560). To obtain evidence that the α chains might function directly in membrane attachment we compared the effect of chymotrypsin on the soluble and membrane-bound enzyme. Using a low level of chymotrypsin the soluble ATPase was quantitatively converted to a catalytically active form in which the 55000 dalton α chains were shortened by approximately 2000 daltons. However, at 80 fold higher levels of chymotrypsin the ATPase in a reconstituted ATPase-membrane complex was completely unaffected. Protection from chymotryptic attack appeared to be membrane specific since the soluble ATPase was not protected by addition of massive amounts of bovine serum albumin. The total and specific immunity to chymotrypsin conferred by membrane binding indicates that chymotrypsin-sensitive α chain “tails” are closely associated with or buried in the membrane. These findings support the view that the α chains are involved directly in membrane attachment.  相似文献   

20.
N Shimamoto  C W Wu 《Biochemistry》1980,19(5):842-848
A non-steady-state kinetic method has been developed to observe the initiation of long RNA chains by Escherichia coli RNA polymerase without the enzyme turnover. This method was used to determine the order of binding of the first two nucleotides to the enzyme in RNA synthesis with the first two nucleotides to the enzyme in RNA synthesis with poly(dA-dT) as the template. It was shown that initiator [ATP, uridyly(3'-5')adenosine, or adenyly(3'-5')uridylyl-(3'-5')adenosine] binds first to the enzyme-template complex, followed by UTP binding. The concentration dependence of UTP incorporation into the initiation complex suggests that more than one UTP molecule may bind to the enzyme-DNA complex during the initiation process. Comparison of the kinetic parameters derived from these studies with those obtained under steady-state conditions indicates that the steps involving binding of initiator or UTP during initiation cannot be rate limiting in the poly(dA-dT)-directed RNA synthesis. The non-steady-state technique also provides a method for active-site titration of RNA polymerase. The results show that only 36 +/- 9% of the enzyme molecules are active in a RNA polymerase preparation of high purity and specific activity. In addition, the minimal length of poly(dA-dT) involved in RNA synthesis by one RNA polymerase molecule was estimated to be approximately 500 base pairs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号