首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To recover some evolutionary aspects of the interaction between culicine larvae and dietary polyphenols of the vegetation surrounding mosquito breeding sites, we constructed a phylogeny of the most common French Aedes species, chosen as reference species. We also evaluated the differential resistance of these larval taxa to the polyphenols of leaf litter from the riparian vegetation used as a food source. Mitochondrial DNA sequence analysis was performed among 14 different taxa and ecotypes (Aedes aegypti, Ae. albopictus, Ae. cantans, Ae. caspius, Ae. cataphylla, Ae. cinereus, Ae. detritus, Ae. geniculatus, Ae. mariae, Ae. pullatus, Ae. punctor, Ae. rusticus, Ae. sticticus, and Ae. vexans) through direct sequencing of a 763-base segment of the cytochrome oxidase subunit I gene. Phylogenetic analysis, based on nucleotide and amino acid sequences, was conducted by means of parsimony and distance methods. The differential tolerance of larvae to vegetable leaf litter was comparatively tested by use of 10-month-old alder leaf litter as an experimental standard. The absence of correlation between resistance to polyphenols and molecular phylogeny suggests that larval adaptation to polyphenol-rich vegetable breeding sites is a labile character. The acquisition of such resistance appears not to be ancestrally inherited, but rather to be a dynamic adaptation to the environment. Molecular data also support the classical morphological classification within the Aedes genus.  相似文献   

2.
The larvicidal effects of polyphenols from dietary alder leaf litter were investigated in different field collections of three detritivorous Aedes taxa (Ae. detritus, Ae. cataphylla, Ae. rusticus) and compared to the cytochrome P450 monooxygenase, glutathione S-transferase, and esterase activities. Larvae from polyphenol-rich habitats had a higher tolerance for polyphenols and higher midgut cytochrome P450 and esterase activities than larvae from polyphenol-poor habitats. Furthermore, the role of P450 enzymes in the mechanism of resistance to alder polyphenols was suggested by the synergistic effect in vivo of piperonyl butoxide in the resistant Ae. rusticus. This confirms the importance of polyphenols to larval mosquito performance, and provides evidence for the importance of specific detoxification mechanisms for tolerance to dietary polyphenols. Arch.  相似文献   

3.
In order to examine the factors influencing xenobiotic toxicity against larval mosquitoes, the larvicidal performances of two conventional insecticides (temephos and Bacillus thuringiensis var. israelensis: Bti) and a new potential phyto-insecticide (decomposed leaf litter) were compared under different conditions against three detritivorous larval mosquito types. Bioassays performed under standard conditions indicated differential tolerance levels according to the xenobiotic and the larval type. Bioassays performed under different conditions of xenobiotic dose and geometry of the water column indicated differential effects of those parameters on mortality rates. This allowed us to distinguish the performances of temephos versus those of Bti and leaf litter. These toxicological performances were examined as indicators for analysis of xenobiotic bioavailability for mosquito larvae in environmental water, and also for their comparative interest in field mosquito control.  相似文献   

4.
Previously we described the mosquito larvicidal properties of decomposed leaf-litter from deciduous trees, especially the alder Alnus glutinosa (L) Gaertn., due to toxic polyphenols and other secondary compounds. To further examine the biocontrol potential of toxic leaf-litter for mosquito control, feeding rates of third-instar mosquito larvae were assessed for examples of three genera: Anopheles stephensi Liston, Aedes aegypti (L) and Culex pipiens L. (Diptera: Culicidae). When immersed in a suspension of non-toxic leaf-litter particles (approximately 0.4 mm), pre-starved larvae of all three species ingested sufficient material in 30 min to fill the anterior gut lumen (thorax plus two to three abdominal segments). Gut filling peaked after 1-2 h ingestion time, filling the intestine up to six to seven abdominal segments for Ae. aegypti, but maxima of five abdominal segments for Cx. pipiens and An. stephensi. Using three methods to quantify consumption of three materials by third-instar larvae of Ae. aegypti, the average amount of leaf-litter (non-toxic 0.4 mm particles) ingested during 3 h was determined as approximately 20 microg/larva (by dry weight and by lignin spectrophotometric assay). Consumption of humine (approximately 100 microm particles extracted from leaf-litter) during 3 h was approximately 80 microg/larva for Ae. aegypti, but only approximately 30 microg/larva for Cx. pipiens and 15 microg/larva for An. stephensi, with good concordance of determinations by dry weight and by radiometric assay. Cellulose consumption by Ae. aegypti was intermediate: approximately 40 microg/larva determined by radiometric assay. Apparent differences between the amounts of these materials ingested by Ae. aegypti larvae (humine four-fold, cellulose two-fold more than leaf-litter) may be attributed to contrasts in palatability (perhaps related to particle size or form), rather than technical discrepancies, because there was good concordance between results of both methods used to determine the amounts of humine and leaf-litter ingested. Bioassays of toxic leaf-litter (decomposed 10 months) with 4-h exposure period (ingestion time) ranked the order of sensitivity: Ae. aegypti (LC50 < 0.03 g/L) > An. stephensi (LC50 = 0.35 g/L) > Cx. pipiens (LC20 > 0.4 g/L). When immersed in the high concentration of 0.5 g/L toxic leaf-litter (0.4 mm particles), as little as 15-30 min ingestion time (exposure period) was sufficient to kill the majority of larvae of all three species, as soon as the gut lumen was filled for only the first few abdominal segments. Possibilities for mosquito larval control with toxic leaf-litter products and the need for standardized ingestion bioassays of larvicidal particles are discussed.  相似文献   

5.
The response of mosquito larvae to plant toxins found in their breeding sites was investigated by using Aedes aegypti larvae and toxic arborescent leaf litter as experimental models. The relation between larval tolerance to toxic leaf litter and cytochrome P450 monooxygenases (P450s) was examined at the toxicological, biochemical and molecular levels. Larvae pre-exposed to toxic leaf litter show a higher tolerance to those xenobiotics together with a strong increase in P450 activity levels. This enzymatic response is both time- and dose-dependent. The use of degenerate primers from various P450 genes (CYPs) allowed us to isolate 16 new CYP genes belonging to CYP4, CYP6 and CYP9 families. Expression studies revealed a 2.3-fold over-expression of 1 CYP gene (CYP6AL1) after larval pre-exposure to toxic leaf litter, this gene being expressed at a high level in late larval and pupal stages and in fat bodies and midgut. The CYP6AL1 protein has a high level of identity with other insect's CYPs involved in xenobiotic detoxification. The role of CYP genes in tolerance to natural xenobiotics and the importance of such adaptive responses in the capacity of mosquitoes to colonize new habitats and to develop insecticide resistance mechanisms are discussed.  相似文献   

6.
In order to examine the usefulness of detoxifying genes as molecular markers in different chemical environments, isolation of cytochrome P450 genes (CYPs) belonging to the CYP4 family was performed in different samples from two subalpine populations of Daphnia pulex. The use of degenerate primers allowed us to isolate seven cDNAs. Four of them were assigned to the CYP4C subfamily, and were closely related to previously isolated crustacean CYP4s while the others were assigned to new CYP4AN and CYP4AP subfamilies. Expression studies, using semiquantitative polymerase chain reaction (PCR) followed by Southern blot hybridization with specific probes revealed differences in CYP4C32 and CYP4AP1 expressions between the two populations, which differ in the polyphenol richness of the vegetation surrounding their aquatic habitat. Further exposure to toxic dietary polyphenols showed different CYP induction patterns. Taken together, these preliminary results suggest a possible involvement of CYP4s in the ecological differentiation of subalpine D. pulex populations related to the polyphenol richness of the environmental vegetation. CYP4s may thus be considered as possible molecular markers in aquatic environmental bioreporting.  相似文献   

7.
The larvicidal effects of polyphenols of natural crude decomposed alder leaf litter and commercially available tannic acid were experimentally compared with those of two common conventional insecticides (Bacillus thuringiensis ssp. israelensis: microbial insecticide; temephos: organophosphate insecticide). Comparative standard bioassays using third instar larval Aedes aegypti, A. albopictus, Culex pipiens and Coquillettidia richiardii as references indicated that Aedes and Culex taxa are far more sensitive to alder leaf litter than to tannic acid and conventional insecticides. C. richiardii is far more resistant to conventional insecticides than Aedes and Culex taxa, but its sensitivity to tannic acid is close to that of those taxa. Dietary vegetable polyphenols are thus proposed as new, practical, alternative chemicals for mosquito control when conventional insecticides are difficult and costly to be used (e.g., in the management of Aedes and Culex populations in man-made breeding sites and Coquillettidia control strategy).  相似文献   

8.
The relative toxicity of leaf litter to nematocerous dipteran larvae characteristic of mosquito developmental sites was investigated. Culicidae, Chironomidae, and Simuliidae taxa originating from alpine hydrosystems were tested together with two laboratory nonindigenous culicid taxa. Bioassays indicate that ingestion of 10-month-old decaying leaves from Alnus glutinosa, Populus nigra, and Quercus robur by larvae is more deleterious for Aedes aegypti, A. albopictus, Culex pipiens, Simulium variegatum, and Chironomus annularius than for A. rusticus. Histopathological observations reveal that the midgut epithelium is the main target organ of the toxic effect of dietary leaf litter, which appears to be stronger than that of previously reported tannic acid. There is a general response of the nematocerous larval midgut epithelium to dietary tannins-phenolic compounds: clear cells of the anterior midgut showing symptoms of intoxication before dark cells of the posterior midgut.  相似文献   

9.
Lentic freshwater systems including those inhabited by aquatic stages of mosquitoes derive most of their carbon inputs from terrestrial organic matter mainly leaf litter. The leaf litter is colonized by microbial communities that provide the resource base for mosquito larvae. While the microbial biomass associated with different leaf species in container aquatic habitats is well documented, the taxonomic composition of these microbes and their response to common environmental stressors is poorly understood. We used indoor aquatic microcosms to determine the abundances of major taxonomic groups of bacteria in leaf litters from seven plant species and their responses to low concentrations of four pesticides with different modes of action on the target organisms; permethrin, malathion, atrazine and glyphosate. We tested the hypotheses that leaf species support different quantities of major taxonomic groups of bacteria and that exposure to pesticides at environmentally relevant concentrations alters bacterial abundance and community structure in mosquito larval habitats. We found support for both hypotheses suggesting that leaf litter identity and chemical contamination may alter the quality and quantity of mosquito food base (microbial communities) in larval habitats. The effect of pesticides on microbial communities varied significantly among leaf types, suggesting that the impact of pesticides on natural microbial communities may be highly complex and difficult to predict. Collectively, these findings demonstrate the potential for detritus composition within mosquito larval habitats and exposure to pesticides to influence the quality of mosquito larval habitats.  相似文献   

10.
We investigated the direct and indirect effects of elevated atmospheric CO(2) on freshwater container habitats and their larval mosquito occupants. We predicted that a doubling of atmospheric CO(2) would (1) alter the chemical properties of water in this system, (2) slow degradation of leaf litter, and (3) decrease larval growth of Aedes albopictus (Skuse) mosquitoes raised on that litter under competitive conditions. Effects of elevated CO(2) on water quality parameters were not detected, but the presence of leaf litter significantly reduced pH and dissolved oxygen relative to water-filled containers without litter. Degradation rates of oak leaf litter from plants grown under elevated CO(2) atmospheres did not differ from breakdown rates of litter from ambient CO(2) conditions. Litter from plants grown in an elevated CO(2) atmospheres did not influence mosquito population growth, but mosquito production decreased significantly with increasing larval density. Differences among mosquito density treatments influenced survivorship most strongly among male Ae. albopictus and time to emergence most strongly among females, suggesting fundamental sex-determined differences in response to competition. Results of this and other studies indicate that direct and indirect effects of doubled atmospheric CO(2) are minimal in artificial containers with freshwater.  相似文献   

11.
M. A. S. Graça  J. M. Poquet 《Oecologia》2014,174(3):1021-1032
We tested the hypothesis that water stress and soil nutrient availability drive leaf-litter quality for decomposers and detritivores by relating chemical and physical leaf-litter properties and decomposability of Alnus glutinosa and Quercus robur, sampled together with edaphic parameters, across wide European climatic gradients. By regressing principal components analysis of leaf traits [N, P, condensed tannins, lignin, specific leaf area (SLA)] against environmental and soil parameters, we found that: (1) In Q. robur the condensed tannin and lignin contents increased and SLA decreased with precipitation, annual range of temperature, and soil N content, whereas leaf P increased with soil P and temperature; (2) In A. glutinosa leaves N, P, and SLA decreased and condensed tannins increased with temperature, annual range of temperature, and decreasing soil P. On the other hand, leaf P and condensed tannins increased and SLA decreased with minimum annual precipitation and towards sites with low temperature. We selected contrasting leaves in terms of quality to test decomposition and invertebrate consumption. There were intraspecific differences in microbial decomposition rates (field, Q. robur) and consumption by shredders (laboratory, A. glutinosa). We conclude that decomposition rates across ecosystems could be partially governed by climate and soil properties, affecting litter quality and therefore decomposers and detritivores. Under scenarios of global warming and increased nutrients, these results suggest we can expect species-specific changes in leaf-litter properties most likely resulting in slow decomposition with increased variance in temperatures and accelerated decomposition with P increase.  相似文献   

12.
Inter-annual variations in leaf-fall phenology and leaf-litter nitrogen concentration were investigated for 13 years in a coniferous plantation of hinoki cypress trees (Chamaecyparis obtusa Endlicher) in Kochi, southern Japan. Mean annual nitrogen concentration in the leaf litter ranged from 5.97 to 7.12 g kg−1. The removal of 30 percent of the trees’ basal area in the 3rd year had little effect on leaf-litter nitrogen concentration. The nitrogen concentration in the leaf litter was not correlated with the mean temperature from March to October. The leaf-fall duration, i.e., time between 10 and 90% of the annual leaf fall, was shorter and the leaf-litter nitrogen concentration was lower when the solar radiation from March to October was higher. The results suggest that the hinoki trees shed their leaves abruptly and have lower leaf-litter nitrogen concentration when the solar radiation is higher and that effects of temperature on leaf-fall properties may not be strong in warm climate areas.  相似文献   

13.
As a consequence of global warming, it is important to characterise the potential changes occurring for some functional processes through the intra-specific study of key species. Changes in species distribution, particularly when key or engineer species are affected, should contribute to global changes in ecosystem functioning. In this study, we examined the potential consequences induced by global warming on ecosystem functioning in term of organic matter recycling. We compared consumption of leaf litter by some shredder populations (Gammarus pulex) between five tree species inhabiting continental (i.e., the northern region of the Rhône River Valley) and/or Mediterranean (i.e., the southern region of the Rhône River Valley) conditions. To consider any potential adaptation of the gammarid population to vegetation in the same climate conditions, three populations of the key shredder Gammarus pulex from the northern region and three from the southern region of the Rhône River Valley were used. We experimentally compared the effects of the geographical origin of both the gammarid populations and the leaf litter species on the shredding activity and the physiological state of animals (through body triglyceride content). This study demonstrated that leaf toughness is more important than geographical origin for determining shredder leaf litter consumption. The overall consumption rate of the gammarid populations from the southern region of Rhône Valley was much higher than that of the populations from the northern region, but no clear differences between the origins of the leaf litter (i.e., continental vs. Mediterranean) were observed. The northwards shift of G. pulex populations adapted to warmer conditions might significantly modify organic matter recycling in continental streams. As gammarid populations can demonstrate local adaptations to certain leaf species as a trophic resource, changes in riparian vegetation associated with climate change might locally affect the leaf litter degradation process by this shredder.  相似文献   

14.
In two consecutive years, we analysed the effect of litter quality, quantity and decomposability on soil N at three characteristic sites of the Patagonian Monte. We assessed (i) concentrations of N, C, lignin and total phenolics and the C/N ratio in senesced leaves as indicators of litter quality of three species of each dominant plant life form (evergreen shrubs and perennial grasses), and (ii) N, and organic-C concentrations, potential N-mineralisation and microbial-N flush in the soil beneath each species. Rate constants of potential decomposition of senesced leaves and N content in decaying leaves during the incubation period were assessed in composite samples of the three sites as indicators of litter decomposability. Further, we estimated for each species leaf-litter production, leaf-litter on soil, and the mass of standing senesced leaves during the senescence period. Senesced leaves of evergreen shrubs showed higher decomposability than those of perennial grasses. Leaf-litter production, leaf-litter on soil, and the mass of standing senesced leaves differed significantly among species. The largest variations in leaf-litter production and leaf-litter on soil were observed in evergreen shrubs. The mass of standing senesced leaves was larger in perennial grasses than in evergreen shrubs. Nitrogen, organic C and potential N-mineralisation in soil were higher underneath evergreen shrubs than beneath perennial grasses, while no significant differences were found in microbial-N flush among life forms. The initial concentrations of C, N and total phenolics of senesced leaves explained together 78% of the total variance observed in the dry mass loss of decaying leaves. Litter decomposition rates explained 98%, 98%, 73%, and 67% of the total variance of soil N, organic C, net-N mineralisation, and microbial-N flush, respectively. We concluded that leaf-litter decomposition rates along with leaf-litter production are meaningful indicators of plant local effects on soil N dynamics in shrublands of the Patagonian Monte, and probably in other similar ecosystem of the world dominated by slow growing species that accumulate a wide variety of secondary metabolites including phenolics. Indicators such as C/N or lignin concentration usually used to predict litter decomposability or local plant effects may not be adequate in the case of slow growing species that accumulate a wide range of secondary metabolites or have long leaf lifespan and low leaf-litter production.  相似文献   

15.
Tetrachaetum elegans Ingold is a saprobic aquatic hyphomycete for which no sexual stage has yet been described. It occurs most commonly during the initial decay of tree leaves in temperate freshwater habitats and typically sporulates under water. Dispersal of the aquatic fungus takes place primarily in the water column and has a large passive component. Differences in substrate composition (e.g. quality of leaf litter) may also play a role in the distribution of different species or genotypes. The population genetic structure of T. elegans was studied using amplified fragment length polymorphism (AFLP) multilocus fingerprints. The populations were isolated from the leaf litter of three different tree genera, sampled in nine streams distributed throughout a mixed deciduous forest. Molecular markers were developed for 97 monosporic isolates using four selective primer pairs. A total of 247 fragments were scored, of which only 32 were polymorphic. Significant stream differentiation was detected for the isolates considered in this study. Analysis of molecular variance revealed that 20% of the genetic variation observed was the result of differences between streams. No correlation between genetic and geographical distances was found but a few multilocus genotypes were observed in different locations. Altogether these results suggest that environmental barriers play a role in the population structure of this aquatic fungus. No clear-cut effect of leaf litter composition on genetic variation could be demonstrated. Finally, tests of linkage disequilibrium between the 32 polymorphic AFLP loci as well as simulations did not provide a final answer regarding clonality in T. elegans. Indeed, it was possible to reject linkage equilibrium at different sampling levels and show that full linkage was unlikely.  相似文献   

16.
The nutrient base of aquatic tree-hole communities is derived from leaf litter, benthic detritus, and water flowing down the tree trunk (stemflow water). Previous studies in eastern North America with the mosquito, Aedes triseriatus, have identified leaf litter as a major and stemflow water as a minor source of mosquito nutrition, but did not consider the role of the benthic detritus or how the aggregate or relative contribution of these sources of mosquito nutrition changed during the year. We use the leaf litter, benthic detritus, and stemflow water from tree holes in western Oregon (USA) to determine how these substrates affect mass at metamorphosis, biomass yield, and fitness (cohort replacement rate; R 0) of the mosquito, Aedes sierrensis, through both natural and simulated winters, the normal growing season for larvae in tree holes. We found that fresh leaf litter constitutes the major determinant of mosquito fitness by a factor of >15:1 over any other substrate taken directly from tree holes in nature. The other substrates, including the benthic detritus, individually make only a meager contribution to mosquito fitness but, when added to the leaf litter, can sustain yield and improve fitness at high, limiting larval densities. Nutritional quality of tree-hole substrates declines by >90% from early (fall) to late (spring) in the larval growing season. At both times of year, the coarse or fine detritus provide minor resources, and stemflow water provides no detectable contribution to mosquito nutrition. The resources in the litter are not transported during the year to the benthic detritus; rather, these resources are either exploited by mosquitoes when they first become available, or they deteriorate and become progressively more unavailable to them. Growth and development of A. sierrensis feeding on dried and reconstituted tree-hole contents during a 6-month simulated winter in the laboratory showed: (1) the same relative contributions of leaf litter, benthic detritus, and stemflow water to mosquito nutrition, (2) that the winter deterioration of substrate quality is a direct consequence of microbial decomposition, and (3) that pre-emptive competition from pre-existing A. sierrensis greatly increases substrate deterioration. We conclude that the progressive winter deterioration of larval resources in combination with the dry summers of western North America are the most likely environmental factors that limit species diversity in tree holes and that have selected for early recruitment (autumnal hatching) of A. sierrensis and for its univoltine life cycle from Mexico to Canada. Received: 28 December 1999 / Accepted: 10 April 2000  相似文献   

17.
Cardisoma guanhumi is the focus of an important artisanal fishery in Puerto Rico. Data on land crab landings point towards a dramatic decline in their abundance. This is cause for concern given the intrinsic value of the fishery and the important role these crabs play in coastal ecosystems. In this paper we examine the effect of harvesting and habitat quality on the abundance, survival, and size structure of C. guanhumi. To accomplish this we conducted a capture-mark-recapture study for a period of 18 months at three localities with minimal or no harvesting, and three with intense harvesting. Habitat quality at the six study sites was assessed by measuring vegetation composition-structure and litter biomass. We also conducted a leaf consumption experiment to evaluate leaf litter selectivity and limitation. Mean crab abundance differed significantly among sites, and this variation was significantly explained by differences in crab survival among sites. Sites with less harvesting tended to have higher survivorship and more crabs than sites where harvesting took place. Crabs mean size differed among study sites and was inversely related to abundance. Vegetation composition and structure, leaf litter standing stock and leaf-litter consumption differed among study sites. However, only some of these habitat characteristics are directly related to crab abundance or demography. There is a tendency for sites with a high leaf litter standing stock and large basal area to have the largest crabs but in low abundance. This study shows that C. guanhumi populations are very sensitive to increases in mortality that result from harvesting, and that the historical decline in abundance of this crab in Puerto Rico can be explained, in part, by an increase in trapping effort. Our results also indicate that C. guanhumi is a very plastic species, capable of occupying diverse types of coastal forests and a leaf litter generalist.  相似文献   

18.
The genetic model plant Arabidopsis thaliana, like many plant species, experiences a range of edaphic conditions across its natural habitat. Such heterogeneity may drive local adaptation, though the molecular genetic basis remains elusive. Here, we describe a study in which we used genome-wide association mapping, genetic complementation, and gene expression studies to identify cis-regulatory expression level polymorphisms at the AtHKT1;1 locus, encoding a known sodium (Na(+)) transporter, as being a major factor controlling natural variation in leaf Na(+) accumulation capacity across the global A. thaliana population. A weak allele of AtHKT1;1 that drives elevated leaf Na(+) in this population has been previously linked to elevated salinity tolerance. Inspection of the geographical distribution of this allele revealed its significant enrichment in populations associated with the coast and saline soils in Europe. The fixation of this weak AtHKT1;1 allele in these populations is genetic evidence supporting local adaptation to these potentially saline impacted environments.  相似文献   

19.
BackgroundMosquitoes feed on plant-derived fluids such as nectar and sap and are exposed to bioactive molecules found in this dietary source. However, the role of such molecules on mosquito vectorial capacity is unknown. Weather has been recognized as a major determinant of the spread of dengue, and plants under abiotic stress increase their production of polyphenols.ResultsHere, we show that including polyphenols in mosquito meals promoted the activation of AMP-dependent protein kinase (AMPK). AMPK positively regulated midgut autophagy leading to a decrease in bacterial proliferation and an increase in vector lifespan. Suppression of AMPK activity resulted in a 6-fold increase in midgut microbiota. Similarly, inhibition of polyphenol-induced autophagy induced an 8-fold increase in bacterial proliferation. Mosquitoes maintained on the polyphenol diet were readily infected by dengue virus.ConclusionThe present findings uncover a new direct route by which exacerbation of autophagy through activation of the AMPK pathway leads to a more efficient control of mosquito midgut microbiota and increases the average mosquito lifespan. Our results suggest for the first time that the polyphenol content and availability of the surrounding vegetation may increase the population of mosquitoes prone to infection with arboviruses.  相似文献   

20.
One of the major unanswered questions in the study of global amphibian declines is why only some species or populations suffer declines. A possible explanation is that species and populations vary in the genetic basis of their tolerance to environmental stress such as chemical contamination. The presence of genetic variation in tolerance to chemicals and in fitness traits of amphibians is essential for persistence of species populations through survival and successful reproduction in contaminated environments. We tested for the presence of genetic variation in the tolerance of amphibian larvae to the insecticide carbaryl using gray treefrog tadpoles (Hyla versicolor). We also assessed whether tolerance of tadpoles is negatively associated with larval performance traits directly related to adult fitness, thereby providing a test of the "cost of tolerance" hypothesis. Our results demonstrate significant variation in tolerance of tadpoles to the insecticide carbaryl within a single population of the gray treefrog, Hyla versicolor. Our half-sibship design indicates that variation among sires explains a significant amount of the variation in chemical tolerance thereby suggesting a heritability genetic basis. Our results also indicate the presence of a fitness tradeoff with tolerance to the chemical carbaryl being negatively correlated, or traded off, with survival of tadpoles reared in the field in the absence of the chemical. Knowledge of genetic tradeoffs with chemical tolerance under realistic environmental conditions will be important for predicting the rate of adaptation and potential for persistence of species. Finally, the partitioning of environmental and genetic variation in tolerance to chemicals is critical to identifying which species are most susceptible, the amount of genetic variance present, the potential for adaptation to contaminants, and the presence of fitness tradeoffs. Such information is necessary to clearly understand the persistence of populations, and ultimately, the processes leading to species declines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号