首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The intracellular location of several enzymes concerned with phospholipid metabolism was investigated by examining their distribution in organelles separated on sucrose gradients from total homogenates of castor bean (Ricinus communis var. Hale) endosperm. The enzymes phosphatidic acid phosphatase, CDP-diglyceride-inositol transferase, and phosphatidyletha-nolamine-l-serine phosphatidyl transferase were all primarily or exclusively confined to membranes of the endoplasmic reticulum. These results and those reported previously on lecithin synthesis establish a major role of the endoplasmic reticulum in phospholipid and membrane synthesis in plant tissues.  相似文献   

2.
Biosynthesis of phospholipids in Bacillus megaterium.   总被引:4,自引:4,他引:0       下载免费PDF全文
Information on the biosynthesis of phospholipids in bacteria has been derived principally from the study of Escherichia coli and other gram-negative organisms. We have now carried out a detailed study of the pathways of phospholipid biosynthesis in the gram-positive organism Bacillus megarterium KM in relation to investigations on the biogenesis of lipid asymmetry in membranes. Radioactive precursors such as 32Pi and [3H]palmitate initially label phosphatidylethanolamine much more than phosphatidylglycerol. This raised the possibility that phosphatidylglycerol may be the precursor of phosphatidylethanolamine in a pathway different from that in E. coli. Phosphatidylglycerol is known to be highly reactive metabolically, since it functions as a donor of phosphatidyl residues in the synthesis of cardiolipin and as a donor of glycerophosphate residues in the synthesis of teichoic acids and of membrane-derived oligosaccharides. The large pool of phosphatidylglycerol would dilute the radioactive isotope, slowing the initial rate of incorporation of label into phosphatidylethanolamine. However, assays of cell-free extracts revealed no evidence for such a novel pathway. Instead, phosphatidylserine synthase (cytidine 5'-diphosphate-diglyceride:L-serine phosphatidyl transferase) and phosphatidylserine decarboxylase were detected, although at low levels. These results suggest that the pathway in B. megaterium is the same as that in E. coli in which phosphatidylserine, derived from cytidine 5'-diphosphate-diglyceride, is the precursor of phosphatidylethanolamine. The lag in the appearance of label in phosphatidylethanolamine appears to be the effect of a considerable pool of phosphatidylserine (ca. 5 to 10% of the total phospholipid) in certain strains of B. megaterium. The lag in labeling can be correlated with the size of the pool of phosphatidylserine. Pulse-chase experiments in vivo support the conclusion that in B. megaterium phosphatidylserine is not derived from phosphatidylglycerol. Rates of turnover of the membrane phospholipids of B. megaterium have also been studied.  相似文献   

3.
Pathways of phosphatidylcholine and triglyceride biosynthesis were studied in hepatic endoplasmic reticulum from castrated and noncastrated male rats pretreated with estradiol or testosterone. In vitro measurements of hepatic microsomal enzymes which catalyze phosphatidylcholine biosynthesis revealed a significant increase in the specific activity of the enzyme governing phosphatidylcholine biosynthesis by the sequential methylation of phosphatidylethanolamine in the estradiol-treated castrate animals. The specific activity of phosphorylcholine-glyceride transferase was decreased by estradiol treatment in both castrate and noncastrate animals. The specific activity of diglyceride acyltransferase, which catalyzes triglyceride biosynthesis, was decreased by estradiol pretreatment in both castrate and noncastrate animals and was increased by testosterone in the castrate animals. The changes in specific activity of the enzymes governing phosphatidylcholine biosynthesis may account for the previously noted increased in vivo incorporation of methyl groups of l-methionine into hepatic phosphatidylcholine in female and estradiol-treated animals; the data suggest that in female and estradiol-treated rats a greater proportion of hepatic phosphatidylcholine is synthesized by the stepwise methylation of phosphatidylethanolamine. The decrease in diglyceride acyltransferase specific activity seen after estradiol administration may account for the lipotropic-like effect of estradiol.  相似文献   

4.
The enzymes catalyzing the conversion of phosphatidylethanolamine to phosphatidylcholine were assayed by measuring the incorporation of label from [14C-CH3]-S-adenosyl-methionine into the endogenous phospholipids of particulate, cell-free preparations from S. cerevisiae grown in the presence of N-methylethanolamine, N,N-dimethylethanolamine, or choline. The results indicate that each base in the growth medium results in reduced levels of all the N-methyltransferase activity involved in the formation of the phosphatidyl ester of the given base. By following the conversion of exogenous [32P]-phosphatidyldimethylethanolamine to [32P]-phosphatidylcholine it has been shown that the activity of the third methyl transfer is 90% lower in particles prepared from choline grown cells than in particles prepared from cells grown without choline. The results suggest that there are at least two enzymes involved in the conversion of phosphatidylethanolamine to phosphatidylcholine and that their levels can be regulated individually.Supplementing the growth medium with any of the three methylated aminoethanols results in markedly increased cellular levels of their corresponding phosphatidyl esters and decreased levels of the precursor phosphatidyl esters. The fatty acid composition of phosphatidylcholine also changes when the medium is supplemented with choline suggesting that the proportions of the molecular species of this phosphatide depends on whether synthesis is via methylation of phosphatidylethanolamino or from the supplemented aminoethanol.  相似文献   

5.
Sauer, A. and Robinson, D. G. 1985. Subcellular localizationof enzymes involved in lecithin biosynthesis in maize roots.—J.exp. Bot. 36: 1257–1266. The distribution of several enzymes involved in phospholipidbiosynthesis in growing primary roots of maize seedlings hasbeen investigated. Whereas the terminal enzyme in lecithin biosynthesis,CDP-choline: phosphorylcholine diglyceride transferase, as wellas glycerophosphate acyltransferase are primarily membrane-boundwith activities being similarly distributed between endoplasmicreticulum and Golgi apparatus-rich fractions, more than two-thirdsof the activity of phosphoryicholine CTP: cytidyl transferaseis found in the cytosol. The remainder of this enzyme is almostexclusively associated with fractions rich in Golgi apparatusmembranes. In addition, minor activities for both of the lecithinbiosynthetic enzymes were found localized in the inner mitochondrialmembrane. Attempts at inducing a translocation of cytidyl transferaseactivity from the cytosol to the endoplasmic reticulum by incubationin vitro and in vivo with mixtures of unsaturated fatty acidsinhibited all lecithin biosynthetic activities (membrane-boundand soluble) measured here. These results are discussed in termsof a relative autonomy for the Golgi apparatus in cellular phospholipidbiosynthesis. Consequences for membrane-flow in plant cellsare briefly considered. Key words: Endoplasmic reticulum, fatty acids, Golgi apparatus, lecithin biosynthesis, maize roots, mitochondria  相似文献   

6.
Phospholipid biosynthesis in mammalian cells.   总被引:8,自引:0,他引:8  
Identification of the genes and gene products involved in the biosynthesis of phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine has lagged behind that in many other fields because of difficulties encountered in purifying the respective proteins. Nevertheless, most of these genes have now been identified. In this review article, we have highlighted important new findings on the individual enzymes and the corresponding genes of phosphatidylcholine synthesis via its two major biosynthetic pathways: the CDP-choline pathway and the methylation pathway. We also review recent studies on phosphatidylethanolamine biosynthesis by two pathways: the CDP-ethanolamine pathway, which is active in the endoplasmic reticulum, and the phosphatidylserine decarboxylase pathway, which operates in mitochondria. Finally, the two base-exchange enzymes, phosphatidylserine synthase-1 and phosphatidylserine synthase-2, that synthesize phosphatidylserine in mammalian cells are also discussed.  相似文献   

7.
Exposure of isolated rat hepatocytes to glucagon or chlorophenylthio cyclic AMP led to an inhibition of the incorporation of [1,2-14C]ethanolamine into phosphatidylethanolamine. Pulse-chase experiments and measurement of the activities of the enzymes involved in the CDP-ethanolamine pathway provided evidence that the inhibitory effect of glucagon on the synthesis de novo of phosphatidylethanolamine was not caused by a diminished conversion of ethanolamine phosphate into CDP-ethanolamine. The observations suggested that the glucagon-induced inhibition of the biosynthesis of phosphatidylethanolamine is probably due to a decreased supply of diacylglycerols, resulting in a decreased formation of phosphatidylethanolamine from CDP-ethanolamine and diacylglycerols.  相似文献   

8.
We have screened approximately 10,000 colonies of Chinese hamster ovary (CHO) cells immobilized on polyester cloth for mutants defective in [14C]ethanolamine incorporation into trichloroacetic acid-precipitable phospholipids. In mutant 29, discovered in this way, the activities of enzymes involved in the CDP-ethanolamine pathway were normal; however, the intracellular pool of phosphorylethanolamine was elevated, being more than 10-fold that in the parental CHO-K1 cells. These results suggested that the reduced incorporation of [14C]ethanolamine into phosphatidylethanolamine in mutant 29 was due to dilution of phosphoryl-[14C]ethanolamine with the increased amount of cellular phosphorylethanolamine. Interestingly, the rate of incorporation of serine into phosphatidylserine and the content of phosphatidylserine in mutant 29 cells were increased 3-fold and 1.5-fold, respectively, compared with the parent cells. The overproduction of phosphorylethanolamine in mutant 29 cells was ascribed to the elevated level of phosphatidylserine biosynthesis, because ethanolamine is produced as a reaction product on the conversion of phosphatidylethanolamine to phosphatidylserine, which is catalyzed by phospholipid-serine base-exchange enzymes. Using both intact cells and the particulate fraction of a cell extract, phosphatidylserine biosynthesis in CHO-K1 cells was shown to be inhibited by phosphatidylserine itself, whereas that in mutant 29 cells was greatly resistant to the inhibition, compared with the parental cells. As a conclusion, it may be assumed that mutant 29 cells have a lesion in the regulation of phosphatidylserine biosynthesis by serine-exchange enzyme activity, which results in the overproduction of phosphatidylserine and phosphorylethanolamine as well.  相似文献   

9.
The plasma membrane of Mycobacterium sp. is the site of synthesis of several distinct classes of lipids that are either retained in the membrane or exported to the overlying cell envelope. Here, we provide evidence that enzymes involved in the biosynthesis of two major lipid classes, the phosphatidylinositol mannosides (PIMs) and aminophospholipids, are compartmentalized within the plasma membrane. Enzymes involved in the synthesis of early PIM intermediates were localized to a membrane subdomain termed PMf, that was clearly resolved from the cell wall by isopyknic density centrifugation and amplified in rapidly dividing Mycobacterium smegmatis. In contrast, the major pool of apolar PIMs and enzymes involved in polar PIM biosynthesis were localized to a denser fraction that contained both plasma membrane and cell wall markers (PM-CW). Based on the resistance of the PIMs to solvent extraction in live but not lysed cells, we propose that polar PIM biosynthesis occurs in the plasma membrane rather than the cell wall component of the PM-CW. Enzymes involved in phosphatidylethanolamine biosynthesis also displayed a highly polarized distribution between the PMf and PM-CW fractions. The PMf was greatly reduced in non-dividing cells, concomitant with a reduction in the synthesis and steady-state levels of PIMs and amino-phospholipids and the redistribution of PMf marker enzymes to non-PM-CW fractions. The formation of the PMf and recruitment of enzymes to this domain may thus play a role in regulating growth-specific changes in the biosynthesis of membrane and cell wall lipids.  相似文献   

10.
The study of the phospholipid composition of 14 type strains of marine proteobacteria of the genus Pseudoalteromonas showed that phospholipids are the main polar lipid constituents of membranes in these proteobacteria. The phospholipid patterns of the strains studied were found to be similar and involved five phospholipids typical of gram-negative bacteria, namely, phosphatidylethanolamine, phosphatidylglycerol, bisphosphatidic acid, lysophosphatidylethanolamine, and phosphatidic acid. The major phospholipids were phosphatidylethanolamine and phosphatidylglycerol, which add up to 89-97% of total phospholipids; bisphosphatidic acid was dominant among minor phospholipids. The prevalence of phosphatidylethanolamine (62-77% of total phospholipids) and the absence of diphosphatidylglycerol are the characteristic features of most bacteria of this genus. As in Escherichia coli, the phospholipid composition of the marine proteobacteria depended on the presence of magnesium in the medium.  相似文献   

11.
The changes in the phospholipid composition of spermatozoa plasma membranes after freezing were determined by thin-layer chromatography. The results showed an augmentation of the diphosphatidylglycerol and a diminution of phosphatidylglycerol, phosphatidylserine, and phosphatidylethanolamine in sperm plasma membranes after freezing. In intact sperm cells we observed an elevation of the sphingomyelin and phosphatidylinositol levels and a diminution of the phosphatidylethanolamine and diphosphatidylglycerol levels. The effect of freezing on the phospholipid distribution between the inner and outer monolayers of the plasma membrane was also studied using exogenous phospholipases and trinitrobenzene sulfonate. The most important change we observed after freezing, was the translocation of diphosphatidylglycerol from the inner to the outer monolayer of the plasma membrane.  相似文献   

12.
Abstract— The subcellular distributions of UDP-N-acetylgalactosamine: GM3 N-acetyl-galactosaminyl transferase and UDP-galactose: GM2 galactosyl transferase, two enzymes involved in the biosynthesis of gangliosides, were determined in the 7-day-old rat brain by means of synaptosomal fractionation techniques. The enzymes were located on the synaptic membranes and appeared to be closely associated with gangliosides and acetylcholinesterase. Solubilization of the transferase enzymes from the microsomal particles was achieved and differed from the solubilization of acetylcholinesterase and of the total membrane protein. Competition studies suggest that the N-acetylgalactosaminyl transferase involved in the formation of GM2 from GM3 is different from the N-acetylgalactosaminyl transferase involved in the formation of GalNAoGal-Glc-ceramide from Gal-Glc-ceramide, whereas in contrast, both the formation of GM1 from GM2 and of Gal-GalNAc-Gal-Glcceramide from GalNAc-Gal-Glc-ceramide appear to be catalysed by the same galactosyl transferase.  相似文献   

13.
Plasmodium knowlesi-infected erythrocytes efficiently incorporated choline and metabolize it into phosphatidylcholine via the de novo Kennedy pathway. No formation of either betaine or acetylcholine was detected. At physiological concentrations of external choline, isotopic equilibrium between intracellular choline and phosphocholine was reached in less than 1 h, whereas labeled phosphatidylcholine accumulated constantly, until at least 210 min. During this time, intracellular CDP-choline remained quite low compared to phosphocholine, which suggests that choline-phosphate cytidylyltransferase (EC 2.7.7.15) is the rate-limiting step of the Kennedy pathway. However, this activity was probably not saturated in situ by phosphocholine, since the external choline concentration, up to 100 microM, can regulate phosphatidylcholine biosynthesis via the level of intracellular phosphocholine. This was corroborated by the respective velocities and affinity characteristics of the three enzymatic steps involved in the Kennedy pathway. These results, together with the localization of both choline metabolites and enzyme activities, provide a precise scheme of the dynamics of de novo phosphatidylcholine biosynthesis. Concerning the alternative pathway for phosphatidylcholine biosynthesis via the methylation of phosphatidylethanolamine, we show that an increase in de novo phosphatidylcholine biosynthesis could instigate a concomitant decrease in the steps of phosphatidylethanolamine methylation, indicating that the parasite is able to modulate its phosphatidylcholine biosyntheses.  相似文献   

14.
In the various subcellular fractions of rat liver 45-75% of the total dolichol was esterified with a fatty acid. The esterification reaction was localized exclusively in the microsomes, and the transferase activity is 3-fold higher in the cation-insensitive smooth microsomes than in other microsomal subfractions. Although fatty acyl-CoAs tested served as substrates, palmitoyl-CoA was the most rapidly utilized. None of the phosphatidylcholine or phosphatidylethanolamine species tested could be utilized to esterify dolichol with a fatty acid, indicating the absence of transacylation. alpha-Saturated dolichols were esterified at a higher rate than their alpha-unsaturated counterparts. Albumin and low concentrations of Triton X-100 activated the esterification reaction, which was not dependent on mono- or divalent cations, ATP, or CoA. The sensitivity of the transferase activity to trypsin indicates localization of the enzyme(s) involved on the outer surface of microsomes (i.e. the cytoplasmic surface of the endoplasmic reticulum), as is also the case for enzymes of dolichol biosynthesis. Transferase activity was detected in all tissues examined but at a much lower level than in liver and testis. The patterns of fatty acids in dolichol esters of different organelles exhibited some specificity. Labeling in vivo indicated that esterification of dolichol may play a role in targeting this lipid from the endoplasmic reticulum to lysosomes.  相似文献   

15.
The free fatty acid and phospholipid composition of 4 psychrophilic marineVibrio spp. have been determined in chemostat culture with glucose as the limiting substrate over a temperature range 0–20°C. All the isolates show maximum glucose and lactose uptake at 0°C and this correlates with maximum cell yield. None of the isolates contain fatty acids with a chain length exceeding 17 carbon atoms.Vibrio AF-1 andVibrio AM-1 respond to decreased growth temperatures by synthesizing increased proportions of unsaturated fatty acids (C15:1, C16:1 and C17:1) whereas inVibrio BM-2 the fatty acids undergo chain length shortening. The fourth isolate (Vibrio BM-4) contains high levels (60%) of hexadecenoic acid at all growth temperatures and the fatty acid composition changes little with decreasing temperature. The principal phospholipid components of the four psychrophilic vibrios were phosphatidylserine, phosphatidylglycerol, phosphatidylethanolamine and diphosphatidylglycerol. Lyso-phosphatidylethanolamine and 2 unknown phospholipids were additionally found inVibrio AF-1. The most profound effect of temperature on the phospholipid composition of these organisms was the marked increase in the total quantities synthesized at 0°C. At 15°C phosphatidylglycerol accumulated in the isolates as diphosphatidylglycerol levels decreased. Additionally inVibrio BM-2 andVibro BM-4 phosphatidylserine accumulates as phosphatidylethanolamine biosynthesis was similarly impaired. The observed changes in fatty acid and phospholipid composition in these organisms at 0°C may explain how solute transport is maintained at low temperature.Abbreviations PS Phosphatidylserine - PE phosphatidylethanolamine - PG phosphatidylglycerol - DPG diphosphatidylglycerol - lyso PE lysophosphatidylethanolamine  相似文献   

16.
The effect of cholesterol-supplemented diet on the activities of rat liver plasma membrane sphingomyelin-metabolizing enzymes and protein kinase C was studied. Protein kinase C, phosphatidylcholine:ceramide-phosphocholine transferase, and phosphatidylethanolamine:ceramide-phosphoethanolamine transferase activities were found to increase continuously and almost in parallel during the experimental period on cholesterol diet (days 10, 20, and 30). Linear regression analysis showed a positive correlation between these activities with correlation coefficients r = 0.959 for protein kinase C and phosphatidylcholine:ceramide-phosphocholine transferase, and r = 0.998 for protein kinase C and phosphatidylethanolamine:ceramide-phosphoethanolamine transferase. On the other hand, protein kinase C activation does not correspond to sphingomyelinase activity changes. These data suggest that protein kinase C activation observed in cholesterol-enriched plasma membranes is due to increased production of diacylglycerol and increased acylation of sphingosine to ceramide.  相似文献   

17.
Biosynthetic pathways of phosphatidylcholine and triglyceride were studied in proliferating hepatic endoplasmic reticulum of rats pretreated with phenobarbital. Phosphatidylcholine accounted for the major increment in membrane phospholipid. In vitro measurements of hepatic microsomal enzymes which catalyze phosphatidylcholine biosynthesis revealed a significant increase in specific activity of the enzyme governing phosphatidylcholine synthesis by sequential methylation of phosphatidylethanolamine. The specific activity of phosphorylcholine-glyceride transferase, which catalyzes phosphatidylcholine synthesis from d-1,2-diglyceride and CDP-choline, was not altered. Specific activity of diglyceride acyltransferase, which catalyzes triglyceride biosynthesis, was increased to a degree comparable to the increase in specific activity found in the phenobarbital-induced drug-metabolizing enzyme which oxidatively demethylates aminopyrine. In vivo incorporation of methyl-(3)H from l-methionine-methyl-(3)H into microsomal phosphatidylcholine was significantly increased, resulting in an increased methyl-(3)H to choline-1,2-(14)C incorporation ratio of more than three times that found in control animals. A comparable increase in this incorporation ratio was noted in serum phospholipids. The in vitro enzyme studies, in agreement with in vivo incorporation data, indicate that the increase in phosphatidylcholine content of phenobarbital-induced proliferating endoplasmic reticulum is related to increased activity of the pathway of phosphatidylcholine biosynthesis involving the sequential methylation of phosphatidylethanolamine.  相似文献   

18.
The study of the phospholipid composition of 14 type strains of marine proteobacteria of the genusPseudoalteromonas showed that phospholipids are the main polar lipid constituents of membranes in these proteobacteria. The phospholipid patterns of the strains studied were found to be similar and involved five phospholipids typical of gram-negative bacteria, namely, phosphatidylethanolamine, phosphatidylglycerol, bisphosphatidic acid, lysophosphatidylethanolamine, and phosphatidic acid. The major phospholipids were phosphatidylethanolamine and phosphatidylglycerol, which add up to 89–97% of the total phospholipids; bisphosphatidic acid was dominant among minor phospholipids. The prevalence of phosphatidylethanolamine (62–77% of the total phospholipids) and the absence of diphosphatidylglycerol are the characteristic features of most bacteria of this genus. As inEscherichia coli, the phospholipid composition of the marine proteobacteria depended on the presence of magnesium in the medium.  相似文献   

19.
Metabolism and functions of phosphatidylserine   总被引:1,自引:0,他引:1  
Phosphatidylserine (PS) is a quantitatively minor membrane phospholipid that is synthesized by prokaryotic and eukaryotic cells. In this review we focus on genes and enzymes that are involved in PS biosynthesis in bacteria, yeast, plants and mammalian cells and discuss the available information on the regulation of PS biosynthesis in these organisms. The enzymes that synthesize PS are restricted to endoplasmic reticulum membranes in yeast and mammalian cells, yet PS is widely distributed throughout other organelle membranes. Thus, mechanisms of inter-organelle movement of PS, particularly the transport of PS from its site of synthesis to the site of PS decarboxylation in mitochondria, are considered. PS is normally asymmetrically distributed across the membrane bilayer, thus the mechanisms of transbilayer translocation of PS, particularly across the plasma membrane, are also discussed. The exposure of PS on the outside surface of cells is widely believed to play a key role in the removal of apoptotic cells and in initiation of the blood clotting cascade. PS is also the precursor of phosphatidylethanolamine that is made by PS decarboxylase in bacteria, yeast and mammalian cells. Furthermore, PS is required as a cofactor for several important enzymes, such as protein kinase C and Raf-1 kinase, that are involved in signaling pathways.  相似文献   

20.
The subcellular distribution of enzymes involved in lipid biosynthesis in E. coli K12 has been studied following various modes of cell disruption and fractionation of the subcellular components. Though most biosynthetic enzymes were found associated with the cytoplasmic membrane fraction regardless of the procédures of disruption or fractionation employed, the enzymes responsible for the synthesis of the major lipid of E. coli (phosphatidylethanolamine) and of its precursor (phosphatidylserine) had no distinct localization in extracts. These findings are discussed in the context of current models for the assembly of bacterial membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号