首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
1. Hemorrhagic toxin was isolated from Agkistrodon bilineatus (Common cantil) venom using a three-step purification procedure to obtain 32.8 mg of purified hemorrhagic toxin from 700 mg of crude venom. 2. The purified toxin was homogeneous by disc polyacrylamide gel electrophoresis at pH 8.3, and by isoelectric focusing. 3. Hemorrhagic toxin possessed lethal, hemorrhagic and proteolytic activities. These activities of this toxin were inhibited by ethylenediaminetetraacetic acid (EDTA) and ethyleneglycol-bis-(beta-aminoethylether)N,N'-tetraacetic acid (EGTA), but not by cysteine or soybean trypsin inhibitor (SBTI). 4. Its molecular weight was approximately 48 kDa and the isoelectric point was 4.2. 5. Purified preparation hydrolyzed the Asn(3)--Gln(4), His(10)--Leu(11), Ala(14)--Leu(15), Tyr(16)--Leu(17), Arg(22)--Gly(23) and Phe(24)--Phe(25) bonds of oxidized insulin B. chain. 6. The A alpha chain of fibrinogen was first split and B beta chain was cleaved later by this toxin. 7. Hemorrhagic toxin contains 1 mol of zinc and 2 mol of calcium per mol of protein.  相似文献   

2.
Hemorrhagic factors a and b were isolated from Trimeresurus mucrosquamatus venom by Sephadex G-100, CM-Sephadex C-50 and DEAE-Sephacel column chromatographies. The hemorrhagic factors were homogeneous, as established by a single band on acrylamide gel electrophoresis, isoelectric focusing and sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. Molecular weights of 15 000 and 27 000 were found for hemorrhagic factors a and b, respectively. Factor a possesses proteolytic activity hydrolyzing the His(10)-Leu(11), Tyr(16)-Leu(17) and Arg(22)-Gly(23) bonds of oxidized insulin B chain, whereas, factor b hydrolyzed only the Ala(14)-Leu(15) bond. Hemorrhagic activity of these hemorrhagic factors was inhibited by ethylenediaminetetraacetic acid, 1,10-phenanthroline or p-chloromercuribenzoate, but not by soybean trypsin inhibitor or diisopropyl fluorophosphate. The hemorrhagic factors were injected into the skin of the back of albino rabbits, and the minimum hemorrhagic dose of factors a and b was 1.7 and 2.3 micrograms, respectively. These purified hemorrhagic factors were not lethal at 15 micrograms/g in mice. Factor a hydrolyzed the B beta chain of fibrinogen, while factor b hydrolyzed the A alpha chain. Hemorrhagic factor a was shown to differ immunologically from factor b. Factors a and b produced systemic hemorrhage in internal organs such as the heart and stomach of mice. Moreover, factor b produced hemorrhage in the liver.  相似文献   

3.
Hemorrhagic factors a and b were isolated from Trimeresurus mucrosquamatus venom by Sephadex G-100, CM-Sephadex C-50 and DEAE-Sephacel column chromatographies. The hemorrhagic factors were homogeneous, as established by a single band on acrylamide gel electrophoresis, isoelectric focusing and sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. Molecular weights of 15 000 and 27 000 were found for hemorrhagic factors a and b, respectively. Factor a possesses proteolytic activity hydrolyzing the His(10)-Leu(11), Tyr(16)-Leu(17) and Arg(22)-Gly(23) bonds of oxidized insulin B chain, whereas, factor b hydrolyzed only the Ala(14)-Leu(15) bond. Hemorrhagic activity of these hemorrhagic factors was inhibited by ethylenediaminetetraacetic acid, 1,10-phenanthroline or p-chloromercuribenzoate, but not by soybean trypsin inhibitor or diisopropyl fluorophosphate. The hemorrhagic factors were injected into the skin of the back of albino rabbits, and the minimum hemorrhagic dose of factors a and b was 1.7 and 2.3 μg, respectively. These purified hemorrhagic factors were not lethal at 15 μg/g in mice. Factor a hydrolyzed the Bβ chain of fibrinogen, while factor b hydrolyzed the Aα chain. Hemorrhagic factor a was shown to differ immunologically from factor b. Factors a and b produced systemic hemorrhage in internal organs such as the heart and stomach of mice. Moreover, factor b produced hemorrhage in the liver.  相似文献   

4.
T W Willis  A T Tu 《Biochemistry》1988,27(13):4769-4777
Crotalus atrox venom contains a variety of proteases which render fibrinogen incoagulable and solubilize fibrin. One of these proteases was purified by using ion-exchange and gel permeation liquid chromatography. The protease, called atroxase, consists of a single nonglycosylated polypeptide chain with a molecular weight of 23,500 and an isoelectric point of pH 9.6. Amino acid analysis indicates atroxase to contain 206 residues with no sulfhydryl groups. Metal analysis found zinc and potassium at 1 mol/mol of protein, and calcium at 0.3 mol/mol of protein. Proteolytic activity is inhibited by ethylenediaminetetraacetate and alpha 2-macroglobulin. Maximal proteolytic activity occurs at pH 9.0 and 55 degrees C. Proteolytic specificity, using oxidized insulin B chain, is similar to that of several hemorrhagic toxins found within the same venom, yet atroxase shows no hemorrhagic activity and exhibits low lethality when tested on Swiss Webster mice. Atroxase, an A alpha, B beta fibrinogenase, cleaves the A alpha chain of fibrinogen first followed by the B beta chain and shows no effect on the gamma chain. The nonspecific action of the enzyme results in the extensive hydrolysis of fibrinogen which releases a variety of fibrinopeptides. Fibrin solubilization appears to occur primarily from the hydrolysis of alpha-polymer and unpolymerized alpha and beta chains. Although crude venom induces platelet aggregation, atroxase demonstrated no ability to induce or inhibit aggregation.  相似文献   

5.
Hemorrhagic factor II (LHF-II) was isolated from Lachesis muta muta (Bushmaster snake) venom using column chromatographies on Sephadex G-100, CM-Sepharose CL-6B and two cycles on Sephadex G-50. This preparation was devoid of phospholipase A2 as well as of the enzymes active on arginine synthetic substrates (TAME and BAPNA) which are present in the crude venom. LHF-II was homogeneous by SDS-polyacrylamide gel electrophoresis, immunodiffusion and immunoelectrophoresis. Also, a single symmetrical boundary with a value of 2.59 S was obtained by ultracentrifugation. LHF-II contains 180 amino acid residues, has a molecular weight of 22,300, and an isoelectric point of 6.6. It contains one gatom zinc and two gatoms calcium per mol protein. The hemorrhagic factor possesses proteolytic activity toward various substrates such as, casein, dimethylcasein, hide powder azure, fibrinogen and fibrin. It hydrolyzes selectively the A alpha-chain of fibrinogen, leaving the B beta- and gamma-chains unaffected. LHF-II is activated by Ca2+ and inhibited by Zn2+. The hemorrhagic as well as the proteinase activity is inhibited by cysteine and by metal chelators such as EDTA, EGTA and 1,10-phenanthroline. Inhibitors of serine proteinases such as phenylmethanesulfonyl fluoride (PMSF) and soybean trypsin inhibitor (SBTI) have no effect on the hemorrhagic factor.  相似文献   

6.
Three hemorrhagic toxins with proteolytic activity were isolated from the venom of Crotalus ruber ruber (red rattlesnake). Molecular weights of HT-1, HT-2, and HT-3 were 60,000, 25,000, and 25,500, respectively. Although HT-3 was a basic protein, HT-1 and HT-2 were slightly acidic proteins. Total amino acid residues were 482,207, and 221 for HT-1, HT-2, and HT-3, respectively. Protease activity of all the toxins was inhibited in the presence of EDTA or o-phenanthroline, suggesting that the toxins are metalloproteins. Analyses for various metals by inductively coupled plasma-atomic emission spectrometry indicated that sodium, potassium, zinc, and calcium atoms were present in significant quantities. With all three toxins, there was roughly 1 mol of zinc to 1 mol of protein; the results for calcium were not consistent. All three hemorrhagic toxins degraded the A alpha chain of fibrinogen, while HT-1 also degraded the B beta chain. Although fibrinogen was degraded by the three toxins, no clots were observed, indicating that the proteolytic specificities of the three toxins were different from those of thrombin. The hemorrhagic toxins increased creatine kinase activity in mice serum, indicating muscle damage, which was substantiated by histological examination.  相似文献   

7.
1. A hemorrhagic protease I (HP-I) was isolated from Calloselasma rhodostoma venom by Sephadex G-75, DEAE-Sephacel and Q-Sepharose column chromatographies. 2. Homogeneity was established by the formation of a single band in acrylamide gel electrophoresis. 3. HP-I has a molecular weight of 34,800 and possesses hemorrhagic and proteolytic activities. Both activities are inhibited by ethylenediaminetetraacetic acid (EDTA), 1,10-phenanthroline, ethyleneglycolbis-(beta-aminoethyl ether) N,N'-tetraacetic acid (EGTA), and tetraethylenepentamine (TEP). However neither soybean trypsin inhibitor nor p-chlorobenzoic acid (PCMB) were found to have any effect. 4. The toxin contains 311 amino acid residues and exhibits an isoelectric point of 4.5. 5. The A alpha chain of fibrinogen was cleaved first, followed later by the B beta chain.  相似文献   

8.
1. Hemorrhagic toxin (Ac1-proteinase) was isolated from the venom of Agkistrodon acutus (Formosa) and the zinc content was determined (1.15 mol/mol protein). The results we extensively compared with hemorrhagic toxin e of Crotalus atrox venom (U.S.A.). Comparable results were obtained for zinc content, hemorrhagic and proteolytic activities for native hemorrhagic toxins from two different venoms. It is of interest that the zinc content of hemorrhagic toxins is identical even though the venoms are obtained from snakes inhabiting totally different continents. 2. Zinc content, hemorrhagic and proteolytic activities were compared before and after the removal of zinc. It was found that both hemorrhagic and proteolytic activities disappeared upon removal of the zinc. 3. Zinc content of all hemorrhagic toxins with proteolytic activity reported so far were also compared and it is concluded that regardless of their geographic origin, zinc is present in venom hemorrhagic toxins on a unimolar basis. 4. When zinc is removed there is a drastic change in the low-frequency region of the Raman spectrum suggesting the presence of a zinc ligand co-ordination. The decrease of alpha-helical content and increase of random coil are reflected in the amide I and III bands of Raman spectroscopy after the removal of zinc. Increase of random coil and the loss of zinc are probably responsible for the loss of hemorrhagic and proteolytic activities.  相似文献   

9.
J B Bjarnason  A T Tu 《Biochemistry》1978,17(16):3395-3404
Five previously unknown hemorrhagic proteins, designated hemorrhagic toxins a,b,c,d, and e, were isolated from the venom of the western diamondback rattlesnake (Crotalus atrox). Molecular weights of hemorrhagic toxins a-e were determined to be 68 000, 24 000, 24 000, 24 000, and 25 700, respectively, by sodium dodecyl sulfate-phosphate gel electrophoresis using various polyacrylamide gel concentrations. Amino acid composition showed a total of 636, 200, 213, 214, and 219 amino acids for hemorrhagic toxins a-e, respectively. All the hemorrhagic toxins were found to lose their hemorrhagic activities with the metal chelators ethylenediaminetetraacetic acid and 1, 10-phenanthroline. All the hemorrhagic toxins were found to contain approximately 1 mol of zinc/mol of toxin, and they were all demonstrated to be proteolytic when dimethylcasein and dimethylhemoglobin were used as substrates. When zinc was removed from hemorrhagic toxin e with 1,10-phenanthroline, both both the proteolytic and hemorrhagic activities were equally inhibited. When the apohemorrhagic toxin e thus produced was incubated with zinc, the hemorrhagic and proteolytic activities were regenerated to the same extent. CD, UV, and Raman spectroscopy were used to study the structure of native hemorrhagin toxin e as well as the structural changes caused by zinc removal. From CD spectroscopy the native toxin was estimated to consist of 23% alpha helix, 6% beta structure, and 71% random-coil conformation. When over 90% of the zinc was removed, the alpha-helix content dropped from 23 to 7%.  相似文献   

10.
Hemorrhage, necrosis and edema are some of the effects often observed following snake bites. This paper reports studies on the isolation and biological properties of hemorrhagic toxin from Crotalus viridis viridis (Prairie rattlesnake) venom. A hemorrhagic toxin was isolated from C. v. viridis venom by Sephadex G-50, DEAE-Sephacel and Q-Sepharose column chromatographies.The hemorrhagic toxin from C. v. viridis venom was shown to be homogenous as demonstrated by a single band on polyacrylamide gel electrophoresis and immunodiffusion. Its molecular weight was approximately 54,000 dallons, and it contained 471 amino acid residues. The toxin possessed hemorrhagic activity with a minimum hemorrhagic dose (MHD) of 0.11 μ g, and hydrolytic activity on dimethylcasein, casein, azocasein, azoalbumin, azocoll and hide powder azure. Hemorrhagic and casein hydrolytic activities were inhibited by EDTA, o-phenanthroline or dithiothreitol. The toxin contained 1 mole of zinc per mole of protein and zinc is essential for both hemorrhagic and proteolytic activities. Hemorrhagic toxin possessed hydrolytic activity on the B-chain of insulin, which cleaves His(5)-Leu(6), His(10)-Leu(11), Ala(14)-Leu(15), Tyr(16)-Leu(17) and Phe(24)-Phe(25) bonds. This toxin also hydrolyzed Aα and Bβ chains of fibrinogen. Intramuscular injections of hemorrhagic toxin caused an increase of creatine phosphokinase activity in mice serum from 50.3 mU/ml to 1133 mU/ml. A toxin isolated from C. v. viridis venom was shown to have strong hemorrhagic activity. Partial characterization is reported for this major hemorrhagic toxin in C. v. viridis venom.  相似文献   

11.
1. Two toxins, Tokaratoxin-1 (TT-1) and Tokaratoxin-2 (TT-2), were isolated from the venom of Trimeresurus tokarensis using gel filtration on a Sephadex G-100 column, followed by chromatography on DEAE-Sephacel and carboxymethyl-cellulose. TT-1 possessed both hemorrhagic and proteolytic activities. However, TT-2 did not show hemorrhagic activity. 2. Homogeneity was established by the formation of a single band in acrylamide gel electrophoresis, isoelectric focusing and SDS-PAGE. 3. Molecular weights of TT-1 and TT-2 were 71,000 and 25,400, respectively. Although TT-2 is a basic protein, TT-1 is an acidic protein. 4. Biological activities of TT-1 and TT-2 were inhibited by EDTA, EGTA and o-phenanthroline, suggesting that the toxins are metalloproteins. Atomic absorption analyses indicated that TT-1 contains 2.79 mol Ca/mol protein and TT-2 contains 1.04 mol Ca/mol protein and 1.07 mol Zn/mol protein, respectively. 5. The two toxins degraded the A alpha and B beta chains of fibrinogen. 6. TT-1 induced necrosis in addition to its hemorrhagic activity while TT-2 induced necrosis only.  相似文献   

12.
Serious clinical problems such as hemorrhage, edema and tissue necrosis are observed following viperid envenoming. A proteinase (VLH2) was isolated from Vipera lebetina by combination of two chromatographic steps of gel filtration on Sephadex G-75 followed by DEAE Sephadex A-50. This acidic proteinase, with a molecular mass of about 55 kDa and isoelectric point of 5.4, displayed a fibrinogenolytic and hemorrhagic activities. VLH2 hydrolyses rapidly the Aα-chain of fibrinogen, followed, more slowly, by the Bβ-chain, leaving the γ-chain unaffected. The proteolytic and hemorrhagic activities of VLH2 were inhibited by EDTA, EGTA and 1–10 phenanthroline. However, these activities were not affected by AEBSF, Aprotinine, and E64, suggesting that VLH2 is a metalloproteinase with an α-fibrinogenase activity, requiring calcium and zinc for its activity. The enzyme VLH2 did not have proteolytic activity towards extracellular components gelatin, laminin and fibronectin. The hemorrhagic metalloproteinase VLH2 has a myotoxic activity, as determined by serum CK level and histological observation of muscle tissue. Furthermore, VLH2 is able to induce apoptosis of C2C12 myotubes. These results indicate that VLH2 is implicated in the local and systemic bleeding, contributing thus in the toxicity of V. lebetina venom.  相似文献   

13.
A fibrinolytic enzyme present in Agkistrodon contortrix contortrix (southern copperhead) venom has been purified by combination of CM-cellulose chromatography, molecular sieve chromatography on Sephadex G-100, p-aminobenzamidine-agarose affinity chromatography, and DEAE-cellulose chromatography. The enzyme, fibrolase, has a molecular weight of 23,000-24,000 and an isoelectric point of pH 6.8. It is composed of approximately 200 amino acids, possesses a blocked NH2-terminus and contains little or no carbohydrate. The enzyme shows no activity against a series of chromogenic p-nitroanilide substrates and is not inhibited by diisopropylfluorophosphate, soybean trypsin inhibitor, Trasylol, or p-chloromercuribenzoate. However, the enzyme is a metalloproteinase since it is inhibited by EDTA, o-phenanthroline and tetraethylenepentamine (a specific zinc chelator). Metal analysis revealed 1 mol of zinc/mol of protein. Study of cleavage site preference of the fibrinolytic enzyme using the oxidized B chain of insulin revealed that specificity is similar to other snake venom metalloproteinases with cleavage primarily directed to an X-Leu bond. Interestingly, unlike some other venom fibrinolytic metalloproteinases, fibrolase exhibits little if any hemorrhagic activity. The enzyme exhibits direct fibrinolytic activity and does not activate plasminogen. In vitro studies revealed that fibrolase dissolves clots made either from purified fibrinogen or from whole blood.  相似文献   

14.
An extracellular lethal toxin produced by Aeromonas salmonicida was purified by fast-protein liquid ion-exchange chromatography. The toxin is composed of glycerophospholipid:cholesterol acyltransferase (GCAT) (molecular mass, 25 kilodaltons) aggregated with lipopolysaccharide (LPS), the GCAT/LPS complex having a molecular mass of about 2,000 kilodaltons, estimated by gel filtration chromatography. The toxin is lethal for Atlantic salmon (Salmo salar L.) at a concentration of 0.045 micrograms of protein per g of body weight. The toxin is a hemolysin (T-lysin, active on fish erythrocytes), leukocytolysin, and cytotoxin. Antiserum to the purified toxin neutralized the lethal toxicity of the crude extracellular toxins, indicating this toxin to be the major lethal factor produced by A. salmonicida. In the crude extracellular products, small amounts of free GCAT were also present. This has been purified, and its activities and properties have been compared with those of the GCAT/LPS complex. The presence of LPS did not influence the GCAT activity of the enzyme with egg yolk or phosphatidylcholine (lecithin) as a substrate, but the specific hemolytic activity and lethal toxicity was about eightfold higher in the complexed form. Furthermore, the free GCAT was more susceptible to proteolytic and heat inactivation than was the GCAT/LPS complex. Recombination of LPS (phenol extracted from extracellular products of A. salmonicida) with free GCAT enhanced the hemolytic activity, lethal toxicity, and heat stability of the latter but did not influence its lecithinase activity. In native polyacrylamide gel electrophoresis, the GCAT/LPS complex and the recombined GCAT-LPS both showed a high-molecular-mass band which did not enter the gel, while the free GCAT produced a single band with low molecular mass. In isoelectric focusing gels, the GCAT/LPS and recombined GCAT-LPS produced a nonfocusing smear with pIs from pI 5.0 to 5.8, while the free GCAT produced a single band with pI 4.3. These data show that free GCAT can combine with LPS to produce a high-molecular-mass complex with enhanced toxicity and heat stability compared with those of free GCAT, similar to the preexisting GCAT/LPS complex, and indicate that the LPS moiety of the toxin plays an active role in toxicity.  相似文献   

15.
A lethal toxin was isolated from the venom of Heloderma h. horridum by gel filtration and ion-exchange chromatography. Molecular weight of the purified toxin was determined to be 28 kDa under reducing and nonreducing conditions. Biological activity, assayed by i.v. routes of injection, shows an LD50 for this preparation of 0.135 micrograms/g. Additionally, the toxin possesses an inhibitory effect on direct electrical stimulation of the isolated mouse hemi-diaphragm. However, neither hemorrhagic nor hemolytic activities were detected. Phospholipase A2 activity, proteolytic activity and arginine esterolytic activity were absent. The amino acid composition of the lethal toxin and the NH2-terminal sequence up to residue number 33 were determined. Neither show similarities to other components from H. h. horridum venom.  相似文献   

16.
1. Two hemorrhagic toxins of mol. wt 27,000 (B1) and 27,500 (B2) and pI 9.8 and 5.2 respectively were isolated from Crotalus basiliscus venom. 2. The two proteinases did not cross-react antigenically. 3. Both toxins caused hemorrhage in mice and each was capable of hydrolyzing hide power azure, casein, collagen and fibrin. 4. B1 hydrolyzed the A alpha, B beta and gamma chains of fibrinogen. B2 hydrolyzed the A alpha and B beta chains of fibrinogen, but not the gamma chain. 5. Both proteinases inactivated guinea pig complement.  相似文献   

17.
1. Ac1-Proteinase from the venom of Agkistrodon acutus was isolated in a homogeneous form by a previously published method. 2. Ac1-Proteinase possessed lethal, hemorrhagic, caseinolytic, azocaseinolytic, azoalbumin hydrolytic and hide powder azure hydrolytic activities. 3. The toxin also hydrolyzed the oxidized B chain of insulin and fibrinogen. The cleavage sites in the oxidized B chain of insulin were identified as Ala(14)-Leu(15) and Tyr(16)-Leu(17). The A alpha chain of fibrinogen was digested. 4. Biological properties of Ac1-Proteinase were investigated further and are reported in this paper.  相似文献   

18.
经SephadexG-75凝胶过滤,QAE-SephadexA-50和CM-SephadexC-25离子交换层析的步骤,从湖南产尖吻蝮(Dienagkistrodonacutus)蛇毒中纯化出两个出血毒素(DaHT-1和DaHT-2).SDS-PAGE测得分子量均为23.5kD,IEF-PAGE测得等电点分别为5.6和5.2,两者具有相似的氨基酸组成,其中酸性氨基酸(Asx,Glx)分别占23%和24%,DaHT-1和DaHT-2的最小出血剂量(MHD)分别为0.5μg和0.8μg。都具蛋白水解酶活性,无对TAME,BAEE的水解活性和PLA2酶活性.两者的蛋白水解酶活力与出血活性并非正相关.DaHT-1和DaHT-2的最适温度分别为35℃和40℃,最适pH为6-9,对热均不稳定,温度高于60℃活性完全丧失。金属离子的分析显示每摩尔毒素蛋白约含0.5mol的Zn,1mol的Ca,较多的Na、K、Mg,不含Co。  相似文献   

19.
Ac3-Proteinase from the venom of Agkistrodon acutus was isolated in a homogeneous form by a previously published method. Ac3-Proteinase possessed lethal, hemorrhagic, caseinolytic, azocaseinolytic, dimethylcaseinolytic and hide powder azure hydrolytic activities. These activities were inhibited when Ac3-Proteinase was incubated with the metal chelators ethylenediaminetetraacetic acid (EDTA), ethyleneglycol-bis-(beta-aminoethyl ether)-N,N'-tetraacetic acid (EGTA), tetraethylenepentamine (TEP), 1,10-phenanthroline, phosphoramidon or beta-mercaptoethanol. The toxin also hydrolyzed the oxidized A and B chains of both insulin and fibrinogen. The cleavage sites in the oxidized B chain of insulin were identified as His(10)-Leu(11), Ala(14)-Leu(15), Tyr(16)-Leu(17) and Phe(24)-Phe(25). The A alpha chain of fibrinogen was digested first followed by hydrolysis of the B beta chain. Toxicological and biochemical properties of Ac3-Proteinase were investigated further and are reported in this paper.  相似文献   

20.
1. Hemorrhagic metalloproteinase (HMP) was isolated by gel filtration on a Sephadex G-100 (superfine) and affinity chromatography on agarose HPS-7. 2. Hemorrhagic metalloproteinase is a glycoprotein with mol. wt 56.3 kDa. It contains 1 zinc atom per molecule of protein. 3. Hemorrhagic metalloproteinase hydrolyzes casein, fibrinogen and splits the insulin B chain at positions Ala14-Leu15, Tyr16-Leu17, His10-Leu11. It digests A alpha chain of fibrinogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号