共查询到20条相似文献,搜索用时 15 毫秒
1.
Manickam Sugumaran Steven J. Saul Victor Semensi 《Archives of insect biochemistry and physiology》1988,9(4):269-281
The mechanism of formation of quinone methide from the sclerotizing precursor N-acetyldopamine (NADA) was studied using three different cuticular enzyme systems viz. Sarcophaga bullata larval cuticle, Manduca sexta pharate pupae, and Periplaneta americana presclerotized adult cuticle. All three cuticular samples readily oxidized NADA. During the enzyme-catalyzed oxidation, the majority of NADA oxidized became bound covalently to the cuticle through the side chain with the retention of o-diphenolic function, while a minor amount was recovered as N-acetylnorepinephrine (NANE). Cuticle treated with NADA readily released 2-hydroxy-3′,4′-dihydroxyacetophenone on mild acid hydrolysis confirming the operation of quinone methide sclerotization. Attempts to demonstrate the direct formation of NADA-quinone methide by trapping experiments with N-acetylcysteine surprisingly yielded NADA-quinone-N-acetylcysteine adduct rather than the expected NADA-quinone methide-N-acetylcysteine adduct. These results are indicative of NADA oxidation to NADA-quinone and its subsequent isomerization to NADA-quinone methide. Accordingly, all three cuticular samples exhibited the presence of an isomerase, which catalyzed the conversion of NADA-quinone to NADA-quinone methide as evidenced by the formation of NANE—the water adduct of quinone methide. Thus, in association with phenoloxidase, newly discovered quinone methide isomerase seems to generate quinone methides and provide them for quinone methide sclerotization. 相似文献
2.
3-O-Hydrosulphato-4-hydroxyphenethylamine (dopamine 3-O-sulphate), a metabolite involved in the sclerotization of insect cuticle
下载免费PDF全文

Dopamine 3-O-sulphate (3-O-hydrosulphato-4-hydroxyphenethylamine) was isolated from newly ecdysed cockroaches, Periplaneta americana (L.), and its structure established by chemical and physical techniques and by synthesis. Relatively high concentrations (about 1mumol/g wet. wt.) of dopamine 3-O-sulphate exist in the newly ecdysed insect, and these concentrations decrease sharply as sclerotization of the cuticle proceeds. At least 40% of the radioactivity of (14)C-labelled dopamine 3-O-sulphate injected into newly ecdysed nymphs was recovered in the sclerotized cuticle 7-12 days after the injection. However, less than 1% of the radioactivity of injected dopamine 3-O-[(35)S]sulphate was recovered, and this value was not appreciably different from that for the incorporation of Na(2) (35)SO(4). Apparently, little or none of the sulphate moiety of dopamine 3-O-sulphate is incorporated directly into the cuticle as the intact sulphate ester. These observations are discussed in relation to current concepts of cuticular sclerotization in insects. 相似文献
3.
Locust cuticle is shown to contain an enzyme activating the β-position in the side chain of N-acetyldopamine. When isolated cuticle is incubated with N-acetyldopamine part of the substrate becomes incorporated into the cuticle and part of it forms soluble reaction products, one of which is identified as a dimer of N-acetyldopamine. In the structure suggested for the dimer both phenolic groups of one molecule of N-acetyldopamine are connected to the β-position of another. 相似文献
4.
5.
M Sugumaran L Giglio H Kundzicz S Saul V Semensi 《Archives of insect biochemistry and physiology》1992,19(4):271-283
The properties of cuticular enzymes involved in sclerotization of Drosophila melanogaster puparium were examined. The cuticle-bound phenoloxidase from the white puparium exhibited a pH optimum of 6.5 in phosphate buffer and oxidized a variety of catecholic substrates such as 4-methylcatechol, N-beta-alanyldopamine, dopa, dopamine, N-acetyldopamine, catechol, norepinephrine, 3,4-dihydroxyphenylglycol, 3,4-dihydroxybenzoic acid, and 3,4-dihydroxyphenylacetic acid. Phenoloxidase inhibitors such as potassium cyanide and sodium fluoride inhibited the enzyme activity drastically, but phenylthiourea showed marginal inhibition only. This result, coupled with the fact that syringaldazine served as the substrate for the insoluble enzyme, confirmed that cuticular phenoloxidase is of the "laccase" type. In addition, we also examined the mode of synthesis of the sclerotizing precursor, 1,2-dehydro-N-acetyldopamine. Our results indicate that this catecholamine derivative is biosynthesized from N-acetyldopamine through the intermediate formation of N-acetyldopamine quinone and N-acetyldopamine quinone methide as established for Sarcophaga bullata [Saul, S. and Sugumaran, M., F.E.B.S. Letters 251, 69-73 (1989)]. Accordingly, successful solubilization and fractionation of cuticular enzymes involved in the introduction of a double bond in the side chain of N-acetyldopamine indicated that they included o-diphenoloxidase, 4-alkyl-o-quinone:p-quinone methide isomerase, and N-acetyldopamine quinone methide:dehydro N-acetyldopamine isomerase and not any side chain desaturase. 相似文献
6.
A hitherto unnoticed, harder form of cuticle, which occurs on the mandibles of the Australian plague locust, Chortoicetes terminifera , is described 相似文献
7.
M Sugumaran V Semensi B Kalyanaraman J M Bruce E J Land 《The Journal of biological chemistry》1992,267(15):10355-10361
1,2-Dehydro-N-acetyldopamine (dehydro-NADA) is an important catecholamine derivative involved in the cross-linking of insect cuticular components during sclerotization. Since sclerotization is a vital process for the survival of insects, and is closely related to melanogenesis, it is of interest to unravel the chemical mechanisms participating in this process. The present paper reports on the mechanism by which dehydro-NADA is oxidatively activated to form reactive intermediate(s) as revealed by pulse radiolysis, electron spin resonance spectroscopy, high performance liquid chromatography, and ultraviolet-visible spectroscopic analysis. Pulse radiolytic one-electron oxidation of dehydro-NADA by N3. (k = 5.3 x 10(9) M-1 s-1) or Br2.- (k = 7.5 x 10(8) M-1 s-1) at pH6 resulted in the rapid generation of the corresponding semiquinone radical, lambda max 400 nm, epsilon = 20,700 M-1 cm-1. This semiquinone decayed to form a second transient intermediate, lambda max 485 nm, epsilon = 8000 M-1 cm-1, via a second order disproportionation process, k = 6.2 x 10(8) M-1 s-1. At pH 6 in the presence of azide, the first order decay of this second intermediate occurred over milliseconds; the rate decreases at higher pH. At pH 6 in the presence of bromide, the intermediate decayed much more slowly over seconds, k = 0.15 s-1. Under such conditions, the dependence of the first order decay constant upon parent dehydro-NADA concentration led to a second order rate constant of 8.5 x 10(2) M-1 s-1 for reaction of the intermediate with the parent, probably to form benzodioxan "dimers." (The term dimer is used for convenience; the products are strictly bisdehydrodimers of dehydro-NADA (see "Discussion" and Fig. 11)) Rate constants of 5.9 x 10(5), 4.5 x 10(5), 2.8 x 10(4) and 3.5 x 10(4) M-1 s-1 were also obtained for decay of the second intermediate in the presence of cysteine, cysteamine, o-phenylenediamine, and p-aminophenol, respectively. By comparison with the UV-visible spectroscopic properties of the two-electron oxidized species derived from dehydro-NADA and from 1,2-dehydro-N-acetyldopa methyl ester, it is concluded that the transient intermediate exhibiting absorbance at 485 nm is the quinone methide tautomer of the o-quinone of dehydro-NADA. Sclerotization of insect cuticle is discussed in the light of these findings. 相似文献
8.
Proteins solubilized from the pharate cuticle of Manduca sexta were fractionated by ammonium sulfate precipitation and activated by the endogenous enzymes. The activated fraction readily converted exogenously supplied N-acetyldopamine (NADA) to N-acetylnorepinephrine (NANE). Either heat treatment (70 degrees C for 10 min) or addition of phenylthiourea (2.5 microM) caused total inhibition of the side chain hydroxylation. If chemically prepared NADA quinone was supplied instead of NADA to the enzyme solution containing phenylthiourea, it was converted to NANE. Presence of a quinone trap such as N-acetylcysteine in the NADA-cuticular enzyme reaction not only prevented the accumulation of NADA quinone, but also abolished NANE production. In such reaction mixtures, the formation of a new compound characterized as NADA-quinone-N-acetylcysteine adduct could be readily witnessed. These studies indicate that NADA quinone is an intermediate during the side chain hydroxylation of NADA by Manduca cuticular enzyme(s). Since such a conversion calls for the isomerization of NADA quinone to NADA quinone methide and subsequent hydration of NADA quinone methide, attempts were also made to trap the latter compound by performing the enzymatic reaction in methanol. These attempts resulted in the isolation of beta-methoxy NADA (NADA quinone methide methanol adduct) as an additional product. Similarly, when the N-beta-alanyldopamine (NBAD)-Manduca enzyme reaction was carried out in the presence of L-kynurenine, two diastereoisomers of NBAD quinone methide-kynurenine adduct (= papiliochrome IIa and IIb) could be isolated.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
9.
Several catechol-derivatives have been isolated from acid hydrolysates of insect hard cuticle, and the two major compounds were identified as a hydroxy-ketocatechol, 2-hydroxy-3′,4′-dihydroxyacetophenone, and the corresponding aldehyde, 3,4-dihydroxyphenylglyoxal. It is shown that the glyoxal is formed from the former compound during hydrolysis. 相似文献
10.
Svend Olav Andersen 《Journal of insect physiology》1973,19(8):1603-1614
Femur cuticle from fifth instar larvae of the desert locust, Schistocerca gregaria, has been characterized with respect to composition, rate of deposition, and rate of sclerotization. The results are compared with those from adult cuticle of the same species. The protein compositions of the two types of cuticle are very similar, but the rates of deposition of both protein and chitin are different. The main difference is, however, that sclerotization is restricted to the first day after ecdysis in larval cuticle, whereas in adult cuticle sclerotization continues for at least a couple of weeks. The result is that the endocuticle remains untanned in the larvae, whereas in the adults the whole cuticle becomes tanned. 相似文献
11.
Identification of o-quinone/quinone methide metabolites of quercetin in a cellular in vitro system 总被引:16,自引:0,他引:16
Awad HM Boersma MG Boeren S van der Woude H van Zanden J van Bladeren PJ Vervoort J Rietjens IM 《FEBS letters》2002,520(1-3):30-34
Formation of quercetin quinone/quinone methide metabolites, reflected by formation of the glutathionyl quercetin adducts as authentic metabolites, was investigated in an in vitro cell model (B16F-10 melanoma cells). Results of the present study clearly indicate the formation of glutathionyl quercetin adducts in a tyrosinase-containing melanoma cell line, expected to be representative also for peroxidase-containing mammalian cells and tissues. The data obtained also support that the adducts are formed intracellular and subsequently excreted into the incubation medium and reveal for the first time evidence for the pro-oxidative metabolism of quercetin in a cellular in vitro model. 相似文献
12.
The problem of melaninogenesis and quinone tanning of the cuticle was examined by histochemical and biophysical methods (electroparamagnetic resonance: EPR) on normal subjects of Pycnoscelus surinamensis and on subjects with abnormal cuticular colour. The cuticle of abnormal subjects showed a lower content of polyphenolic substances and a greater positivity for the indole group. This suggests that in these insects tanning products can be synthetized differently and not derived from tyrosine but from tryptophan as postulated by Pryor (1955). Furthermore, a higher number of unsaturated aminic groups is found in abnormal subjects. Granules present only in the cytoplasm of the epidermal cells of the abnormal newly moulted subjects may indicate that the polyphenolic compound of tanning, secreted in an inactive form as 4-0, beta-glucoside, is not freed from the beta-glucosidase and remains as such in the cytoplasm. 相似文献
13.
Melanization and encapsulation of invading foreign organisms observed during the immune response in insects is known to be due to the action of activated phenoloxidase. Phenoloxidase-generated quinones are deposited either directly or after self-polymerization on foreign objects accounting for the observed reactions. Since the reactions of quinones are nonenzymatic, they do not discriminate self from nonself and hence will also destroy self-matter. In this report we present evidence for the presence of a novel quinone/quinone methide isomerase in the hemolymph of Sarcophaga bullata which destroys long-lived quinones and hence acts to protect the self-matter. Quinone methides, formed by the action of this enzyme on physiologically important quinones, being unstable undergo rapid hydration to form nontoxic metabolites. 相似文献
14.
The presence of a previously unidentified enzyme, tentatively designated 5-methylthioribose kinase, has been demonstrated in cell-free extracts of Enterobacter aerogenes. The enzyme catalyzes the ATP-dependent phosphorylation of 5-methylthioribose. ADP is one of the products of the reaction and, based on functional group analyses, the other product is 5-methylthioribose 1-phosphate. A 40-fold purified enzyme preparation has been obtained from a cell-free extract of E. aerogenes. Activity of the partially purified enzyme is totally dependent on the presence of a divalent cation and a sulfhydryl reagent. The substrate specificity of the enzyme is quite narrow, and the Km values for ATP and 5-methylthioribose are 7.4 X 10(-5) M and 8.1 X 10(-6) M, respectively. These results suggest that 5-methylthioribose kinase may be a primary enzyme involved in the recycling of the methylthio group of 5-methylthioribose back into methionine. 相似文献
15.
We have investigated the activation of p-cresol to form DNA adducts using horseradish peroxidase, rat liver microsomes and MnO(2). In vitro activation of p-cresol with horseradish peroxidase produced six DNA adducts with a relative adduct level of 8.03+/-0.43 x 10(-7). The formation of DNA adducts by oxidation of p-cresol with horseradish peroxidase was inhibited 65 and 95% by the addition of either 250 or 500 microM ascorbic acid to the incubation. Activation of p-cresol with phenobarbital-induced rat liver microsomes with NADPH as the cofactor; resulted in the formation of a single DNA adduct with a relative adduct level of 0.28+/-0.08 x 10(-7). Similar incubations of p-cresol with microsomes and cumene hydroperoxide yielded three DNA adducts with a relative adduct level of 0.35+/-0.03 x 10(-7). p-Cresol was oxidized with MnO(2) to a quinone methide. Reaction of p-cresol (QM) with DNA produced five major adducts and a relative adduct level of 20.38+/-1.16 x 10(-7). DNA adducts 1,2 and 3 formed by activation of p-cresol with either horseradish peroxidase or microsomes, are the same as that produced by p-cresol (QM). This observation suggests that p-cresol is activated to a quinone methide intermediate by these activation systems. Incubation of deoxyguanosine-3'-phosphate with p-cresol (QM) resulted in a adduct pattern similar to that observed with DNA; suggesting that guanine is the principal site for modification. Taken together these results demonstrate that oxidation of p-cresol to the quinone methide intermediate results in the formation of DNA adducts. We propose that the DNA adducts formed by p-cresol may be used as molecular biomarkers of occupational exposure to toluene. 相似文献
16.
Apolysis and the turnover of plasma membrane plaques during cuticle formation in an insect. 总被引:2,自引:0,他引:2
The apical plasma membranes of Calpodes epidermal cells have small fattened areas or plaques with an extra density upon their cytoplasmic face. The plaques are typically at the tips of microvilli. The are present during the deposition of fibrous cuticle and the cuticulin layer. Since the plaques are close (less than 15nm) to the sites where these kinds of cuticle first appear, they are presumed to have a role in their synthesis and/or deposition and orientation. When fifth stage larval cuticle deposition ceases prior to pupation, the plaques are lost as the area of the apical plasma membrane is reduced. The plaques pass from the surface into pinocytosis vesicles and multivesicular bodies where they are presumably digested. The loss of plaques occurs as the blood level of moulting hormone reaches a peak at the critical period after which the prothoracic glands are no longer needed for pupation. Apolysis or separation of the epidermis from the old cuticle is the stage when plaques are absent, the old ones have been lost but the new ones have yet to form. After the critical period, the epidermis prepared for pupation with a phase of elevated RNA synthesis at the end of which plaques and microvilli reform in time to secrete the new cuticulin layer and later the fibrous cuticle of the pharate pupa. There is a new generation of plaques for each moult and succeeding intermoult and each generation is involved in two kinds of cuticle deposition before involution and redifferentiation. 相似文献
17.
Alex Bayés Anka Sonnenschein Xavier Daura Josep Vendrell Francesc X Aviles 《European journal of biochemistry》2003,270(14):3026-3035
Although there is a significant knowledge about mammalian metallocarboxypeptidases, the data available on this family of enzymes is very poor for invertebrate forms. Here we present the biochemical characterization of a metallocarboxypeptidase from the insect Helicoverpa armigera (Lepidoptera: Noctuidae), a devastating pest spread in subtropical regions of Europe, Asia, Africa and Oceania. The zymogen of this carboxypeptidase (PCPAHa) has been expressed at high levels in a Pichia pastoris system and shown to display the characteristics of the enzyme purified from the insect midgut. The in vitro activation process of the proenzyme differs significantly from the mammalian ones. The lysine-specific endoprotease LysC activates PCPAHa four times more efficiently than trypsin, the general activating enzyme for all previously studied metalloprocarboxypeptidases. LysC and trypsin independently use two different activation targets and the presence of sugars in the vicinity of the LysC activation point affects the activation process, indicating a possible modulation of the activation mechanism. During the activation with LysC the prodomain is degraded, while the carboxypeptidase moiety remains intact except for a C-terminal octapeptide that is rapidly released. Interestingly, the sequence at the cleavage point for the release of the octapeptide is also found at the boundary between the activation peptide and the enzyme moieties. The active enzyme (CPAHa) is shown to have a very broad substrate specificity, as it appears to be the only known metallocarboxypeptidase capable of efficiently hydrolysing basic and aliphatic residues and, to a much lower extent, acidic residues. Two carboxypeptidase inhibitors, from potato and leech, were tested against CPAHa. The former, of vegetal origin, is the most efficient metallocarboxypeptidase inhibitor described so far, with a Ki in the pm range. 相似文献
18.
Early on, we reported the partial purification of prophenoloxidase-activating proteinase-1 (PAP-1) from the tobacco hornworm, Manduca sexta [Proc. Natl. Acad. Sci. USA 95 (1998) 12220]. PAP-1 requires an auxiliary factor for generating active phenoloxidase (PO) [Insect Biochem. Mol. Biol. 33 (2003) 197; Insect Biochem. Mol. Biol. 34 (2004) 731]. To further characterize their roles in the proteolytic activation of prophenoloxidase (proPO), we purified PAP-1 to near homogeneity by hydroxylapatite, dextran sulfate, gel filtration, and lectin affinity chromatography. With 2.4 x 10(3)-fold purification and 20% yield, we obtained 63 microg PAP-1 from about 120 M. sexta prepupal cuticles (approximately 400 g). The purified glycoprotein (Mr=39,810+/-20; pI=5.6) had the highest amidase activity at pH 8.0 and a low salt concentration. The optimal conditions for proPO activation by PAP-1 and SPHs were: pH 8.0-8.4, PAP:SPH=1.5:1, and 0-10 degrees C for 40-50 min. While PAP-1 and SPHs are reasonably heat stable, PO activity generated after 1h incubation was lower at 20 or 30 degrees C than 0-10 degrees C because activated PO was unstable at a higher temperature. The KMs of PAP-1 toward IEARpNA and proPO were 201+/-18 microM and 16.6+/-3.0 microg/ml, respectively, and the absence of SPHs did not significantly affect KM for the synthetic substrate. PO activity and proPO cleavage were reduced in reaction mixtures containing the same amounts of proPO, PAP-1, and SPHs but increasing concentrations of NaCl. Ionic strength of the reaction buffer may reduce proPO-PAP-SPH interactions, proPO processing, and PO assembly. 相似文献
19.
Characterization of dopamine receptors involved in central thermoregulation in rabbits. 总被引:1,自引:0,他引:1
A K Srivastava Y P Srivastava P P Gupta R B Verma 《Indian journal of experimental biology》1991,29(11):1087-1088
Intracerebroventricularly administered dopamine produced dose dependent hyperthermia in rabbits. Haloperidol, a D1 receptor blocker produced consistent hypothermia, whereas D2 receptor blocker metoclopramide produced hyperthermia, pretreatment with haloperidol competitively blocked the hyperthermic response of dopamine. Pretreatment with metoclopramide augmented the onset and peak response of dopamine. It is suggested that D1 receptors are involved in producing hyperthermia and D2 receptors in hypothermia. 相似文献
20.
Bacteriophage-T7-induced DNA-priming protein. A novel enzyme involved in DNA replication. 总被引:11,自引:0,他引:11
E Scherzinger E Lanka G Morelli D Seiffert A Yuki 《European journal of biochemistry》1977,72(3):543-558
The T7gene-4 protein has been purified to near homogeneity using a complementation assay in vitro, and it is designated T7 DNA-priming protein (DNA primase). The purified enzyme enables T7 DNA polymerase to initate DNA synthesis on various circular single-stranded DNA templates by a mechanism which involes the synthesis of a very short RNA primer. The oligoribonucleotide, which is linked to the product DNA via a 3':5'-phosphodiester bond, starts with pppA-C and terminates predominantly with AMP. When only ATP and CPT are precursors, the RNA primer is found to be primarily a tetranucleotide of the sequence pppA-C-C-A. Using oligoribonucleotides in place of ribonucleoside triphosphates as chain initators, T7 DNA-priming protein drastically increases the efficiency with which T7 DNA polymerase can utilize particular tetranucleotide primers containing A and C residues. T7 DNA-priming protein also enables T7 DNA polymerase to make use of native or nicked duplex T7 DNA as template-primer. This reaction does not require ribonucleoside triphosphates, although their addition enhances DNA synthesis 2--4 fold. The product formed in their absence is covalently attached to the template DNA and is found to contain a few long branches when examined by electron microscopy. In the presence of ribonucleoside triphosphates most of the newly made product arises from imitation of DNA chains de novo. Incubation of three proteins: T7 DNA-priming protein, T7 DNA polymerase, and T7 DNA-binding protein, with ribonucleoside and deoxyribonucleoside triphosphates, and with phiX174DNA as template leads to the generation of 'rolling circle-like' structures as visualized in the electron microscope. Single-stranded regions at the tail-circle junction indicate that initations can occur de novo on the displaced complementary strand. This is consistent with a discontinuous mode of 'lagging' strand synthesis and suggests that the same proteins may also be responsible for fork propagation in vivo. 相似文献