首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《The Journal of cell biology》1984,98(6):2204-2214
Myxamoebae of the morphogenetic cellular slime mold Dictyostelium discoideum are thought to be able to accurately read and respond to directional information in spatial gradients of cyclic AMP. We examined the spatial and temporal mechanisms proposed for chemotaxis by comparing the behavior of spreading or evenly distributed cell populations after exposure to well-defined spatial gradients. The effects of gradient generation on cells were avoided by using predeveloped gradients. Qualitatively different responses were obtained using (a) isotropic, (b) static spatial, or (c) temporal (impulse) gradients in a simple chamber of penetrable micropore filters. We simulated models of chemotaxis and chemokinesis to aid our interpretations. The attractive and locomotory responses of populations were maximally stimulated by 0.05 microM cyclic AMP, provided that cellular phosphodiesterase was inhibited. But a single impulse of cyclic AMP during gradient development caused a greater and qualitatively different attraction. Attraction in spatial gradients was only transient, in that populations eventually developed a random distribution when confined to a narrow territory. Populations never accumulated nor lost their random distribution even in extremely steep spatial gradients. Attraction in spatial gradients was inducible only in spreading populations, not randomly distributed ones. Thus, spatial gradients effect biased-random locomotion: i.e., chemokinesis without adaptation. Cells cannot read gradients; the reaction of the cells is stochastic. Spatial gradients do not cause chemotaxis, which probably requires a sharp stimulant concentration increase (a temporal gradient) as a pulse or impulse. The results also bear on concepts of how embryonic cells might be able to decipher the positional information in a morphogen spatial gradient during development.  相似文献   

2.
A new method for producing molecular gradients of arbitrary shape in thin three dimensional gels is described. Patterns are produced on the surface of the gel by printing with a micropump that dispenses small droplets of solution at controlled rates. The molecules in the solution rapidly diffuse into the gel and create a smooth concentration profile that is independent of depth. The pattern is relatively stable for long times, and its evolution can be accurately described by finite element modeling of the diffusion equation. As a demonstration of the method, direct measurements of protein gradients are performed by quantitative fluorescence microscopy. A complementary technique for measuring diffusion coefficients is also presented. This rapid, flexible, contactless approach to gradient generation is ideally suited for cell culture experiments to investigate the role of gradients of diffusible substances in processes such as chemotaxis, morphogenesis, and pattern formation, as well as for high-throughput screening of system responses to a wide range of chemical concentrations.  相似文献   

3.
The responses of Dictyostelium discoideum amoebae to developing (temporal) and stationary (spatial) gradients of folic acid, cAMP, Ca(2+), and Mg(2+) were studied using the methods of computer-aided image analysis. The results presented demonstrate that the new type of experimental chambers used for the observation of single cells moving within the investigated gradients of chemoattractants permit time lapse recording of single amoebae and determination of the trajectories of moving cells. It was found that, besides folic acid and cAMP (natural chemoattractants for Dictyostelium discoideum amoebae), also extracellular Ca(2+) and Mg(2+) are potent inducers of these cells' chemotaxis, and the amoebae of D. discoideum can respond to various chemoattractants differently. In the positively developing gradients of folic acid, cAMP, Ca(2+), and Mg(2+) oriented locomotion of amoebae directed towards the higher concentration of the tested chemoattractants was observed. However, in the negatively developing (temporal) and stationary linear (spatial) gradients, the univocal chemotaxis of amoebae was recorded only in the case of the Mg(2+) concentration gradient. This demonstrates that amoebae can respond to both developing and stationary gradients, depending upon the nature of the chemoattractant. We also investigated the effects of chosen inhibitors of signalling pathways upon chemotaxis of D. discoideum amoebae in the positively developing (temporal) gradients of tested chemoattractants. Verapamil was found to abolish the chemotaxis of amoebae only in the Ca(2+) gradients. Pertussis toxin suppressed the chemotactic response of cells in the gradients of folic acid and cAMP but did not prevent chemotaxis in those of Ca(2+) and Mg(2+), while quinacrine inhibited chemotaxis in the gradients of folic acid, cAMP, and Ca(2+) but only slightly affected chemotaxis in the Mg(2+) gradient. None of the tested inhibitors causes inhibition of cell random movement, when applied in isotropic solution. Also EDTA and EGTA up to 50 mM concentration did not inhibit locomotion of amoebae in control isotropic solutions.  相似文献   

4.
The directional cell response to chemical gradients, referred to as chemotaxis, plays an important role in physiological and pathological processes including development, immune response and tumor cell invasion. Despite such implications, chemotaxis remains a challenging process to study under physiologically-relevant conditions in-vitro, mainly due to difficulties in generating a well characterized and sustained gradient in substrata mimicking the in-vivo environment while allowing dynamic cell imaging. Here, we describe a novel chemotaxis assay in 3D collagen gels, based on a reusable direct-viewing chamber in which a chemoattractant gradient is generated by diffusion through a porous membrane. The diffusion process has been analysed by monitoring the concentration of FITC-labelled dextran through epifluorescence microscopy and by comparing experimental data with theoretical and numerical predictions based on Fick''s law. Cell migration towards chemoattractant gradients has been followed by time-lapse microscopy and quantified by cell tracking based on image analysis techniques. The results are expressed in terms of chemotactic index (I) and average cell velocity. The assay has been tested by comparing the migration of human neutrophils in isotropic conditions and in the presence of an Interleukin-8 (IL-8) gradient. In the absence of IL-8 stimulation, 80% of the cells showed a velocity ranging from 0 to 1 µm/min. However, in the presence of an IL-8 gradient, 60% of the cells showed an increase in velocity reaching values between 2 and 7 µm/min. Furthermore, after IL-8 addition, I increased from 0 to 0.25 and 0.25 to 0.5, respectively, for the two donors examined. These data indicate a pronounced directional migration of neutrophils towards the IL-8 gradient in 3D collagen matrix. The chemotaxis assay described here can be adapted to other cell types and may serve as a physiologically relevant method to study the directed locomotion of cells in a 3D environment in response to different chemoattractants.  相似文献   

5.
Binding of ligand to its receptor is a stochastic process that exhibits fluctuations in time and space. In chemotaxis, this leads to a noisy input signal. Therefore, in a gradient of chemoattractant, the cell may occasionally experience a "wrong" gradient of occupied receptors. We obtained a simple equation for P(pos), the probability that half of the cell closest to the source of chemoattractant has higher receptor occupancy than the opposite half of the cell. P(pos) depends on four factors, the gradient property delC/sq. root of C, the receptor characteristic R(t)/K(D), a time-averaging constant I, and nonreceptor noise sigma(B). We measured chemotaxis of Dictyostelium cells to known shallow gradients of cAMP and obtained direct estimates for these constants. Furthermore, we observed that in shallow gradients, the measured chemotaxis index is correlated with P(pos), which suggests that chemotaxis in shallow gradients is a pure biased random walk. From the observed chemotaxis and derived time-averaging constant, we deduce that the gradient transducing second messenger has a lifetime of 2-8 s and a diffusion rate constant of approximately 1 microm(2)/s. Potential candidates for such second messengers are discussed.  相似文献   

6.
Local chemical gradients can have a significant impact on bacterial population distributions within subsurface environments by evoking chemotactic responses. These local gradients may be created by consumption of a slowly diffusing nutrient, generation of a local food source from cell lysis, or dissolution of nonaqueous phase liquids trapped within the interstices of a soil matrix. We used a random walk simulation algorithm to study the effect of a local microscopic gradient on the swimming behavior of bacteria in a porous medium. The model porous medium was constructed using molecular dynamics simulations applied to a fluid of equal-sized spheres. The chemoattractant gradient was approximated with spherical symmetry, and the parameters for the swimming behavior of soil bacterium Pseudomonas putida were based on literature values. Two different mechanisms for bacterial chemotaxis, one in which the bacteria responded to both positive and negative gradients, and the other in which they responded only to positive gradients, were compared. The results of the computer simulations showed that chemotaxis can increase migration through a porous medium in response to microscopic-scale gradients. The simulation results also suggested that a more significant role of chemotaxis may be to increase the residence time of the bacteria in the vicinity of an attractant source.  相似文献   

7.
Neutrophils need to correctly interpret gradients of chemotactic factors (CFs) such as interleukin 8 (IL-8) to migrate to the site of infection and perform immune functions. Because diffusion-based chemotaxis assays used in previous studies suffer from temporally changing gradients, it is difficult to distinguish the influence of CF gradient steepness from mean CF concentration on chemotaxis. To better understand the roles of mean CF concentration and CF gradient steepness, we developed a microfluidic device that can maintain stable IL-8 gradients. We report that the random motility of neutrophils is a biphasic function of IL-8 concentration and its magnitude plays a decisive role in effective chemotaxis, a quantitative measure of migration. We show that the concentrations for the optimum chemotaxis in linear IL-8 gradients and for the maximum random motility in uniform IL-8 coincide. In contrast, we find that the steepness of IL-8 gradients has no significant effect on effective chemotaxis.  相似文献   

8.
Various research tools have been used for in vitro detection of sperm chemotaxis. However, they are typically poor in maintenance of gradient stability, not to mention their low efficiency. Microfluidic device offers a new experimental platform for better control over chemical concentration gradient than traditional ones. In the present study, an easy-handle diffusion-based microfluidic chip was established. This device allowed for conduction of three parallel experiments on the same chip, and improved the performance of sperm chemotaxis research. In such a chip, there were six channels surrounding a hexagonal pool. The channels are connected to the hexagon by microchannels. Firstly, the fluid flow in the system was characterized; secondly, fluorescein solution was used to calibrate gradient profiles formed in the central hexagon; thirdly, sperm behavior was observed under two concentration gradients of progesterone (100 pM and 1 mM, respectively) as a validation of the device. Significant differences in chemotactic parameters were recognized between experimental and control groups (p < 0.05). Compared with control group, sperm motility was greatly enhanced in 1 mM group (p < 0.05), but no significant difference was found in 100 pM group. In conclusion, we proposed a microfluidic device for the study of sperm chemotaxis that was capable of generating multi-channel gradients on a chip and would help reduce experimental errors and save time in experiment.  相似文献   

9.
The directed movement of fibroblasts towards locally released platelet-derived growth factor (PDGF) is a critical event in wound healing. Although recent studies have implicated polarized activation of phosphoinositide (PI) 3-kinase in G protein-mediated chemotaxis, the role of 3' PI lipids in tyrosine kinase-triggered chemotaxis is not well understood. Using evanescent wave microscopy and green fluorescent protein-tagged Akt pleckstrin homology domain (GFP-AktPH) as a molecular sensor, we show that application of a shallow PDGF gradient triggers a markedly steeper gradient in 3' PI lipids in the adhesion zone of fibroblasts. Polar GFP-AktPH gradients, as well as a new type of radial gradient, were measured from front to rear and from the periphery to the center of the adhesion zone, respectively. A strong spatial correlation between polarized 3' PI production and rapid membrane spreading implicates 3' PI lipids as a direct mediator of polarized migration. Analysis of the temporal changes of 3' PI gradients in the adhesion zone revealed a fast diffusion coefficient (0.5 microm(2)/s) and short lifetime of 3' PIs of <1 min. Together, this study suggests that the tyrosine kinase-coupled directional movement of fibroblasts and their radial membrane activity are controlled by local generation and rapid degradation of 3' PI second messengers.  相似文献   

10.
The high mortality of melanoma is caused by rapid spread of cancer cells, which occurs unusually early in tumour evolution. Unlike most solid tumours, thickness rather than cytological markers or differentiation is the best guide to metastatic potential. Multiple stimuli that drive melanoma cell migration have been described, but it is not clear which are responsible for invasion, nor if chemotactic gradients exist in real tumours. In a chamber-based assay for melanoma dispersal, we find that cells migrate efficiently away from one another, even in initially homogeneous medium. This dispersal is driven by positive chemotaxis rather than chemorepulsion or contact inhibition. The principal chemoattractant, unexpectedly active across all tumour stages, is the lipid agonist lysophosphatidic acid (LPA) acting through the LPA receptor LPAR1. LPA induces chemotaxis of remarkable accuracy, and is both necessary and sufficient for chemotaxis and invasion in 2-D and 3-D assays. Growth factors, often described as tumour attractants, cause negligible chemotaxis themselves, but potentiate chemotaxis to LPA. Cells rapidly break down LPA present at substantial levels in culture medium and normal skin to generate outward-facing gradients. We measure LPA gradients across the margins of melanomas in vivo, confirming the physiological importance of our results. We conclude that LPA chemotaxis provides a strong drive for melanoma cells to invade outwards. Cells create their own gradients by acting as a sink, breaking down locally present LPA, and thus forming a gradient that is low in the tumour and high in the surrounding areas. The key step is not acquisition of sensitivity to the chemoattractant, but rather the tumour growing to break down enough LPA to form a gradient. Thus the stimulus that drives cell dispersal is not the presence of LPA itself, but the self-generated, outward-directed gradient.  相似文献   

11.
An image processing system was programmed to automatically track and digitize the movement of amebae under phase-contrast microscopy. The amebae moved in a novel chemotaxis chamber designed to provide stable linear attractant gradients in a thin agarose gel. The gradients were established by pumping attractant and buffer solutions through semipermeable hollow fibers embedded in the agarose gel. Gradients were established within 30 min and shown to be stable for at least a further 90 min. By using this system it is possible to collect detailed data on the movement of large numbers of individual amebae in defined attractant gradients. We used the system to study motility and chemotaxis by a score of Dictyostelium discoideum wild-type and mutant strains, including "streamer" mutants which are generally regarded as being altered in chemotaxis. None of the mutants were altered in chemotaxis in the optimal cAMP gradient of 25 nM/mm, with a midpoint of 25 nM. The dependence of chemotaxis on cAMP concentration, gradient steepness, and temporal changes in the gradient were investigated. We also analyzed the relationship between turning behavior and the direction of travel during chemotaxis in stable gradients. The results suggest that during chemotaxis D. discoideum amebae spatially integrate information about local increases in cAMP concentration at various points on the cell surface.  相似文献   

12.
Fibroblast chemotaxis has usually been determined in Boyden-type chambers with polycarbonate filters, assuming that a stable concentration gradient of the attractant develops that causes directional migration of the cells. This view has been repeatedly challenged, and development of such gradients in vivo is unlikely. The present experiments were designed to test if a stable concentration gradient was required for normal dermal fibroblasts to migrate toward platelet-derived growth factor. It was found that a brief pulse of the attractant was required and sufficient to induce chemotaxis. The pulse had to contain a specific concentration of attractant and was ineffective when not unilateral. The observed effects could not be attributed to induction of random migration or migration on a mediator-coated surface. It is not clear which machinery is regulating this cellular behaviour, but it is suggested that cells may migrate in vivo by similar mechanisms, because the establishment of stable concentration gradients of attractants in tissues is deemed unlikely.  相似文献   

13.
The extracellular availability of growth factors, hormones, chemokines, and neurotransmitters under gradient conditions is required for directional cellular responses such as migration, axonal pathfinding, and tissue patterning. These responses are, in turn, important in disease and developmental processes. This article addresses critical barriers toward devising a chemotaxis assay that is broadly applicable for different kinds of cancer cells through the design of a microfluidic chamber that produces a steep gradient of chemoattractant. Photolithography was used to create microchannels for chemoattractant delivery, flow diversion barriers/conduits, and small outlets in the form of apertures. The 1-μm apertures were made at the active surface by uncapping a thin (1.5 μm) layer of AZ1518. This process also created a vertical conduit that diverted the flow such that it occurred perpendicularly to the active, experimental surface where the gradients were measured. The other side of the vertical conduit opened to underlying 20-μm deep channels that carried microfluidic flows of tracer dyes/growth factors. Modeled data using computational fluid dynamics produced gradients that were steep along the horizontal, active surface. This simulation mirrors empirically derived gradients obtained from the flow analyses of fluorescent compounds. The open chamber contains a large buffer volume, which prevents chemoattractant saturation and permits easy cell and compound manipulation. The technique obviates the use of membranes or laminar flow that may hinder imaging, rinsing steps, cell seeding, and treatment. The utility of the chamber in the study of cell protrusion, an early step during chemotaxis, was demonstrated by growing cancer cells in the chamber, inducing a chemoattractant gradient using compressed air at 0.7 bar, and performing time-lapse microscopy. Breast cancer cells responded to the rapidly developed and stable gradient of epidermal growth factor by directing centroid positions toward the gradient and by forming a leading edge at a speed of 0.45 μm/min.  相似文献   

14.
Abstract. Culminating fruiting bodies of Dictyostelium discoideum were found to show negative chemotaxis toward ammonia, whether the gradient was created by an ammonia source (ammonium hydroxide solution) or an ammonia sink (oxalic acid or an ammonia-absorbing enzyme system). Fruiting bodies also oriented away from gradients of gas emitted by populations of postfeeding amebae. The concentration of ammonia established over a population of 108 postfeeding amebae of D. discoideum was measured. The effects of 108 postfeeding amebae and of ammonium hydroxide solutions on the orientation of fruiting bodies under gradient conditions were compared. The results showed that the ammonia concentration established by the amebae was sufficient to account for their effkct on fruiting-body orientation. Thus, ammonia is the substance which causes fruiting-body spacing in D. discoideum.  相似文献   

15.
Complex networks of interacting molecular components of living cells are responsible for many important processes, such as signal processing and transduction. An important challenge is to understand how the individual properties of these molecular interactions and biochemical transformations determine the system-level properties of biological functions. Here, we address the issue of the accuracy of signal transduction performed by a bacterial chemotaxis system. The chemotaxis sensitivity of bacteria to a chemoattractant gradient has been measured experimentally from bacterial aggregation in a chemoattractant-containing capillary. The observed precision of the chemotaxis depended on environmental conditions such as the concentration and molecular makeup of the chemoattractant. In a quantitative model, we derived the chemotactic response function, which is essential to describing the signal transduction process involved in bacterial chemotaxis. In the presence of a gradient, an analytical solution is derived that reveals connections between the chemotaxis sensitivity and the characteristics of the signaling system, such as reaction rates. These biochemical parameters are integrated into two system-level parameters: one characterizes the efficiency of gradient sensing, and the other is related to the dynamic range of chemotaxis. Thus, our approach explains how a particular signal transduction property affects the system-level performance of bacterial chemotaxis. We further show that the two parameters can be derived from published experimental data from a capillary assay, which successfully characterizes the performance of bacterial chemotaxis.  相似文献   

16.
Time-lapsed videomicroscopy was used to study the migration of platelet-endothelial cell adhesion molecule-1-deficient (PECAM-1(-/-)) murine neutrophils undergoing chemotaxis in Zigmond chambers containing IL-8, KC, or fMLP gradients. PECAM-1(-/-) neutrophils failed to translocate up the IL-8, KC, and fMLP gradients. Significant reductions in cell motility and cell spreading were also observed in IL-8 or KC gradients. In wild-type neutrophils, PECAM-1 and F-actin were colocalized at the leading fronts of polarized cells toward the gradient. In contrast, in PECAM-1(-/-) neutrophils, although F-actin also localized to the leading front of migrating cells, F-actin polymerization was unstable, and cycling was remarkably increased compared with that of wild-type neutrophils. This may be due to the decreased cytokine-induced mobilization of the actin-binding protein, moesin, into the cytoskeleton of PECAM-1(-/-) neutrophils. PECAM-1(-/-) neutrophils also exhibited intracellularly dislocalized Src homology 2 domain containing phosphatase 1 (SHP-1) and had less IL-8-induced SHP-1 phosphatase activity. These results suggest that PECAM-1 regulates neutrophil chemotaxis by modulating cell motility and directionality, in part through its effects on SHP-1 localization and activation.  相似文献   

17.
Li H  Lin X 《Cytokine》2008,44(1):1-8
Cell migration is involved in diverse physiological processes including embryogenesis, immunity, and diseases such as cancer and chronic inflammatory disease. The movement of many cell types is directed by extracellular gradients of diffusible chemicals. This phenomenon, referred to as "chemotaxis", was first described in 1888 by Leber who observed the movement of leukocytes toward sites of inflammation. We now know that a large family of small proteins, chemokines, serves as the extracellular signals and a family of G-protein-coupled receptors (GPCRs), chemokine receptors, detects gradients of chemokines and guides cell movement in vivo. Currently, we still know little about the molecular machineries that control chemokine gradient sensing and migration of immune cells. Fortunately, the molecular mechanisms that control these fundamental aspects of chemotaxis appear to be evolutionarily conserved, and studies in lower eukaryotic model systems have allowed us to form concepts, uncover molecular components, develop new techniques, and test models of chemotaxis. These studies have helped our current understanding of this complicated cell behavior. In this review, we wish to mention landmark discoveries in the chemotaxis research field that shaped our current understanding of this fundamental cell behavior and lay out key questions that remain to be addressed in the future.  相似文献   

18.
Gradients of secreted signaling proteins guide growing blood vessels during both normal and pathological angiogenesis. However, the mechanisms by which endothelial cells integrate and respond to graded distributions of chemotactic factors are still poorly understood. We have in this study investigated endothelial cell migration in response to hill-shaped gradients of vascular endothelial growth factor A (VEGFA) and fibroblast growth factor 2 (FGF2) using a novel microfluidic chemotaxis chamber (MCC). Cell migration was scored at the level of individual cells using time-lapse microscopy. A stable gradient of VEGFA165 ranging from 0 to 50 ng/ml over a distance of 400 microm was shown to strongly induce chemotaxis of endothelial cells of different vascular origin. VEGFA121, unable to bind proteoglycan and neuropilin coreceptors, was also shown to induce chemotaxis in this setup. Furthermore, a gradient of FGF2 was able to attract venular but not arterial endothelial cells, albeit less efficiently than VEGFA165. Notably, constant levels of VEGFA165, but not of FGF2, were shown to efficiently reduce chemokinesis. Systematic exploration of different gradient shapes led to the identification of a minimal gradient steepness required for efficient cell guidance. Finally, analysis of cell migration in different regions of the applied gradients showed that chemotaxis is reduced when cells reach the high end of the gradient. Our findings suggest that chemotactic growth factor gradients may instruct endothelial cells to shift toward a nonmigratory phenotype when approaching the growth factor source.  相似文献   

19.
Chemotaxis, directed cell migration in a gradient of chemoattractant, is an important biological phenomenon that plays pivotal roles in cancer metastasis. Newly developed microfluidic chemotaxis chambers (MCC) were used to study chemotaxis of metastatic breast cancer cells, MDA-MB-231, in EGF gradients of well-defined profiles. Migration behaviors of MDA-MB-231 cells in uniform concentrations of EGF (0, 25, 50, and 100 ng/ml) and EGF (0-25, 0-50, and 0-100 ng/ml) with linear and nonlinear polynomial profiles were investigated. MDA-MB-231 cells exhibited increased speed and directionality upon stimulation with uniform concentrations of EGF. The cells were viable and motile for over 24 h, confirming the compatibility of MCC with cancer cells. Linear concentration gradients of different ranges were not effective in inducing chemotactic movement as compared to nonlinear gradients. MDA-MB-231 cells migrating in EGF gradient of 0-50 ng/ml nonlinear polynomial profile exhibited marked directional movement toward higher EGF concentration. This result suggests that MDA-MB-231 cancer cell chemotaxis depends on the shape of gradient profile as well as on the range of EGF concentrations.  相似文献   

20.
There has been a growing appreciation over the last decade that chemotaxis plays an important role in cancer migration, invasion and metastasis. Research into the field of cancer cell chemotaxis is still in its infancy and traditional investigative tools have been developed with other cell types and purposes in mind. Direct visualisation chambers are considered the gold standard for investigating the behaviour of cells migrating in a chemotactic gradient. We therefore drew up a list of key attributes that a chemotaxis chamber should have for investigating cancer cell chemotaxis. These include (1) compatibility with thin cover slips for optimal optical properties and to allow use of high numerical aperture (NA) oil immersion objectives; (2) gradients that are relatively stable for at least 24 hours due to the slow migration of cancer cells; (3) gradients of different steepnesses in a single experiment, with defined, consistent directions to avoid the need for complicated analysis; and (4) simple handling and disposability for use with medical samples. Here we describe and characterise the Insall chamber, a novel direct visualisation chamber. We use it to show GFP-lifeact transfected MV3 melanoma cells chemotaxing using a 60x high NA oil immersion objective, which cannot usually be done with other chemotaxis chambers. Linear gradients gave very efficient chemotaxis, contradicting earlier results suggesting that only polynomial gradients were effective. In conclusion, the chamber satisfies our design criteria, most importantly allowing high NA oil immersion microscopy to track chemotaxing cancer cells in detail over 24 hours.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号