首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Numerous studies describe stimulation and/or enhancement oflarval settlement by distance chemoreception in response tochemical factors emitted by conspecific adults, host and preyspecies and microbial films. However, active upstream trackingof odor plumes, needed in order to locate specific, spatiallylimited settlement sites, has thus far received little scientificattention. This study examines host location in flow and stillwater by larvae of the parasitic barnacle Heterosaccus dollfusi,which inhabits the brachyuran crab Charybdis longicollis. Experimentsincluded analysis of larval motion patterns under four conditions:still water, in flow, in still water with waterborne host metabolitesand in flow with host metabolites. Our results show that H.dollfusi larvae are capable of actively and effectively locatingtheir host in still water and in flow, using chemotaxis andrheotaxis and modifying their swimming pattern, direction, velocity,determination and turning rate to accommodate efficient navigationin changing environmental conditions.  相似文献   

2.
Many benthic marine invertebrate animals release larvae that are dispersed by ocean currents. These larvae swim and can respond to environmental factors such as chemical cues. However, larvae are so small (generally 0.01-1 mm) that they are often assumed to be passive particles whose trajectories are determined by the motion of the water in which they are riding. Therefore, marine larvae are useful model organisms to study the more general question of how the locomotion of very small animals in complex, variable natural habitats is affected by the motion of the fluid (water or air) around them. Studying larval locomotion under conditions of water flow encountered in nature is challenging because measuring the behavior of an individual microscopic organism requires high magnification imaging that is difficult to do in the field. The purpose of this article is to synthesize in one place the various approaches that we have been using to address the technical challenges of studying the locomotion of microscopic larvae in realistic ambient flow. The steps in our process include: (1) measuring water flow in the field; (2) mimicking realistic water movement in laboratory flumes to measure larval scale fluctuations in velocity of flow and concentration of chemical cues; (3) mimicking fine scale temporal patterns of larval encounters with a dissolved chemical cue to record larval responses; (4) using individual-based models to put larvae back into the larger scale environmental flow to determine trajectories; and (5) mimicking fine scale spatial and temporal patterns of larval encounters with water velocities and shear to determine the instantaneous forces on larvae. We illustrate these techniques using examples from our ongoing research on the settlement of larvae onto fouling communities and from our published work on settlement of larvae onto coral reefs. These examples show that water velocities and concentrations of chemical cues encountered by microscopic organisms can fluctuate in fractions of a second and vary over scales of less than a millimeter.  相似文献   

3.
Why Life Histories Evolve Differently in the Sea   总被引:3,自引:3,他引:0  
Marine life histories differ from terrestrial life historiesbecause seawater is denser and more viscous than air, becausedesiccation is not a problem for organisms in water, and becausefood is abundant in suspension and solution. (1) Mating andcompetition for paternity in the sea often differs. Female gametesare often spawned freely. Passively dispersed spermatophorescould in some cases provide single paternity to an entire clutchof offspring. Penises of sessile animals reach far for copulation.There are no pollinators. (2) In many clades of benthic marineanimals, greater dispersal of offspring is associated with largeadult size, and greater parental care of offspring and reducedplanktonic larval periods are associated with small adult size.(3) Many benthic marine animals are colonies with modular construction,and these also commonly brood embryos and have short-lived larvae,in contrast to related solitary forms. (4) Unlike dispersalof terrestrial animals, larval dispersal of marine animals isoften obligate with sexual reproduction and often includes aprecompetent period during which larvae cannot settle at goodsites. Unlike terrestrial seeds, marine larvae have no clearadaptations for dispersal, often grow during dispersal, andoften leave bad sites. Feeding planktonic larvae are commonamong marine animals and rare among other aquatic animals, perhapsbecause of persistent aquatic routes between habitable sitesfor marine animals. Peculiarities in marine life histories mayinfluence many aspects of evolution in the sea. Closely relatedsedentary marine animals can differ greatly in larval dispersalwith consequences for recruitment to populations, genetic exchangebetween benthic populations, adaptation to local conditions,sex allocation, interaction with kin, speciation, and extinction.  相似文献   

4.
Knowledge of the temporal and spatial abundance of invertebrate larvae is critical to understanding the dispersal capabilities and recruitment potential of marine and aquatic organisms. Traditional microscopic analyses are time-consuming and difficult given the diversity of larval species and a frequent lack of discriminating morphological characteristics. Here, we describe a sensitive rRNA targeted sandwich hybridization assay (SHA) that uses oligonucleotide probes to detect and enumerate the larvae of invasive green crabs (Carcinus maenas), native blue mussels (Mytilus), native barnacles (Balanus) and polychaetes (Osedax and Ophelia) that occur in the Monterey Bay National Marine Sanctuary, California. Laboratory-based assays demonstrate specificity, high sensitivity, and a quantitative response to cultured samples from three of the target organisms. Oligonucleotide probes were then printed in arrays on nitrocellulose membranes and deployed in our robotic Environmental Sample Processor (ESP) to detect larvae in situ and autonomously. We demonstrate that the SHA-detection method and ESP robot can be used for near real-time, in situ detection of larval species in the marine environment.  相似文献   

5.
We investigated the dispersal of larvae of benthic invertebratesand tested the hypothesis that larvae behaved as if they werepassive particles. Observations were made off Duck, North Carolina,USA during a period of wind driven downwelling at the coastand an intrusion of estuarine water from the Chesapeake Bay.The plume of estuarine water (salinity < 30 psu) was strongestat the shoreward stations in the more northern transects. Winddriven shoreward surface flow converged at the seaward edgeof the plume and downwelled. Offshore flow was present belowthe thermocline and caused the thermocline to bend downwardand contact the bottom at between 5 and 10 km offshore. In the zooplankton samples, we enumerated 33 taxa of larvae(17 taxa of bivalve veligers, 10 taxa of gastropod veligers,and 6 taxa of polychaete larvae). Using cluster analysis, larvaewere separated into groups with similar patterns of distribution.If larvae were acting as passive particles then we hypothesizedthat: 1) Their distribution should remain tied to a water massand 2) around a convergence or divergence, there should be nochange in larval concentration. The distributions of larvaein Clusters 1, 4, 5, and 6 were consistent with the hypothesisthat they were acting as passive particles. Larvae in Clusters2 and 3, however, did not appear to be acting as passive particles.Larvae in Cluster 2 did not remain tied to a water mass. Theyentered the study area in the estuarine plume waters, but within20 km they were nearly absent from the plume water and werefound seaward of the plume and at greater depth. Larvae in Cluster3 were most abundant in areas of converging currents where theshoreward flowing surface waters downwelled at the plume frontor against the shore. We hypothesized that larvae of organisms which as adults livein the intertidal or shallow subtidal zones would have morenearshore distributions than the larvae of adults that are broadlydistributed across the shelf. We compared the depth of the habitatof the adult bivalves from which the bivalve larvae in the differentclusters were derived. The results were consistent with thehypothesis; larvae with distributions closer to shore tendedto come from adults found at shallower depths or in the intertidalzone.  相似文献   

6.
This study examined whether ecoparasitic larval Unionicola foili exhibited a sex bias when infecting laboratory populations of the host insect Chironomus tentans and whether an association with male or female midges increased the likelihood of larval mites returning to the aquatic habitat. When laboratory populations of C. tentans were exposed to larval U. foili, there was a higher prevalence of mites among female hosts at emergence (17 of 30 males vs. 25 of 30 females infected by mites). However, there was no significant difference in the distribution or abundance of larvae among infected male (mean = 2.3 larvae per host) and female (mean = 2.6 larvae per host) midges. Larval mites parasitizing both male and female chironomids were more likely to return to water than could be expected by chance. Mite larvae infesting female C. tentans were more likely to return to water when female hosts deposited egg masses in water, suggesting that oviposition plays an important role in cueing larvae parasitizing female midges to detach. The mechanism responsible for increasing the likelihood that mites parasitizing male hosts return to water remains unclear. Future studies will address the possibility of parasite-mediated changes in host behavior.  相似文献   

7.
Densely overgrown pre-alpine permanent aquatic habitats are overrun by the mosquito Coquillettidia (Coquillettidia) richiardii (Ficalbi) (Diptera: Culicidae). The invasive potential of this insect depends on the ability of its larvae to survive on the roots of emergent aquatic macrophytes. In order to characterize this particular ecological niche, which is out of reach for a direct investigation, environmental factors likely to influence the interaction between larvae and host plant roots were investigated using a simplified laboratory microcosm. Environmental light and oxygen concentrations appeared to be the main factors influencing larval attachment, a dark anoxic environment being significantly more favourable. Carbon dioxide produced by the root system of the host plant appeared to be an attractive cue for larval attachment. Knowledge of the hierarchy of these environmental factors may enable us to better understand the ecological traits of larval C. richiardii in deep water. With regard to their management, new ecological data are required to develop a long-term control strategy against Coquillettidia mosquitoes.  相似文献   

8.
There is a growing body of evidence that many hymenopteran parasitoids make use of olfaction as the primary mechanism to detect and locate hosts. In this study, a series of bioassays was conducted to investigate the orientation behaviour of the gum leaf skeletonizer larval parasitoid Cotesia urabae Austin & Allen (Hymenoptera: Braconidae) in both Y‐tube and four‐arm olfactometers. In a Y‐tube olfactometer, male C. urabae were attracted only to virgin conspecific females. Host‐plant leaves, damaged leaves, host larvae, and host larvae feeding on leaves were highly attractive to female C. urabae, whereas host frass and conspecific males were not. The multiple‐comparison bioassay conducted in a four‐arm olfactometer clearly indicates that C. urabae females were significantly more attracted to the host Uraba lugens Walker (Lepidoptera: Nolidae) larvae feeding on Eucalyptus fastigata H Deane & Maiden (Myrtaceae) leaves than to any other of the odour sources tested. The results of this study show that C. urabae individuals responded to chemical cues specific to the host plant and target host insect, and support hypotheses that unreliable cues are not utilized for host location by specific natural enemies.  相似文献   

9.
Nutrient-rich, turbid river plumes that are common to large lakes and coastal marine ecosystems have been hypothesized to benefit survival of fish during early life stages by increasing food availability and (or) reducing vulnerability to visual predators. However, evidence that river plumes truly benefit the recruitment process remains meager for both freshwater and marine fishes. Here, we use genotype assignment between juvenile and larval yellow perch (Perca flavescens) from western Lake Erie to estimate and compare recruitment to the age-0 juvenile stage for larvae residing inside the highly turbid, south-shore Maumee River plume versus those occupying the less turbid, more northerly Detroit River plume. Bayesian genotype assignment of a mixed assemblage of juvenile (age-0) yellow perch to putative larval source populations established that recruitment of larvae was higher from the turbid Maumee River plume than for the less turbid Detroit River plume during 2006 and 2007, but not in 2008. Our findings add to the growing evidence that turbid river plumes can indeed enhance survival of fish larvae to recruited life stages, and also demonstrate how novel population genetic analyses of early life stages can contribute to determining critical early life stage processes in the fish recruitment process.  相似文献   

10.
Like most benthic marine organisms, coral reef fishes produce larvae that traverse open ocean waters before settling and metamorphosing into juveniles. Where larvae are transported and how they survive is a central question in marine and fisheries ecology. While there is increasing success in modelling potential larval trajectories, our knowledge of the physical and biological processes contributing to larval survivorship during dispersal remains relatively poor. Mesoscale eddies (MEs) are ubiquitous throughout the world''s oceans and their propagation is often accompanied by upwelling and increased productivity. Enhanced production suggests that eddies may serve as important habitat for the larval stages of marine organisms, yet there is a lack of empirical data on the growth rates of larvae associated with these eddies. During three cruises in the Straits of Florida, we sampled larval fishes inside and outside five cyclonic MEs. Otolith microstructure analysis revealed that four of five species of reef fish examined had consistently faster growth inside these eddies. Because increased larval growth often leads to higher survivorship, larvae that encounter MEs during transit are more likely to contribute to reef populations. Successful dispersal in oligotrophic waters may rely on larval encounter with such oceanographic features.  相似文献   

11.
When attacked by herbivores, plants produce toxic secondary metabolites that function as direct defenses, as well as indirect defenses that attract and reward predators of the offending herbivores. These indirect defenses include both nutritive rewards such as extra floral nectar, as well as informational rewards, such as the production and release of volatile compounds that betray the location of feeding herbivores to predators. Herbivory of Nicotiana attenuata by the tobacco hornworm (Manduca larvae) alters the volatile profiles of both the plant and larval headspace. Herbivory-elicited specific changes in the volatile profiles are detected by arthropod predators of Manduca larvae. The known predators that perceive volatile cues induced by Manduca herbivory of N. attenuata are insects that target Manduca at early developmental stages, when the larvae are still small; large, late-instar larvae may have outgrown these predation risks. However, here we offer evidence that branched chain aliphatic acids derived from the digestion of plant O-acyl sugars from trichomes may betray Manduca larvae to lizard predators during late developmental stages as well.  相似文献   

12.
The dispersal behavior of Choristoneura rosaceana (Harris) (Lepidoptera: Tortricidae) first instar larvae was studied in the laboratory. The objectives were to investigate the proximal factors influencing larval dispersal and to establish whether a correspondence exists between larval host acceptance and performance. A dispersal bioassay was validated by demonstrating the presence of a positive correlation between larval host acceptance in the laboratory and in the field. Larval age and family origin, as well as host species attributes were shown to influence larval dispersal rates. Seasonal changes in host plants slightly changed the rank order of larval host acceptance. Leaf texture and the availability of refuges on host plants seemed to be important factors influencing the rate of larval dispersal. Plant odor appeared to be used by the larvae to locate leaves. Nitrogen content of plant species corresponded to larval dispersal rates, but the cause of this association is unclear. Larval dispersal did not match host suitabilities as measured by larval performance. The relationship between host preference and suitability in the obliquebanded leafroller is discussed in an ecological and evolutionary perspective.  相似文献   

13.
Wheat bulb fly (WBF), Delia coarctata Fallén (Diptera: Anthomyiidae), larvae are a subterranean pest of wheat [Triticum aestivum L. (Poaceae)] and other cereals. Larvae locate host plants through chemotaxis and chemokinesis, utilising the primary plant metabolite carbon dioxide as a ‘search trigger’ and Poaceae‐specific secondary plant metabolites exuded from the plant. The aim of this study was to use arena bioassays to identify further compounds involved in the host‐finding process. The larval behavioural response to four concentrations of syringic and vanillic acid, chemical constituents of host‐plant exudates, were tested. Analysis of the final resting position of D. coarctata larvae by the Rayleigh test of uniformity identified attraction to wheat seedling exudates and to both compounds at the lowest concentrations tested, with syringic acid concentrations being most attractive at 0.1 mg l?1 and vanillic acid being most attractive at 0.001 mg l?1. These results add more detail to the subterranean chemical ecology of this species, allowing a behavioural sequence for host‐plant orientation by WBF larvae to be proposed.  相似文献   

14.
As larvae of marine invertebrates age, their response to settlement cues can change. This change can have significant consequences to both the ecology of these organisms, and to their response to antifouling coatings. This study examines how larval age affects the settlement response of larvae to two naturally derived settlement inhibitors, non-polar extracts from the algae Delisea pulchra and Dilophus marginatus, the former of which contains compounds that are in commercial development as antifoulants. Two species of marine invertebrates with non-feeding larvae were investigated: the bryozoans Watersipora subtorquata and Bugula neritina. Larval age strongly affected larval settlement, with older larvae settling at much higher rates than younger larvae. Despite having strong, inhibitory effects on young larvae, the non-polar extracts did not inhibit the settlement of older larvae to the same degree for both species studied. The results show that the effects of ecologically realistic settlement inhibitors are highly dependent on larval age. Given that the age of settling larvae is likely to be variable in the field, such age specific variation in settlement response of larvae may have important consequences for host-epibiont interactions in natural communities.  相似文献   

15.
Inflow of matter and organisms may strongly affect the local density and diversity of organisms. This effect is particularly evident on shores where organisms with aquatic larval stages enter the terrestrial food web. The identities of such trophic links are not easily estimated as spiders, a dominant group of shoreline predator, have external digestion. We compared trophic links and the prey diversity of spiders on different shore types along the Baltic Sea: on open shores and on shores with a reed belt bordering the water. A priori, we hypothesized that the physical structure of the shoreline reduces the flow between ecosystem and the subsidies across the sea–land interface. To circumvent the lack of morphologically detectable remains of spider prey, we used a combination of stable isotope and molecular gut content analyses. The two tools used for diet analysis revealed complementary information on spider diets. The stable isotope analysis indicated that spiders on open shores had a marine signal of carbon isotopes, while spiders on reedy shores had a terrestrial signal. The molecular analysis revealed a diverse array of dipteran and lepidopteran prey, where spiders on open and reedy shores shared a similar diet with a comparable proportion of chironomids, the larvae of which live in the marine system. Comparing the methods suggests that differences in isotope composition of the two spider groups occurred because of differences in the chironomid diets: as larvae, chironomids of reedy shores likely fed on terrestrial detritus and acquired a terrestrial isotope signature, while chironomids of open shores utilized an algal diet and acquired a marine isotope signature. Our results illustrate how different methods of diet reconstruction may shed light on complementary aspects of nutrient transfer. Overall, they reveal that reed belts can reduce connectivity between habitats, but also function as a source of food for predators.  相似文献   

16.
二化螟绒茧蜂对二化螟及其寄主植物挥发物的趋性反应   总被引:14,自引:4,他引:14  
利用Y-型嗅觉仪研究了二化螟绒茧蜂Cotesia chilonis对寄主植物(水稻或茭白)、二化螟Chilo suppressalis幼虫、虫粪及虫害苗挥发物的行为反应。健康植株、二化螟幼虫和虫粪的挥发物对二化螟绒茧蜂具有显著引诱作用。在虫害苗与健康苗挥发物之间,二化螟绒茧蜂显著地偏好虫害苗,但当去除虫害苗中的幼虫和虫粪后,寄生蜂对去虫苗与机械损伤苗的选择无显著差异;在虫害苗与有虫健康苗之间,寄生蜂显著趋向虫害苗,表明虫害苗本身释放的挥发物对二化螟绒茧蜂引诱作用与机械损伤苗无显著差异,但与二化螟幼虫或虫粪挥发物之间可能具有协同增效作用。水稻苗经机械损伤或损伤后以二化螟幼虫唾液处理,其挥发物对二化螟绒茧蜂的引诱作用无显著改变。二化螟绒茧蜂对不同为害程度水稻挥发物的选择无显著差异。二化螟绒茧蜂对两种寄主植物的健康苗、虫害苗、取食两种植物的幼虫及虫粪的挥发物的选择无显著差异。结果表明,二化螟绒茧蜂栖境定位和寄主选择过程中所利用的挥发物主要来自寄主植物、二化螟幼虫和虫粪以及虫害苗与幼虫和虫粪的协同作用。  相似文献   

17.
The diet of the larvae of the sciaenid fish Leiostomus xanthuruscollected within the Mississippi River plume differs from thatof larvae collected in adjacent Gulf of Mexico shelf waters.Larvae collected in plume water had eaten twice as many foodorganisms as had larvae collected in shelf waters. Larvae collectedwithin the plume had eaten mostly small food organisms (tintinnids,copepod nauplii, pelecypod veligers and invertebrate eggs),whereas larvae collected in shelf waters had eaten mostly largerfood items (copepodite and adult copepods). Differences in theabundance of food organisms in and differences in the photicenvironments of these water masses may account for the differencesin diet.  相似文献   

18.
Many marine organisms have pelagic larvae, and these are often important agents of dispersal. The larval phase and the multiple paternity that occur in marine gastropods such as Strombus gigas are crucial for the success of this species throughout the Caribbean Sea. To analyse these factors, we developed eight microsatellite loci specific to S. gigas. On the same set of individuals, the microsatellite loci exhibited a greater level of polymorphism than previously studied allozyme markers and thus, will permit fine‐scale analysis and larval pool studies.  相似文献   

19.
The behavior of reef fish larvae, equipped with a complex toolbox of sensory apparatus, has become a central issue in understanding their transport in the ocean. In this study pelagic reef fish larvae were monitored using an unmanned open-ocean tracking device, the drifting in-situ chamber (DISC), deployed sequentially in oceanic waters and in reef-born odor plumes propagating offshore with the ebb flow. A total of 83 larvae of two taxonomic groups of the families Pomacentridae and Apogonidae were observed in the two water masses around One Tree Island, southern Great Barrier Reef. The study provides the first in-situ evidence that pelagic reef fish larvae discriminate reef odor and respond by changing their swimming speed and direction. It concludes that reef fish larvae smell the presence of coral reefs from several kilometers offshore and this odor is a primary component of their navigational system and activates other directional sensory cues. The two families expressed differences in their response that could be adapted to maintain a position close to the reef. In particular, damselfish larvae embedded in the odor plume detected the location of the reef crest and swam westward and parallel to shore on both sides of the island. This study underlines the critical importance of in situ Lagrangian observations to provide unique information on larval fish behavioral decisions. From an ecological perspective the central role of olfactory signals in marine population connectivity raises concerns about the effects of pollution and acidification of oceans, which can alter chemical cues and olfactory responses.  相似文献   

20.
Many marine organisms spend the early part of their lives as larvae suspended in the water column before metamorphosing into benthic reproductive adults. Metamorphosis does not occur until a larva has become competent to respond to appropriate stimuli and after a suitable habitat for the young juvenile has been encountered. The gaseous neurotransmitter nitric oxide is thought to be important in the regulation of metamorphosis by holding the organism in the larval state. We have investigated expression of the neuronal nitric oxide synthase (nNOS) gene in larval and metamorphosing individuals of the marine mud snail Ilyanassa obsoleta. Our results indicate that nNOS is expressed at constant levels throughout larval development. In contrast, expression of nNOS decreases markedly during the first 24 h of metamorphosis. Our observations support previous findings that demonstrate that nitric oxide is present in larvae though competence. The decrease in nNOS gene expression that occurs during metamorphosis corresponds with a previously described reduction in nNOS activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号