首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Water, sodium and proteins renal excretion in with collodion Page's method hypertensive rats is compared with that of same Wistar strained control rats. Blood pressure of treated animals (n = 16) is 193.1 Hg mm (138 in control rats). Urinary flow increases from 19.5 to 33.7 ml/24 h (+ 72.8%), sodium excretion from 29.6 to 37.5 mg/24 h (+ 26.7%) and total proteins excretion from 23.5 to 63 mg/24 h (+ 169%. This data are correlated with the renal cortex morphological changes with photon and electron microscope. Severe damages are seen in Bowman's capsule and in glomerular copruscules, especially at the epithelial layer level. Important proteic pools occur within tubular lumen. Proximal tubular epithelium seems normal. On the other hand, distal tubular epithelium seriously scales. So, important water, sodium and proteins excretion increase in our experimental hypertension model can be explained. It is also discussed about functional and structural modifications analogy in our model's rats and in spontaneously hypertensive rats (SHB).  相似文献   

2.
The relative importance of systemic volume, concentration, and pressure signals in sodium homeostasis was investigated by intravenous infusion of isotonic (IsoLoad) or hypertonic (HyperLoad) saline at a rate (1 micromol Na(+) x kg(-1) x s(-1)), similar to the rate of postprandial sodium absorption. IsoLoad decreased plasma vasopressin (-35%) and plasma ANG II (-77%) and increased renal sodium excretion (95-fold), arterial blood pressure (DeltaBP; +6 mmHg), and heart rate (HR; +36%). HyperLoad caused similar changes in plasma ANG II and sodium excretion, but augmented vasopressin (12-fold) and doubled DeltaBP (+12 mm Hg) without changing HR. IsoLoad during vasopressin clamping (constant vasopressin infusion) caused comparable natriuresis at augmented DeltaBP (+14 mm Hg), but constant HR. Thus vasopressin abolished the Bainbridge reflex. IsoLoad during normotensive angiotensin clamping (enalaprilate plus constant angiotensin infusion) caused marginal natriuresis (9% of unclamped response) despite augmented DeltaBP (+14 mm Hg). Cessation of angiotensin infusion during IsoLoad immediately decreased BP (-13 mm Hg) and increased glomerular filtration rate by 20% and sodium excretion by 45-fold. The results suggest that fading of ANG II is the cause of acute "volume-expansion" natriuresis, that physiological ANG II deviations override the effects of modest systemic blood pressure changes, and that endocrine rather than hemodynamic mechanisms are the pivot of normal sodium homeostasis.  相似文献   

3.
We tested whether the responsiveness of the kidney to basal renal sympathetic nerve activity (RSNA) or hypoxia-induced reflex increases in RSNA, is enhanced in angiotensin-dependent hypertension in rabbits. Mean arterial pressure, measured in conscious rabbits, was similarly increased (+16 +/- 3 mmHg) 4 wk after clipping the left (n = 6) or right (n = 5) renal artery or commencing a subcutaneous ANG II infusion (n = 9) but was not increased after sham surgery (n = 10). Under pentobarbital sodium anesthesia, reflex increases in RSNA (51 +/- 7%) and whole body norepinephrine spillover (90 +/- 17%), and the reductions in glomerular filtration rate (-27 +/- 5%), urine flow (-43 +/- 7%), sodium excretion (-40 +/- 7%), and renal cortical perfusion (-7 +/- 3%) produced by hypoxia were similar in normotensive and hypertensive groups. Hypoxia-induced increases in renal norepinephrine spillover tended to be less in hypertensive (1.1 +/- 0.5 ng/min) than normotensive (3.7 +/- 1.2 ng/min) rabbits, but basal overflow of endogenous and exogenous dihydroxyphenolglycol was greater. Renal plasma renin activity (PRA) overflow increased less in hypertensive (22 +/- 29 ng/min) than normotensive rabbits (253 +/- 88 ng/min) during hypoxia. Acute renal denervation did not alter renal hemodynamics or excretory function but reduced renal PRA overflow. Renal vascular and excretory responses to reflex increases in RSNA induced by hypoxia are relatively normal in angiotensin-dependent hypertension, possibly due to the combined effects of reduced neural norepinephrine release and increased postjunctional reactivity. In contrast, neurally mediated renin release is attenuated. These findings do not support the hypothesis that enhanced neural control of renal function contributes to maintenance of hypertension associated with activation of the renin-angiotensin system.  相似文献   

4.
In neonatal pigs, the feeding-induced stimulation of protein synthesis in skeletal muscle, but not liver, can be reproduced by insulin infusion when essential amino acids and glucose are maintained at fasting levels. In the present study, 7- and 26-day-old pigs were studied during 1) fasting, 2) hyperinsulinemic-euglycemic-euaminoacidemic clamps, 3) euinsulinemic-euglycemic-hyperaminoacidemic clamps, and 4) hyperinsulinemic-euglycemic-hyperaminoacidemic clamps. Amino acids were clamped using a new amino acid mixture enriched in nonessential amino acids. Tissue protein synthesis was measured using a flooding dose of L-[4-(3)H]phenylalanine. In 7-day-old pigs, insulin infusion alone increased protein synthesis in various skeletal muscles (from +35 to +64%), with equivalent contribution of myofibrillar and sarcoplasmic proteins, as well as cardiac muscle (+50%), skin (+34%), and spleen (+26%). Amino acid infusion alone increased protein synthesis in skeletal muscles (from +28 to +50%), also with equivalent contribution of myofibrillar and sarcoplasmic proteins, as well as liver (+27%), pancreas (+28%), and kidney (+10%). An elevation of both insulin and amino acids did not have an additive effect. Similar qualitative results were obtained in 26-day-old pigs, but the magnitude of the stimulation of protein synthesis by insulin and/or amino acids was lower. The results suggest that, in the neonate, the stimulation of protein synthesis by feeding is mediated by either amino acids or insulin in most tissues; however, the feeding-induced stimulation of protein synthesis in skeletal muscle is uniquely regulated by both insulin and amino acids.  相似文献   

5.
The present study was designed to investigate the possible role of dopaminergic mechanisms in contributing to the pathogenesis of hypertension in salt sensitive patients. Eighteen patients with essential hypertension were studied while under a diet ranging from low salt to high salt, which enabled a classification in "salt-sensitive" (SS) and "nonsalt-sensitive" (NSS) groups based on a tentative criteria of a 10% increase of mean blood pressure with high salt diet. The SS patients showed reduced urinary excretion of sodium as compared with that from NSS patients. Urinary norepinephrine excretion in all patients with salt loading was suppressed, but urinary excretion of epinephrine showed a tendency to increase in SS patients after salt loading. Urinary excretion of dopamine increased in NSS patients with salt loading, but did not change in SS patients. To further evaluate the role of dopaminergic mechanisms in salt-sensitive hypertension, metoclopramide, a dopamine antagonist, was injected intravenously to all patients. With salt loading, plasma aldosterone levels increased after injection of metoclopramide in NSS patients, but did not change in SS patients. These results suggest that salt-sensitive hypertension is modulated by dopaminergic activity, which in turn is attenuated in SS patients. Decreased dopaminergic activity induced sodium retention both by a direct effect on the kidney as well as indirectly via relatively increased aldosterone secretion. Both mechanisms would help to increase intravascular volume and blood pressure in salt-sensitive hypertension.  相似文献   

6.
To define the role of the renal eicosanoid system in sustaining renal homeostasis in hypertension, we investigated the alterations in urinary excretions of 6-keto-prostaglandin F1 alpha (6-keto-PGF1 alpha), a stable metabolite of vasodepressor prostacyclin, and thromboxane B2 (TXB2), a stable metabolite of vasoconstrictor TXA2, when norepinephrine was continuously infused for 90 min in hypertensive (n = 13) and normotensive subjects (n = 14). There was no difference in plasma norepinephrine concentration after the infusion between the hypertensive and the normotensive subjects. Moreover, the percent changes in renal vascular resistance elicited by norepinephrine in the hypertensives were equal to those of the normotensive subjects. In the normotensive subjects, the norepinephrine infusion significantly increased urinary 6-keto-PGF1 alpha excretion and decreased urinary excretion of TX, both of which are beneficial for sustaining renal function. In fact, the greater the production of renal 6-keto-PGF1 alpha was, the less the reduction of renal blood flow and urinary sodium excretion was. In the hypertensive subjects, however, these normal responses of the renal eicosanoid system, seen in the normotensives, were abolished; urinary 6-keto-PGF1 alpha was unaltered and thromboxane generation was rather increased. Thus, the renal eicosanoid system dysfunctions in hypertensive subjects when the renal circulation is challenged by norepinephrine. These abnormal responses are likely to cause sodium retention and could contribute, in part, to the hypertensive mechanism in patients with essential hypertension.  相似文献   

7.
The stimulatory effects of an infusion of amino acids on glomerular filtration rate has previously been used to measure renal functional reserve and detect glomerular hyperfiltration. Thirty four patients with mild to moderate essential hypertension and seemingly normal renal function and 22 healthy controls were given infusions of amino acids to investigate whether renal functional reserve is reduced in essential hypertension and to detect patients at risk of renal damage. Although basal creatinine clearance increased after the infusion of amino acids in the controls (mean 27·9 ml/min; 95% confidence interval 18·2 to 37·6), the overall change was lower in the patients (mean 13·4 ml/min; 8·3 to 18·5), 11 of the 34 showing no increase at all. In these 11 non-responders the mean systolic blood pressure was higher than that in the 23 others (178·5 mm Hg v 157 mm Hg, respectively). Mean urinary albumin excretion was abnormal in the patients (93·3 mg/24 h; 44·2 to 142·4); eight of the 11 non-responders had an albumin excretion above the normal range (>20 mg/24 h). In the 11 patients without renal functional reserve a positive correlation was found between basal creatinine clearance and albumin excretion (r=0·695).As consumed renal reserve and albuminuria are markers of glomerular hyperfiltration studying renal function before and after infusion of amino acids can detect hypertensive patients at risk of progressive renal damage.  相似文献   

8.
With dopamine (0.5 microgram/kg/min) infusion into the renal artery of thyroparathyroidectomized dogs, urine output and inorganic phosphate excretion increased significantly (p less than 0.05), but the increase in sodium excretion was low and not statistically significant. However, natriuresis and phosphaturia due to the infusion of dopamine were accelerated more markedly by the pretreatment with phenoxybenzamine. Dopamine was infused into the renal artery indoses too small to affect renal hemodynamics (0.02-0.05 microgram/kg/min) after the treatment with phenoxybenzamine and alprenolol with the result that phosphate and sodium excretion increased significantly (p less than 0.05). The excretion rate of cAMP did not change. This suggests that the effect of dopamine on sodium and phosphate excretion is directly influenced by alpha adrenergic activity in the kidney. The mechanism of natriuresis and phosphaturia by dopamine is, however, independent of changes in parathyroid hormone and the adenyl cyclase-cAMP system.  相似文献   

9.
The hypothesis that natriuresis can be induced by stimulation of gastrointestinal osmoreceptors was tested in eight supine subjects on constant sodium intake (150 mmol NaCl/day). A sodium load equivalent to the amount contained in 10% of measured extracellular volume was administered by a nasogastric tube as isotonic or hypertonic saline (850 mM). In additional experiments, salt loading was replaced by oral water loading (3.5% of total body water). Plasma sodium concentration increased after hypertonic saline (+3.1 +/- 0.7 mM), decreased after water loading (-3.8 +/- 0.8 mM), and remained unchanged after isotonic saline. Oncotic pressure decreased by 9.4 +/- 1.2, 3.7 +/- 1.2, and 10.7 +/- 1.3%, respectively. Isotonic saline induced an increase in renal sodium excretion (104 +/- 15 to 406 +/- 39 micromol/min) that was larger than seen with hypertonic saline (85 +/- 15 to 325 +/- 39 micromol/min) and water loading (88 +/- 11 to 304 +/- 28 micromol/min). Plasma ANG II decreased to 22 +/- 6, 35 +/- 6, and 47 +/- 5% of baseline after isotonic saline, hypertonic saline, and water loading, respectively. Plasma atrial natriuretic peptide (ANP) concentrations and urinary excretion rates of endothelin-1 were unchanged. In conclusion, stimulation of osmoreceptors by intragastric infusion of hypertonic saline is not an important natriuretic stimulus in sodium-replete subjects. The natriuresis after intragastric salt loading was independent of ANP but can be explained by inhibition of the renin-angiotensin system.  相似文献   

10.
The function of innervated and denervated kidney was compared in clearance studies with conscious dogs. The animals were prepared for experiments by unilateral renal denervation and surgical division of the bladder to form two hemibladders enabling separate urine collection from two kidneys. The mean urine flow was 6% higher for the denervated kidney (not significant) while mean differences for osmolar clearance (+ 13%), sodium excretion (+21%) and GFT (+5%) were all significant (P less than 0.05). When corrected to 100 ml GFR, sodium excretion was not significantly higher for the denervated kidney. In most experiments higher sodium excretion on the denefvated side was associated with higher GFR. Thus, contrary to some earlier views, a slight increase in the excretory function which follows denervation of the kidney is demonstrable also in conscious undisturbed animals. The data suggest that increased haemodynamics of the denervated kidney are responsible for higher excretion, but do not exclude a contribution of inhibited tubular reabsorption.  相似文献   

11.
The responses to infusion of nitric oxide synthase substrate (L-arginine 3 mg.kg(-1).min(-1)) and to slow volume expansion (saline 35 ml/kg for 90 min) alone and in combination were investigated in separate experiments. L-Arginine left blood pressure and plasma ANG II unaffected but decreased heart rate (6 +/- 2 beats/min) and urine osmolality, increased glomerular filtration rate (GFR) transiently, and caused sustained increases in sodium excretion (fourfold) and urine flow (0.2 +/- 0.0 to 0.7 +/- 0.1 ml/min). Volume expansion increased arterial blood pressure (102 +/- 3 to 114 +/- 3 mmHg), elevated GFR persistently by 24%, and enhanced sodium excretion to a peak of 251 +/- 31 micromol/min, together with marked increases in urine flow, osmolar and free water clearances, whereas plasma ANG II decreased (8.1 +/- 1.7 to 1.6 +/- 0.3 pg/ml). Combined volume expansion and L-arginine infusion tended to increase arterial blood pressure and increased GFR by 31%, whereas peak sodium excretion was enhanced to 335 +/- 23 micromol/min at plasma ANG II levels of 3.0 +/- 1.1 pg/ml; urine flow and osmolar clearance were increased at constant free water clearance. In conclusion, L-arginine 1) increases sodium excretion, 2) decreases basal urine osmolality, 3) exaggerates the natriuretic response to volume expansion by an average of 50% without persistent changes in GFR, and 4) abolishes the increase in free water clearance normally occurring during volume expansion. Thus L-arginine is a natriuretic substance compatible with a role of nitric oxide in sodium homeostasis, possibly by offsetting/shifting the renal response to sodium excess.  相似文献   

12.
Angiotensins different from ANG II exhibit biological activities, possibly mediated via receptors other than ANG II receptors. We studied the effects of 3-h infusions of ANG III, ANG-(1-7), and ANG IV in doses equimolar to physiological amounts of ANG II (3 pmol. kg-1. min-1), in six men on low-sodium diet (30 mmol/day). The subjects were acutely pretreated with canrenoate and captopril to inhibit aldosterone actions and ANG II synthesis, respectively. ANG II infusion increased plasma angiotensin immunoreactivity to 53 +/- 6 pg/ml (+490%), plasma aldosterone to 342 +/- 38 pg/ml (+109%), and blood pressure by 27%. Glomerular filtration rate decreased by 16%. Concomitantly, clearance of endogenous lithium fell by 66%, and fractional proximal reabsorption of sodium increased from 77 to 92%; absolute proximal reabsorption rate of sodium remained constant. ANG II decreased sodium excretion by 70%, potassium excretion by 50%, and urine flow by 80%, whereas urine osmolality increased. ANG III also increased plasma aldosterone markedly (+45%), however, without measurable changes in angiotensin immunoreactivity, glomerular filtration rate, or renal excretion rates. During vehicle infusion, plasma renin activity decreased markedly ( approximately 700 to approximately 200 mIU/l); only ANG II enhanced this decrease. ANG-(1-7) and ANG IV did not change any of the measured variables persistently. It is concluded that 1) ANG III and ANG IV are cleared much faster from plasma than ANG II, 2) ANG II causes hypofiltration, urinary concentration, and sodium and potassium retention at constant plasma concentrations of vasopressin and atrial natriuretic peptide, and 3) a very small increase in the concentration of ANG III, undetectable by usual techniques, may increase aldosterone secretion substantially.  相似文献   

13.
Sustained hyperglycemia is associated with increased oxidative stress resulting in decreased intrarenal oxygen tension (Po(2)) due to increased oxygen consumption (Qo(2)). Chronic blockade of the main superoxide radicals producing system, the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, normalizes Qo(2) by isolated proximal tubular cells (PTC) and reduces proteinuria in diabetes. The aim was to investigate the effects of acute NADPH oxidase inhibition on tubular Na(+) transport and kidney Po(2) in vivo. Glomerular filtration rate (GFR), renal blood flow (RBF), filtration fraction (FF), Na(+) excretion, fractional Li(+) excretion, and intrarenal Po(2) was measured in control and streptozotocin-diabetic rats during baseline and after acute NADPH oxidase inhibition using apocynin. The effects on tubular transporters were investigated using freshly isolated PTC. GFR was increased in diabetics compared with controls (2.2 ± 0.3 vs. 1.4 ± 0.1 ml·min(-1)·kidney(-1)). RBF was similar in both groups, resulting in increased FF in diabetics. Po(2) was reduced in cortex and medulla in diabetic kidneys compared with controls (34.4 ± 0.7 vs. 42.5 ± 1.2 mmHg and 15.7 ± 1.2 vs. 25.5 ± 2.3 mmHg, respectively). Na(+) excretion was increased in diabetics compared with controls (24.0 ± 4.7 vs. 9.0 ± 2.0 μm·min(-1)·kidney(-1)). In controls, all parameters were unaffected. However, apocynin increased Na(+) excretion (+112%) and decreased fractional lithium reabsorption (-10%) in diabetics, resulting in improved cortical (+14%) and medullary (+28%) Po(2). Qo(2) was higher in PTC isolated from diabetic rats compared with control. Apocynin, dimethylamiloride, and ouabain reduced Qo(2), but the effects of combining apocynin with either dimethylamiloride or ouabain were not additive. In conclusion, NADPH oxidase inhibition reduces tubular Na(+) transport and improves intrarenal Po(2) in diabetes.  相似文献   

14.
Human atrial natriuretic peptide was infused over four hours in three patients with essential hypertension. When the patients had a sodium intake of 200 mmol (mEq) daily an infusion of 0.5 micrograms atrial natriuretic peptide/min caused no significant change in blood pressure, whereas an infusion of 1.0 micrograms/min caused a gradual decrease in blood pressure and an increase in heart rate. After two to three hours of infusion with the higher dose two patients showed a sudden decrease in heart rate, with symptomatic hypotension. When the same patients had an intake of 50 mmol sodium daily their blood pressure was more sensitive to infusion of atrial natriuretic peptide; one patient again developed symptomatic hypotension, this time during an infusion of 0.5 micrograms/min. During all infusions distinct natriuresis occurred irrespective of whether blood pressure was affected. Prolonged, relatively low dose infusions of atrial natriuretic peptide can cause unwanted symptomatic hypotension. The effect on blood pressure is enhanced after sodium depletion, and blood pressure should be monitored carefully during longer infusions of atrial natriuretic peptide in patients with essential hypertension.  相似文献   

15.
The renal and cardiovascular effects of ANF infusion have been examined in separate series of experiments; in conscious instrumented sheep following either hemorrhage (10 mL/kg body weight) or removal of 500 mL of plasma by ultrafiltration. Renal arterial infusion of hANF (99-126) at 50 micrograms/h increased sodium excretion from 99 +/- 30 to 334 +/- 102 (p less than 0.05) in normal animals, and from 77 +/- 31 to 354 +/- 118 mumol/min in hemorrhaged animals. Similarly in sheep following ultrafiltration, cardiac output and stroke volume were reduced by intravenous infusion of ANF (100 micrograms/h), although these effects were less marked than those observed in normal animals. The rapid modulation of natriuretic responses to ANF observed in volume expanded animals is not seen in this model of acute volume depletion suggesting that the mechanism through which the renal response to ANF is modulated in low sodium or volume states is not simply the reverse of that which produces rapid enhancement of response following blood volume expansion.  相似文献   

16.
K P Patel 《Life sciences》1991,48(3):261-267
The relationship between the renal nerves and vasopressin in terms of the natriuretic and diuretic responses to atrial natriuretic factor (ANF--0.25 microgram/kg/min for 15 min), was investigated in unilaterally denervated anesthetized rats before and after the administration of a vasopressin V2 specific antagonist (AVPX)--(40 micrograms/kg bolus followed by 0.4 microgram/kg/min infusion). Administration of the AVPX or ANF did not alter the arterial pressure. Acute renal denervation or AVPX administration independently produced significant increases in sodium and water excretion. ANF infusion by itself produced a greater increase in urine flow and sodium excretion from the denervated kidney compared to the intact kidney before the administration of AVPX. However, after the administration of AVPX renal responses to ANF from the intact kidneys were enhanced such that they were not significantly different from the denervated kidneys. These results suggest that the full physiological response to ANF may be masked by tonic renal nerve activity or antidiuretic actions of vasopressin. Furthermore, since combined renal denervation and AVPX administration does not produce any greater potentiation of the renal responses to ANF than either of these manipulations alone, it is suggested that they may act via a common mechanism, possibly altering activity in the renal nerves.  相似文献   

17.
To investigate the influence of atrial natriuretic factor (ANF) on renal function during mechanical ventilation (MV), we examined the renal and hormonal responses to synthetic human ANF infusion in eight patients during MV with zero (ZEEP) or 10 cmH2O positive end-expiratory pressure (PEEP). Compared with ZEEP, MV with PEEP was associated with a reduction in diuresis (V) from 208 +/- 51 to 68 +/- 11 ml/h (P less than 0.02), in natriuresis (UNa) from 12.4 +/- 3.3 to 6.2 +/- 2.1 mmol/h (P less than 0.02), and in fractional excretion of sodium (FENa) from 1.07 +/- 0.02), 0.21 to 0.67 +/- 0.17% (P less than 0.02) and with an increase in plasma renin activity (PRA) from 4.83 +/- 1.53 to 7.85 +/- 3.02 ng.ml-1.h-1 (P less than 0.05). Plasma ANF levels markedly decreased during PEEP in four patients but showed only minor changes in the other four patients, and mean plasma ANF levels did not change (163 +/- 33 pg/ml during ZEEP and 126 +/- 30 pg/ml during PEEP). Glomerular filtration rate and renal plasma flow were unchanged. Infusion of ANF (5 ng.kg-1.min-1) during PEEP markedly increased V and UNa by 110 +/- 61 and 107 +/- 26%, respectively, whereas PRA decreased from 7.85 +/- 3.02 to 4.40 +/- 1.5 ng.ml-1.min-1 (P less than 0.05). In response to a 10 ng.kg-1.min-1 ANF infusion, V increased to 338 +/- 79 ml/h during ZEEP but only to 134 +/- 45 ml/h during PEEP (P less than 0.02), whereas UNa increased, respectively, to 23.8 +/- 5.3 and 11.3 +/- 3.3 mmol/h (P less than 0.02).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
OBJECTIVE--To assess the changes in sodium excretion and sodium balance after withdrawal of long term nifedipine. DESIGN--Single blind, placebo controlled study in patients receiving fixed sodium and potassium intakes. SETTING--Blood pressure unit of a teaching hospital in south London. PATIENTS--Eight patients with mild to moderate uncomplicated essential hypertension who had been taking nifedipine 20 mg twice daily for at least six weeks. INTERVENTIONS--Withdrawal of nifedipine and replacement with matching placebo for one week. MAIN OUTCOME MEASURES--Urinary sodium excretion and cumulative sodium balance, body weight, plasma atrial natriuretic peptide concentrations, plasma renin activity and aldosterone concentrations, and blood pressure. RESULTS--During nifedipine withdrawal there was a significant reduction in urinary sodium excretion (day 1: -62.7 mmol/24 h; 95% confidence interval -90.3 to -35.0) and each patient retained a mean of 146 (SEM 26) mmol sodium over the week of replacement with placebo. Body weight and plasma atrial natriuretic peptide concentrations increased during the placebo period and seemed to be associated with the amount of sodium retained. Systolic blood pressure rose from 157 (9) to 165 (9) mmHg (95% confidence interval of difference -7.1 to 22.1) when nifedipine was replaced with matching placebo, and the rise seemed to be related to the amount of sodium that was retained. CONCLUSIONS--Nifedipine causes a long term reduction in sodium balance in patients with essential hypertension. This long term effect may contribute to the mechanism whereby nifedipine lowers blood pressure.  相似文献   

19.
The role of arginine vasopressin (AVP) in blood pressure regulation in humans and animals is still controversial. The present study was designed to investigate the effects of AVP on blood pressure and the excretion of sodium and prostaglandin (PG) E2 in rabbits. AVP dissolved in 0.01 M acetic acid was infused subcutaneously at a rate of 0.86 ng/kg/min with a miniosmotic pump into 12 New Zealand white rabbits (2.7-3.4 kg), while 10 controls were given vehicle alone. AVP infusion resulted in a 3.5-fold rise in the level of plasma AVP (21.8 +/- 4.4 (SEM) pg/ml) as compared with controls, associated with a significant decrease in the urine volume and urinary excretion of sodium. The PGE2 excretion was increased 1.8-fold after AVP infusion. In the chronic AVP-infused group, blood pressure was not significantly increased, but the acute vascular response to AVP was significantly attenuated without any changes in the vasopressor response to angiotensin II. Preadministration of V1-antagonist completely abolished the vasopressor action of AVP, but not that of angiotensin II, in either group. These results suggest that circulating AVP within physiological range of concentrations may stimulate renal PGE2 synthesis and attenuate the vascular response through vascular V1 receptors without affecting the baroreflex, which may be attenuated through V2 receptors.  相似文献   

20.
Renal dopamine receptor function and ion transport inhibition are impaired in essential hypertension. We recently reported that caveolin-1 (CAV1) and lipid rafts are necessary for normal D(1)-like receptor-dependent internalization of Na-K-ATPase in human proximal tubule cells. We now hypothesize that CAV1 is necessary for the regulation of urine sodium (Na(+)) excretion (U(Na)V) and mean arterial blood pressure (MAP) in vivo. Acute renal interstitial (RI) infusion into Sprague-Dawley rats of 1 μg·kg?1·min?1 fenoldopam (FEN; D(1)-like receptor agonist) caused a 0.46 ± 0.15-μmol/min increase in U(Na)V (over baseline of 0.29 ± 0.04 μmol/min; P < 0.01). This increase was seen in Na(+)-loaded rats, but not in those under a normal-sodium load. Coinfusion with β-methyl cyclodextrin (βMCD; lipid raft disrupter, 200 μg·kg?1·min?1) completely blocked this FEN-induced natriuresis (P < 0.001). Long-term (3 day) lipid raft disruption via continuous RI infusion of 80 μg·kg?1·min?1 βMCD decreased renal cortical CAV1 expression (47.3 ± 6.4%; P < 0.01) and increased MAP (32.4 ± 6.6 mmHg; P < 0.001) compared with vehicle-infused animals. To determine whether the MAP rise was due to a CAV1-dependent lipid raft-mediated disruption, Na(+)-loaded rats were given a bolus RI infusion of CAV1 siRNA. Two days postinfusion, cortical CAV1 expression was decreased by 73.6 ± 8.2% (P < 0.001) and the animals showed an increase in MAP by 17.4 ± 2.9 mmHg (P < 0.01) compared with animals receiving scrambled control siRNA. In summary, acute kidney-specific lipid raft disruption decreases CAV1 expression and blocks D(1)-like receptor-induced natriuresis. Furthermore, chronic disruption of lipid rafts or CAV1 protein expression in the kidney induces hypertension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号