首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Apolipoprotein B (apoB) mRNA editing is a nuclear event that minimally requires the RNA substrate, APOBEC-1 and APOBEC-1 Complementation Factor (ACF). The co-localization of these macro-molecules within the nucleus and the modulation of hepatic apoB mRNA editing activity have been described following a variety of metabolic perturbations, but the mechanism that regulates editosome assembly is unknown. APOBEC-1 was effectively co-immunoprecipitated with ACF from nuclear, but not cytoplasmic extracts. Moreover, alkaline phosphatase treatment of nuclear extracts reduced the amount of APOBEC-1 co-immunoprecipitated with ACF and inhibited in vitro editing activity. Ethanol stimulated apoB mRNA editing was associated with a 2- to 3-fold increase in ACF phosphorylation relative to that in control primary hepatocytes. Significantly, phosphorylated ACF was restricted to nuclear extracts where it co-sedimented with 27S editing competent complexes. Two-dimensional phosphoamino acid analysis of ACF immunopurified from hepatocyte nuclear extracts demonstrated phosphorylation of serine residues that was increased by ethanol treatment. Inhibition of protein phosphatase I, but not PPIIA or IIB, stimulated apoB mRNA editing activity coincident with enhanced ACF phosphorylation in vivo. These data demonstrate that ACF is a metabolically regulated phosphoprotein and suggest that this post-translational modification increases hepatic apoB mRNA editing activity by enhancing ACF nuclear localization/retention, facilitating the interaction of ACF with APOBEC-1 and thereby increasing the probability of editosome assembly and activity.  相似文献   

2.
Limited proteolysis of APOBEC-1 complementation factor (ACF) and computational secondary structure modeling were used to guide the construction of a well-folded, truncation protein spanning residues 1-320 and containing three RNA recognition motifs (RRMs). ACF320 bound preferentially to apoB mRNA and supported APOBEC-1 dependent editing at 40% of the activity of full length ACF. Live cell FRET and immunoprecipitation assays revealed that ACF320 formed homomultimers in situ that were bridged by RNA. Our study predicted that the C to U editosome may be assembled on the mooring sequence of apoB mRNA as a dimer of ACF bound to a dimer of APOBEC-1.  相似文献   

3.
4.
Pneumocystis jirovecii is a fungus which causes severe opportunistic infections in immunocompromised humans. The brl1 gene of P. carinii infecting rats was identified and characterized by using bioinformatics in conjunction with functional complementation in Saccharomyces cerevisiae and Schizosaccharomyces pombe. The ectopic expression of this gene rescues null alleles of essential nuclear membrane proteins of the Brr6/Brl1 family in both yeasts.  相似文献   

5.
6.
7.
The yeast Saccharomyces cerevisiae mitochondrial release factor was expressed from the cloned MRF1 gene, purified from inclusion bodies, and refolded to give functional activity. The gene encoded a factor with release activity that recognized cognate stop codons in a termination assay with mitochondrial ribosomes and in an assay with Escherichia coli ribosomes. The noncognate stop codon, UGA, encoding tryptophan in mitochondria, was recognized weakly in the heterologous assay. The mitochondrial release factor 1 protein bound to bacterial ribosomes and formed a cross-link with the stop codon within a mRNA bound in a termination complex. The affinity was strongly dependent on the identity of stop signal. Two alleles of MRF1 that contained point mutations in a release factor 1 specific region of the primary structure and that in vivo compensated for mutations in the decoding site rRNA of mitochondrial ribosomes were cloned, and the expressed proteins were purified and refolded. The variant proteins showed impaired binding to the ribosome compared with mitochondrial release factor 1. This structural region in release factors is likely to be involved in codon-dependent specific ribosomal interactions.  相似文献   

8.
The phosphoprotein P of Borna disease virus (BDV) is an essential cofactor of the viral RNA-dependent RNA polymerase. It is preferentially phosphorylated at serine residues 26 and 28 by protein kinase C epsilon (PKCepsilon) and, to a lesser extent, at serine residues 70 and 86 by casein kinase II (CKII). To determine whether P phosphorylation is required for viral polymerase activity, we generated P mutants lacking either the PKCepsilon or the CKII phosphate acceptor sites by replacing the corresponding serine residues with alanine (A). Alternatively, these sites were replaced by aspartic acid (D) to mimic phosphorylation. Functional characterization of the various mutants in the BDV minireplicon assay revealed that D substitutions at the CKII sites inhibited the polymerase-supporting activity of P, while A substitutions maintained wild-type activity. Likewise, D substitutions at the PKC sites did not impair the cofactor function of BDV-P, whereas A substitutions at these sites led to increased activity. Interestingly, recombinant viruses could be rescued only when P mutants with modified PKCepsilon sites were used but not when both CKII sites were altered. PKCepsilon mutant viruses showed a reduced capacity to spread in cell culture, while viral RNA and protein expression levels in persistently infected cells were almost normal. Further mutational analyses revealed that substitutions at individual CKII sites were, with the exception of a substitution of A for S86, detrimental for viral rescue. These data demonstrate that, in contrast to other viral P proteins, the cofactor activity of BDV-P is negatively regulated by phosphorylation.  相似文献   

9.
APOBEC-3 proteins induce C-to-U hypermutations in the viral genome of various viruses and have broad antiviral activity. Generally, only a small proportion of viral genomes (<10(-)(2)) are hypermutated by APOBEC-3s, but often many cytidines (up to 40%) are converted into uridine. The mechanism of this unique selective hypermutation remains unknown. We found that rat APOBEC-1 overexpression had a hypermutation pattern similar to that of APOBEC-3s on its substrate apolipoprotein B (apoB) mRNA. Transient plasmid transfection of rat APOBEC-1 resulted in 0.4% and 1.8% hypermutations with apoB mRNA in HepG2 and McA7777 cells, respectively. The low frequency of hypermutated apoB mRNA targets was enriched by differential DNA denaturation PCR at 72-76?°C, with hypermutation levels increasing up to 67%. Up to 69.6% of cytidines in HepG2 and up to 75.5% of cytidines in McA7777 cells were converted into uridines in the hypermutated apoB mRNA. When rat APOBEC-1 was overexpressed by adenovirus, the hypermutation frequency of apoB mRNA increased from 0.4% to ~20% and was readily detected by regular PCR. However, this higher expression efficiency only increased the frequency of hypermutation, not the number of affected cytidines in hypermutated targets. Rat APOBEC-1 hypermutation was modulated by cofactors and eliminated by an E181Q mutation, indicating the role of cofactors in hypermutation. The finding of an APOBEC-3 hypermutation pattern with rat APOBEC-1 suggests that cofactors could also be involved in APOBEC-3 hypermutation. Using hepatitis B virus hypermutation, we found that KSRP increased APOBEC-3C and APOBEC-3B hypermutation. These data show that, like rat APOBEC-1 hypermutation, cellular factors may play a regulatory role in APOBEC-3 hypermutation.  相似文献   

10.
Translational release factors decipher stop codons in mRNA and activate hydrolysis of peptidyl-tRNA in the ribosome during translation termination. The mechanisms of these fundamental processes are unknown. Here we have mapped the interaction of bacterial release factor RF1 with the ribosome by directed hydroxyl radical probing. These experiments identified conserved domains of RF1 that interact with the decoding site of the 30S ribosomal subunit and the peptidyl transferase site of the 50S ribosomal subunit. RF1 interacts with a binding pocket formed between the ribosomal subunits that is also the interaction surface of elongation factor EF-G and aminoacyl-tRNA bound to the A site. These results provide a basis for understanding the mechanism of stop codon recognition coupled to hydrolysis of peptidyl-tRNA, mediated by a protein release factor.  相似文献   

11.
beta-Catenin-mediated signaling can be constitutively activated by truncation or mutation of serine and threonine residues in exon 3. Mutations in this region are observed in many human tumors. Examination of the locations of these mutations reveals interesting patterns; specifically, Ser45 and Thr41 appear more frequently in malignant tumors, and Ser37 and Ser33 are more common in benign entities. To test whether these patterns represent functional differences in beta-catenin signaling mechanisms, we generated mutations of each of these residues. Stable transformation of Madin-Darby canine kidney cells showed a transformed phenotype with each of the four mutations, as assessed by growth in soft agar and collagen. Functional assays including proliferation assays, cell shedding assays, and wounding assays demonstrated two groups. Ser45 and Thr41 represent a more transformed phenotype, whereas Ser37 and Ser33 behaved similarly to the vector in these assays. Assessment of downstream genes demonstrated increased activation of the beta-catenin target gene cyclin D1 by Ser45. Finally, we examined the kinase activity of I kappa B kinase-alpha and found that this kinase, unlike glycogen synthase kinase-3 beta, appears to preferentially phosphorylate Ser45 and Thr41, independent of priming by casein kinase-1. We conclude that these sites may represent an alternative (non-wnt) signaling pathway, which may be inappropriately activated in tumors with mutations of these residues.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
The in vitro stationary phase proteome of the human pathogen Shigella dysenteriae serotype 1 (SD1) was quantitatively analyzed in Coomassie Blue G250 (CBB)-stained 2D gels. More than four hundred and fifty proteins, of which 271 were associated with distinct gel spots, were identified. In parallel, we employed 2D-LC-MS/MS followed by the label-free computationally modified spectral counting method APEX for absolute protein expression measurements. Of the 4502 genome-predicted SD1 proteins, 1148 proteins were identified with a false positive discovery rate of 5% and quantitated using 2D-LC-MS/MS and APEX. The dynamic range of the APEX method was approximately one order of magnitude higher than that of CBB-stained spot intensity quantitation. A squared Pearson correlation analysis revealed a reasonably good correlation (R 2 = 0.67) for protein quantities surveyed by both methods. The correlation was decreased for protein subsets with specific physicochemical properties, such as low Mr values and high hydropathy scores. Stoichiometric ratios of subunits of protein complexes characterized in E. coli were compared with APEX quantitative ratios of orthologous SD1 protein complexes. A high correlation was observed for subunits of soluble cellular protein complexes in several cases, demonstrating versatile applications of the APEX method in quantitative proteomics.  相似文献   

20.
Gab1 (Grb2-associated binder1) belongs to a family of multifunctional docking proteins that play a central role in the integration of receptor tyrosine kinase (RTK) signaling, i.e., mediating cellular growth response, transformation, and apoptosis. In addition to RTK-specific tyrosine phosphorylation, these docking proteins also can be phosphorylated on serine/threonine residues affecting signal transduction. Since serine and threonine phosphorylation are capable of modulating the initial signal one major task to elucidate signal transduction via Gab1 is to determine the exact localization of distinct phosphorylation sites. To address this question in this report we examined extracellular signal-regulated kinases 1/2 (ERK) specific serine/threonine phosphorylation of the entire Gab1 engaged in insulin signaling in more detail in vitro. To elucidate the ERK1/2-specific phosphorylation pattern of Gab1, we used phosphopeptide mapping by two-dimensional HPLC analysis. Subsequently, phosphorylated serine/threonine residues were identified by sequencing the separated phosphopeptides using matrix assisted laser desorption ionization mass spectrometry (MALDI-MS) and Edman degradation. Our results demonstrate that ERK1/2 phosphorylate Gab1 at six serine/threonine residues (T312, S381, S454, T476, S581, S597) in consensus motifs for MAP kinase phosphorylation. Serine residues S454, S581, S597, and threonine residue T476 represent nearly 80% of overall incorporated phosphate. These sites are located adjacent to src homology region-2 (SH2) binding motifs (YVPM-motif: Y447, Y472, Y619) specific for the phosphatidylinositol 3kinase (PI3K). The biological role of identified phosphorylation sites was proven by PI3K and Akt activity in intact cells. These data demonstrate that ERK1/2 modulate insulin action via Gab1 by targeting serine and threonine residues beside YXXM motifs. Accordingly, insulin signaling is blocked at the level of PI3K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号