首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To investigate root distribution with depth, which can affect competition for water, surface areas of young and old roots were determined in 4-cm-thick soil layers for the C3 subshrub Encelia farinosa Torrey and A. Gray, the C4 bunchgrass Pleuraphis rigida Thurber, and the CAM (crassulacean acid metabolism) leaf succulent Agave deserti Engelm. At a site in the northwestern Sonoran Desert these codominant perennials had mean rooting depths of only 9-10 cm for isolated plants. Young roots had mean depths of 5-6 cm after a winter wet period, but 11-13 cm after a summer wet period. Young roots were most profuse in the winter for E. farinosa, which has the lowest optimum temperature for root growth, and in the summer for P. rigida, which has the highest optimum temperature. Roots for interspecific pairs in close proximity averaged 2-3 cm shallower for A. deserti and a similar distance deeper for the other two species compared with isolated plants, suggesting partial spatial separation of their root niches when the plants are in a competitive situation. For plants with a similar root surface area, the twofold greater leaf area and twofold higher maximal transpiration rate of E. farinosa were consistent with its higher root hydraulic conductivity, leading to a fourfold higher estimated maximal water uptake rate than for P. rigida. Continuous water uptake accounted for the shoot water loss by A. deserti, which has a high shoot water-storage capacity. A lower minimum leaf water potential for P. rigida than for A. deserti indicates greater ability to extract water from a drying soil, suggesting that temporal niche separation for water uptake also occurs.  相似文献   

2.
Methionine sulfoximine caused ammonia accumulation and photosyntheticrate inhibition in leaf discs from two C4 species, Zea maysL. cv. F. M. Cross (Hybrid) and Sorghum bicolor L. Moench cv.NC-70X, as well as one C3 plant species, Datura stramonium L.cv. stramonium. Similar results were obtained earlier with theC3 species Spinacia oleracea L. The effect occurred in the absenceof inorganic nitrogen reduction and was light dependent. Ammoniaaccumulation rates were similar in all four species examined.The results support a role for glutamine synthetase in leafammonia recycling in both C4 and C3 leaves. 1 Current address: Cetus Madison Corporation, 2208 Parview Road,Middleton, WI 53562, U.S.A. (Received November 2, 1981; Accepted April 28, 1982)  相似文献   

3.
通过停止浇水产生水分胁迫使兼性CAM植物长叶景天(Sedum spectabile Boreau)叶片光合途径由C3型转为CAM型.干旱15 d时观察到典型的CAM生理特征,且叶片的δ13C值与含水量成线性相关.水分胁迫改变了叶绿素荧光参数和抗氧化能力,ΦPSⅡ和qP降低50%和34%,NPQ提高约180%,SOD活性和清除DPPH@ 自由基能力也明显下降, 但膜半透性变化不大.当将处于C3(浇水)和诱导为CAM(缺水)型的叶圆片用外源甲基紫精(MV)和强光作光氧化处理后,与C3型叶片相比,诱导CAM型叶片的NPQ不能提高,qP和ΦPSⅡ降至很低水平,光系统处于高还原态,光能供给与消耗失衡(1-qP=0.86和(1-qP)/NPQ>1),膜系统几乎失去完整性.这种严重的光氧化损伤表明,与我们以前报告的专性CAM植物不同,以兼性CAM植物诱导表达的CAM型未能显示比C3型较强的耐光氧化优势.讨论了出现这种光氧化敏感性差别的可能原因.  相似文献   

4.
Abstract

Ecological aspects of C3, C4 and CAM photosynthetic pathways. - Three different photosynthetic CO2 fixation pathways are known to occur in higher plants. However all three pathways ultimately depend on the Calvin-Benson cycle for carbon reduction. The oxygenase activity of RuBP carboxilase is responsible for photorespiratory CO2 release. Both C4 and CAM pathways behave as a CO2 concentrating mechanism which prevent photorespiration. The CO2-concentrating mechanism in C4 plants is based on intracellular symplastic transport of C4 dicarboxylic acids from mesophyll-cells to the adjacent bundle-sheath cells. On the contrary in CAM plants the CO2-concentrating mechanism is based on the intracellular transport of malic acid into and out of the vacuole.

The C4 photosynthetic pathway as compared to the C3 pathway permits higher rates of CO2 fixation in high light and high temperature environments at low costs in terms of water loss, given the stability of the photosynthetic apparatus under such conditions.

CAM is interpreted as an adaptation to arid environments because it enables carbon assimilation to take place at very low water costs during the night when the evaporative demand is low. Nevertheless many aquatic species of Isoetes and some relatives are CAM, suggesting the adaptive role of CAM to environments which become depleted in CO2.

The photosynthetic carbon fixation pathway certainly contributes to the ecological success of plants in different environments. However the distribution of plants may also reflect their biological history. On the other hand plants with different photosynthetic pathways coexist in many communities and tend to share resources in time. In any case some generalizations are possible: C4 plants enjoy an ecological advantage in hot, moist, high light regions while the majority of species in desert environments are C3; CAM plants are more frequent in semiarid regions with seasonal rainfall, coastal fog deserts, and in epiphytic habitats in tropical rain forests.  相似文献   

5.
The extent to which photorespiration occurs in CrassulaceanAcid Metabolism (CAM) plants has received limited attention.No comparative studies of C3 and CAM development have been made.To address this problem, activities of several photorespiratoryenzymes were measured in a facultative CAM plant—Mesembryanthemumcrystallinum L.—during induction of CAM by water stress(NaCl-treatment). Salt-treatment over a 22 d period produceda progressive change in metabolism from C3 to CAM. This wasconfirmed by (I) changes in gas exchange from C3 fixation tothe characteristic CAM pattern of nocturnal CO2 uptake; (2)increases in did acid fluctuation and (3) a 30-fold increasein phosphoenol pyruvate (PEP) carboxylase activity. In contrast,no significant changes were observed in the activities of glycollateoxidase (GO), NAD-dependent-hydroxypyruvate reductase (HPR),glutamine synthetase (GS) or glutamate dehydrogenase (GDH) whenplants were induced into CAM. Ion exchange chromatography onDEAE Sephacel detected only one GS isoenzyme (GS2, chloroplastic)at all stages of CAM induction, Western blot analysis, however,detected an additional, although minor, band of GS1 (cytosolic),in C3 plants, which disappeared following CAM induction. Ourresults show that, after development of CAM, these plants stillretain the capacity to photorespire. This may be an essentialrequirement of CAM plants growing in habitats with variablerainfall. When water availability is high, stomata may openin the light allowing ribulose bisphosphate carboxylase oxygenase(Rubisco) activity and photorespiration to occur. The inherentcapacity to photorespire would allow plants to survive variableperiods of rainfall. Key words: Mesembryanthemum, C3, CAM, photorespiration  相似文献   

6.
The kinetic properties of phosphoenolpyruvate (PEP) carboxylasehave been studied among several Flaveria species: the C3 speciesF. cronquistii, the C3–C4 species F. pubescens and F.linearis, and the C4 species F. trinervia. At either pH 7 or8, the maximum activities (in µmol.mg Chl–1.h–1)for F. pubescens and linearis (187–513) were intermediateto those of the C3 species (12–19) and the C4 species(2,182–2,627). The response curves of velocity versusPEP concentration were hyperbolic for the C3 and C3–C4species at either pH 7 or 8 while they were sigmoidal for theC4 species at pH 7 and hyperbolic at pH 8. The Km values forPEP determined from reciprocal plots were lowest in the C3 species,and of intermediate value in the C3–C4 species comparedto the K' values of the C4 species determined from Hill plotsat either pH 7 or 8. Glucose-6-phosphate (G6P) decreased theKm values for PEP at both pH 7 and 8 in the C3 and C3–C4species. In the C4 species, G6P decreased the K' values at pH8 but increased the K' values at pH 7. In all cases, G6P hadits effect by influencing the activity at limiting PEP concentrationswith little or no effect on the maximum activity. At pH 8 andlimiting concentrations of PEP the degree of stimulation ofthe activity by G6P was greatest in the C4 species, intermediatein F. linearis, a C3–C4 species, and lowest in the C3species. In several respects, the PEP carboxylases of the C3–C4Flaveria species have properties intermediate to those of theC3 and C4 species. (Received April 30, 1983; Accepted August 22, 1983)  相似文献   

7.
Most plants show considerable capacity to adjust their photosynthetic characteristics to their growth temperatures (temperature acclimation). The most typical case is a shift in the optimum temperature for photosynthesis, which can maximize the photosynthetic rate at the growth temperature. These plastic adjustments can allow plants to photosynthesize more efficiently at their new growth temperatures. In this review article, we summarize the basic differences in photosynthetic reactions in C3, C4, and CAM plants. We review the current understanding of the temperature responses of C3, C4, and CAM photosynthesis, and then discuss the underlying physiological and biochemical mechanisms for temperature acclimation of photosynthesis in each photosynthetic type. Finally, we use the published data to evaluate the extent of photosynthetic temperature acclimation in higher plants, and analyze which plant groups (i.e., photosynthetic types and functional types) have a greater inherent ability for photosynthetic acclimation to temperature than others, since there have been reported interspecific variations in this ability. We found that the inherent ability for temperature acclimation of photosynthesis was different: (1) among C3, C4, and CAM species; and (2) among functional types within C3 plants. C3 plants generally had a greater ability for temperature acclimation of photosynthesis across a broad temperature range, CAM plants acclimated day and night photosynthetic process differentially to temperature, and C4 plants was adapted to warm environments. Moreover, within C3 species, evergreen woody plants and perennial herbaceous plants showed greater temperature homeostasis of photosynthesis (i.e., the photosynthetic rate at high-growth temperature divided by that at low-growth temperature was close to 1.0) than deciduous woody plants and annual herbaceous plants, indicating that photosynthetic acclimation would be particularly important in perennial, long-lived species that would experience a rise in growing season temperatures over their lifespan. Interestingly, across growth temperatures, the extent of temperature homeostasis of photosynthesis was maintained irrespective of the extent of the change in the optimum temperature for photosynthesis (T opt), indicating that some plants achieve greater photosynthesis at the growth temperature by shifting T opt, whereas others can also achieve greater photosynthesis at the growth temperature by changing the shape of the photosynthesis–temperature curve without shifting T opt. It is considered that these differences in the inherent stability of temperature acclimation of photosynthesis would be reflected by differences in the limiting steps of photosynthetic rate.  相似文献   

8.
A Model for Leaf Photosynthesis by C3 Plant Species   总被引:3,自引:0,他引:3  
A mathematical model for leaf photosynthesis is constructed.The model relates the net rate of carbon dioxide exchange perunit leaf area to the ambient carbon dioxide and oxygen concentrationsand the light-flux density incident on the leaf surface. The behaviour of the model under steady-state conditions isexamined and discussed. Simulated carbon dioxide and light-responsecurves for the net carbon dioxide exchange rate accord wellwith experimental observation. The model describes an inhibitionof the net exchange rate by increasing oxygen concentrationswhich is similar to the commonly observed inhibition.  相似文献   

9.
Submergence-induced ethylene synthesis and entrapment were studied in two contrasting Rumex species, one flood-resistant (Rumex palustris) and the other flood-sensitive (Rumex acetosa). The application of a photoacoustic method to determine internal ethylene concentrations in submerged plants is discussed. A comparison with an older technique (vacuum extraction) is described. For the first time ethylene production before, during, and after submergence and the endogenous concentration during submergence were continuously measured on a single intact plant without physical perturbation. Both Rumex species were characterized by enhanced ethylene concentrations in the shoot after 24 h of submergence. This was not related to enhanced synthesis but to continued production and physical entrapment. In R. palustris, high endogenous ethylene levels correlated with enhanced petiole and lamina elongation. No dramatic change in leaf growth rate was observed in submerged R. acetosa shoots. After desubmergence both species showed an increase in ethylene production, the response being more pronounced in R. palustris. This increase was linked to the enhanced postsubmergence growth rate of leaves of R. palustris. Due to the very rapid escape of ethylene out of desubmerged plants to the atmosphere (90% disappeared within 1 min), substantial underestimation of internal ethylene concentrations can be expected using more conventional vacuum extraction techniques.  相似文献   

10.
Wu MX  Wedding RT 《Plant physiology》1987,85(2):497-501
The effect of temperature in the range from 10 to 35°C on various characteristics of phosphoenolpyruvate carboxylase from the leaves of a CAM plant, Crassula argentea and a C4 plant Zea mays shows a number of different effects related to the environment in which these distinct types of metabolic specialization normally operate. The Arrhenius plot of Vmax for the two enzyme forms shows that the CAM enzyme has a linear increase with temperature while the C4 enzyme has an inflection at 27°C implying a conformational or aggregational change in the enzyme or a shift in reaction mechanism to one requiring a lower activation energy. The Arrhenius plot of Km for the two enzymes reveals the startling fact that at temperatures above 20°C an increasing temperature causes an increase in KmPEP for the CAM enzyme while the C4 enzyme displays a decreased Km as the temperature increases. The inhibitory effect of 5 millimolar malate also shows opposite trends for the two enzymes. For the CAM enzyme the percent inhibition by malate increases from essentially none at 15°C to 70% at 35°C. For the C4 enzyme the percent inhibition drops from about 60% at 20°C to 2% at 30°C. Similar opposite behavior of the two enzymes is found with the Ki for malate. Pretreatment at high temperatures for periods up to 2 hours was found to result in differences similar to those described above if the treated enzyme were subsequently assayed at 25°C.  相似文献   

11.
Plant cuticular waxes play a crucial role in limiting nonstomatal water loss. The goal of this study was to localize the transpiration barrier within the layered structure of cuticles of eight selected plant species and to put its physiological function into context with the chemical composition of the intracuticular and epicuticular wax layers. Four plant species (Tetrastigma voinierianum, Oreopanax guatemalensis, Monstera deliciosa, and Schefflera elegantissima) contained only very-long-chain fatty acid (VLCFA) derivatives such as alcohols, alkyl esters, aldehydes, and alkanes in their waxes. Even though the epicuticular and intracuticular waxes of these species had very similar compositions, only the intracuticular wax was important for the transpiration barrier. In contrast, four other species (Citrus aurantium, Euonymus japonica, Clusia flava, and Garcinia spicata) had waxes containing VLCFA derivatives, together with high percentages of alicyclic compounds (triterpenoids, steroids, or tocopherols) largely restricted to the intracuticular wax layer. In these species, both the epicuticular and intracuticular waxes contributed equally to the cuticular transpiration barrier. We conclude that the cuticular transpiration barrier is primarily formed by the intracuticular wax but that the epicuticular wax layer may also contribute to it, depending on species-specific cuticle composition. The barrier is associated mainly with VLCFA derivatives and less (if at all) with alicyclic wax constituents. The sealing properties of the epicuticular and intracuticular layers were not correlated with other characteristics, such as the absolute wax amounts and thicknesses of these layers.The plant cuticle is one of the major adaptations of vascular plants for life in the atmospheric environment. Accordingly, the primary function of cuticles is to limit nonstomatal water loss and, thus, to protect plants against drought stress (Burghardt and Riederer, 2006). However, plant cuticles also play roles in minimizing the adhesion of dust, pollen, and spores (Barthlott and Neinhuis, 1997), protecting tissues from UV radiation (Krauss et al., 1997; Solovchenko and Merzlyak, 2003), mediating biotic interactions with microbes (Carver and Gurr, 2006; Leveau, 2006; Hansjakob et al., 2010, 2011; Reisberg et al., 2012) as well as insects (Eigenbrode and Espelie, 1995; Müller and Riederer, 2005), and preventing deleterious fusions between different plant organs (Tanaka and Machida, 2013).Cuticles are composite (nonbilayer) membranes consisting of an insoluble polymer matrix and solvent-soluble waxes. The polymer matrix (MX) is mainly made of the hydroxy fatty acid polyester cutin (Nawrath, 2006) and also contains polysaccharides and proteins (Heredia, 2003). In contrast, cuticular waxes are complex mixtures of aliphatic compounds derived from very-long-chain fatty acids (VLCFAs) with hydrocarbon chains of C20 and more (Jetter et al., 2007). Wax quantities and compositions vary greatly between plant species and, in many cases, even between organs and developmental stages. Diverse VLCFA derivatives can be present, including free fatty acids, aldehydes, ketones, primary and secondary alcohols, alkanes, and alkyl esters. Besides, the cuticular waxes of many plant species also contain cyclic compounds such as triterpenoids and aromatics.In order to characterize the physiological function of cuticular waxes, methods have been developed for the isolation of astomatous cuticles and the measurement of transpiration rates under exactly controlled conditions, so that well-defined physical transport parameters such as permeances and resistances can be determined and compared across species and organs (Schönherr and Lendzian, 1981; Kerstiens, 1996; Riederer and Schreiber, 2001; Lendzian, 2006). With these methods, it was demonstrated that the cuticular water permeance increases by up to 3 orders of magnitude upon wax removal, thus showing the central role of waxes as a transpiration barrier (Schönherr, 1976). Permeances for water determined so far with astomatous isolated leaf cuticular membranes (CMs) or in situ leaf cuticles range over 2.5 orders of magnitude, from 3.63 × 10−7 m s−1 (Vanilla planifolia) to 7.7 × 10−5 m s−1 (Maianthemum bifolium; Riederer and Schreiber, 2001).The species-dependent differences of both wax composition and permeance led to a search for correlations between cuticle structure and function. If such a structure-function relationship could be established, then it would become possible to select or alter wax composition in order to improve cuticle performance in crop species (Kosma and Jenks, 2007). However, all attempts to understand cuticle permeance based on cuticle composition have failed so far: correlations between wax amounts and permeances could not be established, contrary to the common assumption that thicker wax layers must provide better protection against desiccation (Schreiber and Riederer, 1996; Riederer and Schreiber, 2001). Similarly, a correlation between wax quality (i.e. the relative portions of its constituents) and permeance could also not be established to date (Burghardt and Riederer, 2006). It is not clear how certain wax components contribute to the vital barrier function of the cuticle.Previous attempts to establish wax structure-function relationships may have failed because only bulk wax properties were studied and important effects of substructures were averaged out. However, distinct compartments of wax exist within the cuticle, most prominently as a layer of intracuticular wax embedded within the MX and a layer of epicuticular wax deposited on the outer surface of the polymer (Jeffree, 2006). Over the last years, methods have been developed that allow the selective removal of epicuticular wax by adhesive surface stripping, followed by equally selective extraction of intracuticular wax (Jetter et al., 2000; Jetter and Schäffer, 2001). Chemical analyses showed that, for most plant species investigated to date, both wax layers have distinct compositions (Buschhaus and Jetter, 2011). The most pronounced differences between the layers were found for the triterpenoids, which were localized predominantly (or even exclusively) in the intracuticular wax. These findings raised the possibility that the chemically distinct wax layers might also have distinct functions, leading back to the long-standing question of whether the water barrier function is exerted by the intracuticular and/or the epicuticular wax. There are only scant data to answer this question so far, mainly because methods allowing a distinction between epicuticular and intracuticular waxes were established only recently. Using these sampling techniques, it was recently found that, for leaves of Prunus laurocerasus, the epicuticular wax layer does not contribute to the transpiration barrier (Zeisler and Schreiber, 2016). In contrast, it had been reported that removal of the epicuticular wax layer from tomato (Solanum lycopersicum) fruit caused an approximately 2-fold increase in transpiration, suggesting that, in this species, the epicuticular layer constitutes an important part of the barrier (Vogg et al., 2004). Based on these conflicting reports, it is not clear to what extent the intracuticular or the epicuticular waxes contribute to the sealing function of the plant skin.The goal of this study was to localize the transpiration barrier within the cuticular membrane of selected plant species and to put the physiological function into context with the chemical composition of both the epicuticular and intracuticular wax layers. To this end, we selected eight species from which leaf cuticles could be isolated and methods for step-wise wax removal could be applied without damaging the cuticle. Preliminary studies had shown that the adaxial cuticles on leaves of Citrus aurantium (Rutaceae), Euonymus japonica (Celastraceae), Clusia flava (Clusiaceae), Garcinia spicata (Clusiaceae), Tetrastigma voinierianum (Vitaceae), Oreopanax guatemalensis (Araliaceae), Monstera deliciosa (Araceae), and Schefflera elegantissima (Araliaceae) were astomateous and showed wide chemical diversity. Therefore, these eight species were selected to address the following questions: (1) What are the amounts of epicuticular and intracuticular waxes? (2) Do compositional differences exist between the layers? (3) Where are the cuticular triterpenoids located? (4) How much do the epicuticular and intracuticular waxes contribute to the transpiration barrier? (5) Is the barrier associated with certain components of the intracuticular or epicuticular waxes?  相似文献   

12.
Chloroplast envelopes were isolated from chloroplasts purifiedfrom Spinacea oleracea L. (C3), Panicum miliaceum L. (NAD-malicenzyme-type C1), Digitaria sanguinalis (L.) Scop. (NADP-malicenzyme-type C4), Kalanchoe daigremontiana Hamet et Perrier (constitutiveCAM), and from Mesembryanthemum crystallinum L. (inducible CAM)performing either C3 photosynthesis or Crassulacean acid metabolism(CAM). For each species, methods were developed to isolate chloroplastenvelopes free of thylakoid contamination. The polypeptidesof ribulose bisphosphate (RuBP) carboxylase which has been consistentlyreported in envelope preparations of spinach were not foundin envelope preparations of C4 mesophyll chloroplasts. Silverstaining of envelope polypeptides resolved electrophoreticallyon sodium dodecylsulfate polyacrylamide gradient slab gels produceda more complex profile than did Coomassie staining which haspreviously been used with C3 envelope preparations, even thoughsilver reacted poorly with polypeptides corresponding to thesubunits of RuBP carboxylase. All of the plants examined possesseda major polypeptide of 27 to 29 kilodaltons (kD) which was previouslysuggested to be the phosphate translocator in spinach. WithC3 M. crystallinum, the 29 kD polypeptide stained most intensely.After induction of CAM, a 32 kD polypeptide also stained intensely,giving a profile similar to that obtained with the constitutiveCAM species. A 32 kD polypeptide was also prominent in C4 envelopepreparations, suggesting that a 32 kD polypeptide may be a translocatorprotein which is required in Crassulacean acid metabolism andC4 photosynthesis, but not in C3 photosynthesis. (Received April 25, 1983; Accepted July 9, 1983)  相似文献   

13.
The CO2 and H2O vapour exchange of single attached orange, Citrus sinensis (L.), leaves was measured under laboratory conditions using infrared gas analysis. Gaseous diffusive resistances were derived from measurements at a saturating irradiance and at a leaf temperature optimum for photosynthesis. Variation in leaf resistance (within the range 1.6 to 60 s cm-1) induced by moisture status, or by cyclic oscillations in stomatal aperture, was associated with changes in both photosynthesis and transpiration. At low leaf resistance (ri less than 10 s cm-1) the ratio of transpiration to photosynthesis declined with reduced stomatal aperture, indicating a tighter stomatal control over H2O vapour loss than over CO2 assimilation. At higher leaf resistance (ri greater than 10 s cm-1) changes in transpiration and photosynthesis were linearly related, but leaf resistance and mesophyll resistance were also positively correlated, so that strictly stomatal control of photosynthesis became more apparent than real. This evidence, combined with direct measurements of CO2 diffusive resistances (in a -O2 gas stream) emphasised the presence of a significant mesophyll resistance; i.e., an additional and rate limiting resistance to CO2 assimilation over and above that encountered by H2O vapour escaping from the leaf.  相似文献   

14.
15.
16.
Troughton  John H.  Card  K. A. 《Planta》1975,122(2):185-201
Planta - The temperature coefficient of the δ13C value over the temperature range 14 to 40° has been measured for plants with different photosynthetic pathways. C3 plants (6 species) had...  相似文献   

17.
18.
The genus Clusia includes species that exhibit either the C3 or crassulacean acid metabolism (CAM) mode of photosynthesis, or those that are able to switch between both modes according to water availability. In order to screen for species-specific genetic variability, we investigated the key carboxylase for CAM, phosphoenolpyruvate carboxylase (PEPC). Sequence analysis of DNA isolated from the obligate CAM species, Clusia hilariana, the obligate C3 species, Clusia multiflora, and an intermediate species that can switch between C3 and CAM photosynthesis, Clusia minor, revealed three different isoforms for C. hilariana and one each for the other two species. Sequence alignments indicated that PEPC from the intermediate species had high homology with the C3 protein and with one of CAM plant proteins. These were assumed to constitute 'housekeeping' proteins, which can also support CAM in intermediate species. The other two isoforms of the CAM plant C. hilariana were either CAM-specific or showed homologies with PEPC from roots. Phylogenetic trees derived from neighbour-joining analysis of amino acid sequences from 13 different Clusia species resulted in two distinct groups of plants with either 'housekeeping' PEPC only, or additionally CAM-related isoforms. Only C. hilariana showed the third, probably root-specific isoform. The high homology of the PEPC from the intermediate species with the C3 protein indicates that for the reversible transition from the C3 to CAM mode of photosynthesis, the C3 type of PEPC is sufficient. Its expression, however, is strongly increased under CAM-inducing conditions. The use of the C3 isoform could have facilitated the evolution of CAM within the genus, which occurred independently for several times.  相似文献   

19.
Gas Exchange and Chlorophyll Fluorescence of C3 and C4 Saltmarsh Species   总被引:3,自引:0,他引:3  
Nieva  F.J.J.  Castellanos  E.M.  Figueroa  M.E.  Gil  F. 《Photosynthetica》1999,36(3):397-406
Spartina maritima (Curtis) Fernald, Spartina densiflora Brong, Arthrocnemum perenne (Miller) Moss, and Arthrocnemum fruticosum (L.) Moq are very frequent halophytes on the coasts of SW Europe. The first two are perennial Gramineae with C4 metabolism; the last two are perennial Chenopodiaceae with C3 metabolism. Controlled garden experiments were carried out with the four species to compare their physiological response, i.e., water potential (Ψ), net photosynthetic rate (PN), transpiration rate (E), stomatal conductance (gs), intercellular CO2 concentration (Ci), and chlorophyll fluorescence of photosystem (PS) 2 under saline and non-saline conditions. S. maritima behaves as an osmoconformer species, the other three as osmoregulators. In the four species, PN, E, and gs improved following freshwater irrigation. The variations in PN might be related with biochemical changes (which appear not to affect PS2), but not with significant stomatal fluctuations, which are associated with a lower water use efficiency in the case of Arthrocnemum. The species were segregated into two groups (not depending on their C3 or C4 photosynthetic pathway), in relation with the topographic level of this species in natural conditions: the relative responses of PN in S. maritima and A. perenne were lower than those of S. densiflora and A. fruticosum. The salt-tolerance index supports such segregation. S. densiflora demonstrated the best competitive possibilities against salt-tolerant glycophytes, with its more flexible response in saline or brackish environments, which explains its spreading along the rivers draining into the estuaries of the SW Iberian Peninsula. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
Understanding the interactions between terrestrial and aquatic ecosystems remains an important research focus in ecology. In arid landscapes, catchments are drained by a channel continuum that represents a potentially important driver of ecological pattern and process in the surrounding terrestrial environment. To better understand the role of drainage networks in arid landscapes, we determined how stream size influences the structure and productivity of riparian vegetation, and the accumulation of organic matter (OM) in soils beneath plants in an upper Sonoran Desert basin. Canopy volume of velvet mesquite (Prosopis velutina), as well as overall plant cover, increased along lateral upland–riparian gradients, and among riparian zones adjacent to increasingly larger streams. Foliar δ13C signatures for P. velutina suggested that landscape patterns in vegetation structure reflect increases in water availability along this arid stream continuum. Leaf litter and annual grass biomass production both increased with canopy volume, and total aboveground litter production ranged from 137 g m−2 y−1 in upland habitat to 446 g m−2 y−1 in the riparian zone of the perennial stream. OM accumulation in soils beneath P. velutina increased with canopy volume across a broad range of drainage sizes; however, in the riparian zone of larger streams, flooding further modified patterns of OM storage. Drainage networks represent important determinants of vegetation structure and function in upper Sonoran Desert basins, and the extent to which streams act as sources of plant-available water and/or agents of fluvial disturbance has implications for material storage in arid soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号