首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ohsawa S  Miura M 《FEBS letters》2006,580(25):5875-5879
Silent information regulator 2 (Sir2) is an NAD(+)-dependent histone deacetylase that establishes repressive chromatin status and extends the life span of both budding yeast and the nematode worm Caenorhabditis elegans. There is growing evidence that its mammalian homologue Sir2alpha protects cells from stress-induced apoptosis. We report here that mammalian Sir2alpha was directly cleaved by both initiator and executioner caspases, and relocated from the nucleus to the cytoplasm in apoptotic cells. These alterations of Sir2alpha were largely inhibited by a caspase-9 dominant-negative mutant or Bcl-xL. Our results indicate that Sir2alpha undergoes dynamic changes in caspase-dependent manner during apoptosis.  相似文献   

2.
3.
4.
Recent studies have implicated the dying cell as a potential reservoir of modified autoantigens that might initiate and drive systemic autoimmunity in susceptible hosts. The spliceosomal Sm proteins are recognized by the so-called anti-Sm autoantibodies, an antibody population found exclusively in patients suffering from systemic lupus erythematosus. We have studied the effects of apoptosis on the Sm proteins and demonstrate that one of the Sm proteins, the Sm-F protein, is proteolytically cleaved in apoptotic cells. Cleavage of the Sm-F protein generates a 9-kDa apoptotic fragment, which remains associated with the U snRNP complexes in apoptotic cells. Sm-F cleavage is dependent on caspase activation and the cleavage site has been located near the C-terminus, EEED(81) downward arrow G. Use of different caspase inhibitors suggests that besides caspase-8 other caspases are implicated in Sm-F cleavage. A C-terminally truncated mutant of the Sm-F protein, representing the modified form of the protein, is capable of forming an Sm E-F-G complex in vitro that is recognized by many anti-Sm patient sera.  相似文献   

5.
We examined how pigment epithelium derived factor (PEDF), an effective endogenous antiangiogenic protein, decreases survival of primary cultures of human umbilical vein endothelial cells (HUVECs) in a low serum environment supplemented with the endothelial cell growth factor (VEGF). We provide evidence that induction of apoptosis by PEDF is associated with activation of p38 followed by cleavage of caspases 3, 8, and 9 by treatment with PEDF, and PEDF's actions are caspase dependent. A key mediator in the executioner effects of PEDF is p38 since the inhibition of p38 activity blocked apoptosis and prevented cleavage of caspases 3, 8, and 9. Although PEDF-induced phosphorylation of JNK1, the inhibition of JNK1 had no effect on apoptosis, even though it prevented phosphorylation of JNK1 by PEDF. Based on these findings, we propose that the antiangiogenic action of PEDF is dependent on activation of p38 MAPkinase which regulates cleavage of multiple caspases cascades.  相似文献   

6.
Lee SC  Chan J  Clement MV  Pervaiz S 《Proteomics》2006,6(8):2386-2394
The study investigated the molecular basis of resveratrol (RSV)-evoked apoptosis in four (Bax+/-, Bax-/-, p53+/+, and p53-/-) HCT116 colon cancer cell lines. RSV induced apoptosis in all the cells in a dose-dependent manner; however, Bax+/- and p53+/+ cells were more susceptible than their knockout counterparts (Bax-/- and p53-/-, respectively). Using Bax+/- cells as a model, proteomic analysis revealed four RSV-responsive events: fragmentation of lamin A/C protein; increase in concentration of a more basic isoelectric variant of the ribosomal protein P0; and decrease in concentration of dUTPase as well as stathmin 1. Lamin A cleavage in response to RSV treatment was confirmed using Western blot analysis. Caspase-6 was activated, which was evidenced by cleavage and accumulation in active form of caspase-6 as well as upregulation of the protease activity. RSV-elicited lamin A cleavage and apoptosis were entirely abrogated by the peptide inhibitors of caspase-6. Likewise, partial knockdown of caspase-6 expression using small interfering RNA resulted in significant inhibition of RSV-elicited lamin A cleavage and apoptosis. Furthermore, the lower apoptosis sensitivity of the knockout cells (Bax-/- and p53-/-) correlated with the relatively reduced processing of caspase-6 and lamin A cleavage. Taken together, these data highlight the critical role of caspase-6 and its cleavage of lamin A in apoptotic signaling triggered by RSV in the colon carcinoma cells, which can be activated in the absence of Bax or p53.  相似文献   

7.
Yes-associated protein (YAP) regulates DNA damage and chemosensitivity, as well as functioning as a pro-growth, cell size regulator. For both of its roles, regulation by phosphorylation is crucial. We undertook an in vitro screen to identify novel YAP kinases to discover new signaling pathways to better understand YAP''s function. We identified JNK1 and JNK2 as robust YAP kinases, as well as mapped multiple sites of phosphorylation. Using inhibitors and siRNA, we showed that JNK specifically phosphorylates endogenous YAP in a number of cell types. We show that YAP protects keratinocytes from UV irradiation but promotes UV-induced apoptosis in a squamous cell carcinoma. We defined the mechanism for this dual role to be YAP''s ability to bind and stabilize the pro-proliferative ΔNp63α isoform in a JNK-dependent manner. Our report indicates that an evaluation of the expression of the different isoforms of p63 and p73 is crucial in determining YAP''s function.  相似文献   

8.
JNK1/2 proteins belong to the family of stress-activated protein kinases. They play a complex role in growth regulation, inducing either cell death or growth support. In this report, we provide evidence that, in human melanoma cells, JNK inhibition with the small molecule inhibitor SP600125 induces either predominantly a G2/M arrest or apoptosis depending on the cell line. In 1205Lu cells, JNK inhibition induced cell cycle arrest through p53-dependent induction of p21 Cip1/Waf1 expression, while in WM983B cells, induction of apoptosis by JNK inhibition was accompanied by p53, Bad and Bax induction, not p21 Cip1/Waf1. JNK inhibition with the small molecule inhibitor SP600125 slowed growth of all cell lines, although the effect was markedly greater in cells exhibiting high phospho- (P-)JNK1 levels. Specific gene knockdown of JNK1 by means of siRNA oligonucleotides inhibited cell growth only in melanoma cell lines exhibiting high P-JNK1 levels. siRNAs directed against JNK2 did not reduce cell growth in any of the cell lines tested. Together, our findings demonstrate that JNK, and in particular the JNK1 isoform, support the growth of melanoma cells, by controlling either cell cycle progression or apoptosis depending on the cellular context.  相似文献   

9.
Recent studies have implicated the dying cell as a potential reservoir of modified autoantigens that might initiate and drive systemic autoimmunity in susceptible hosts. A number of subunits of the exosome, a complex of 3'→5' exoribonucleases that functions in a variety of cellular processes, are recognized by the so-called anti-PM/Scl autoantibodies, found predominantly in patients suffering from an overlap syndrome of myositis and scleroderma. Here we show that one of these subunits, PM/Scl-75, is cleaved during apoptosis. PM/Scl-75 cleavage is inhibited by several different caspase inhibitors. The analysis of PM/Scl-75 cleavage by recombinant caspase proteins shows that PM/Scl-75 is efficiently cleaved by caspase-1, to a smaller extent by caspase-8, and relatively inefficiently by caspase-3 and caspase-7. Cleavage of the PM/Scl-75 protein occurs in the C-terminal part of the protein at Asp369 (IILD369↓G), and at least a fraction of the resulting N-terminal fragments of PM/Scl-75 remains associated with the exosome. Finally, the implications of PM/Scl-75 cleavage for exosome function and the generation of anti-PM/Scl-75 autoantibodies are discussed.  相似文献   

10.
The present study characterizes the molecular mechanisms of CD95L-induced inhibition of IL-6 signaling, which is known to mediate hepatoprotective effects in response to various toxins. CD95L-induced caspase activation leads to degradation of gp130, thereby suppressing IL-6-induced phosphorylation of STAT3 (Tyr705) and of tyrosine phosphatase SHP2 (Tyr580). Degradation of gp130 protein in response to CD95L was largely prevented after inhibition of caspase 3 or 8. Introduction of a point mutation into a newly identified caspase cleavage site located within position 800–806 (DHVDGGD) of the cytoplasmic tail of gp130 leads to cleavage resistance of the respective receptor in an in vitro assay with recombinant active caspase 3. Correspondingly, the release of a C-terminal gp130-cleavage product of approximately 18 kDa was also inhibited after mutagenesis of this cleavage motif. In conclusion, this study demonstrates that caspase activation by CD95L antagonizes IL-6 signaling by a caspase-mediated cleavage of gp130 thereby probably counteracting hepatoprotective effects of IL-6.  相似文献   

11.
MPTP (1-methyl-1,2,3,6-tetrahydropyridine), a chemical contaminant of synthetic heroin, induces neuropathological changes with clinical features similar to idiopathic Parkinson's disease. The mechanism by which MPTP and its metabolite MPP(+)(1-methyl-4-phenylpyridinium) induces neuronal cell death remains unclear. We employed primary cortical/telencephalon neuronal cultures to investigate the potential role of caspase and stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK) pathways in MPP(+)-induced neuronal death. DNA fragmentation and caspase-3 activity analysis showed that cortical neuronal cells underwent apoptosis after MPP(+)treatment. However, a basal level of apoptotic cells was also observed in untreated cultures. Interestingly, JNK activity increased in untreated cultures over time, whereas it was down-regulated after MPP(+)treatment. This indicates that the JNK pathways could be differentially regulated in different apoptotic processes.  相似文献   

12.
c-Abl protein tyrosine kinase plays an important role in cell cycle control and apoptosis. Furthermore, induction of apoptosis correlates with the activation of c-Abl. Here, we demonstrate the cleavage of c-Abl by caspases during apoptosis. Caspases separate c-Abl into functional domains including a Src-kinase, a fragment containing nuclear import sequences, a fragment with an actin-binding domain and nuclear export sequence. Caspase cleavage increases the kinase activity of c-Abl as demonstrated by in vitro kinase assays as well as by auto- and substrate phosphorylation. Cells in which c-Abl expression was knocked down by RNA interference resisted cisplatin- but not TNFalpha-induced apoptosis. A similar selective resistance against cisplatin-induced apoptosis was observed when cleavage resistant c-Abl was overexpressed in treated cells. Our data suggest the selective requirement of c-Abl cleavage by caspases for stress-induced, but not for TNFalpha-induced apoptosis.  相似文献   

13.
Rho family GTPases Rac and Cdc42 are pivotal regulators of apoptosis in multiple cell types. However, little is known about the mechanism by which these GTPases are regulated in response to apoptotic stimuli. Here, we demonstrate that TIAM1, a Rac-specific guanine nucleotide exchange factor, is cleaved by caspases during apoptosis. TIAM1 cleavage occurs in multiple cell lines in response to diverse apoptotic stimuli such as ceramide, Fas, and serum deprivation. Processing occurs at residue 993 of TIAM1 and removes the NH(2)-terminal of TIAM's two pleckstrin homology domains, leaving a stable fragment containing the Dbl homology and COOH-terminal pleckstrin homology domains. This leads to functional inactivation of TIAM1, as determined by failure of the cleavage product to stimulate GTP loading of Rac in vivo. Furthermore, this product is defective in signaling to two independent Rac effectors, c-Jun NH(2)-terminal kinase and serum response factor. Finally, we demonstrate that in cells treated with ceramide, cleavage of TIAM1 coincided with the inactivation of endogenous Rac. These results reveal a novel mechanism for regulating guanine nucleotide exchange factor activity and GTPase-mediated signaling pathways.  相似文献   

14.
Reticulons (RTNs) are a large family of transmembrane proteins present throughout the eukaryotic domain in virtually every cell type. Despite their wide distribution, their function is still mostly unknown. RTN4, also termed Nogo, comes in three isoforms, Nogo-A, -B, and -C. While Nogo-A has been described as potent inhibitor of nerve growth, Nogo-B has been implicated in vascular remodeling and regulation of apoptosis. We show here that Nogo-B gets cleaved by caspase-7, but not caspase-3, during apoptosis at a caspase nonconsensus site. By a combination of MS and site-directed mutagenesis we demonstrate that proteolytic processing of Nogo-B is regulated by phosphorylation of Ser(16) within the cleavage site. We present cyclin-dependent kinase (Cdk)1 and Cdk2 as kinases that phosphorylate Nogo-B at Ser(16) in vitro. In vivo, cleavage of Nogo-B is markedly increased in Schwann cells in a lesion model of the rat sciatic nerve. Taken together, we identified an RTN protein as one out of a selected number of caspase targets during apoptosis and as a novel substrate for Cdk1 and 2. Furthermore, our data support a functionality of caspase-7 that is distinct from closely related caspase-3.  相似文献   

15.
The mammalian Golgi complex is comprised of a ribbon of stacked cisternal membranes often located in the pericentriolar region of the cell. Here, we report that during apoptosis the Golgi ribbon is fragmented into dispersed clusters of tubulo-vesicular membranes. We have found that fragmentation is caspase dependent and identified GRASP65 (Golgi reassembly and stacking protein of 65 kD) as a novel caspase substrate. GRASP65 is cleaved specifically by caspase-3 at conserved sites in its membrane distal COOH terminus at an early stage of the execution phase. Expression of a caspase-resistant form of GRASP65 partially preserved cisternal stacking and inhibited breakdown of the Golgi ribbon in apoptotic cells. Our results suggest that GRASP65 is an important structural component required for maintenance of Golgi apparatus integrity.  相似文献   

16.
17.
We provide here evidence that c-Jun N-terminal protein kinase 1 (JNK1) activity is differentially up-regulated during apoptosis of SK-HEP-1 cells after treatment with ginsenoside Rh2 (G-Rh2). The G-Rh2-mediated JNK1 activation that occurred for the first 10-30min was associated with SEK1 activity, but thereafter, the sustained activation was associated not with SEK1 activity, but with proteolytic cleavage of JNK1-associated p21(WAF1/CIP1). Supporting this is that the expression of the dominant negative SEK1 mutant effectively blocked the early JNK1 activation phase but did not alter the sustained activation phase or apoptosis. Furthermore, expression of p21D112N, an uncleavable mutant of p21(WAF1/CIP1), suppressed the later JNK1 activation. Moreover, the stable overexpression of ectopic JNK1 suppressed apoptosis while expression of the dominant negative JNK1 mutant promoted it. We propose that the early SEK1-associated JNK1 activation phase acts to prolong cell survival in response to apoptosis-inducing agents, thereby serving as an intervening checkpoint prior to the commitment to apoptosis.  相似文献   

18.
Treatment of pancreatic acinar cells by hydrogen sulphide has been shown to induce apoptosis. However, a potential role of mitogen-activated protein kinases (MAPKs) in this apoptotic pathway remains unknown. The present study examined the role of MAPKs in H2S-induced apoptosis in mouse pancreatic acinar cells. Pancreatic acinar cells were treated with 10 μM NaHS (a donor of H2S) for 3 hrs. For the evaluation of the role of MAPKs, PD98059, SP600125 and SB203580 were used as MAPKs inhibitors for ERK1/2, JNK1/2 and p38 MAPK, respectively. We observed activation of ERK1/2, JNK1/2 and p38 when pancreatic acini were exposed to H2S. Moreover, H2S-induced ERK1/2, JNK1/2 and p38 activation were blocked by pre-treatment with their corresponding inhibitor in a dose-dependent manner. H2S-induced apoptosis led to an increase in caspase 3 activity and this activity was attenuated when caspase 3 inhibitor were used. Also, the cleavage of caspase 3 correlated with that of poly-(ADP-ribose)-polymerase (PARP) cleavage. H2S treatment induced the release of cytochrome c , smac from mitochondria into the cytoplasm, translocation of Bax into mitochondria and decreased the protein level of Bcl-2. Inhibition of ERK1/2 using PD98059 caused further enhancement of apoptosis as evidenced by annexin V staining, while SP600125 and SB203580 abrogated H2S-induced apoptosis. Taken together, the data suggest that activation of ERKs promotes cell survival, whereas activation of JNKs and p38 MAP kinase leads to H2S-induced apoptosis.  相似文献   

19.
目的研究MKP-1在SH-SY5Y神经母细胞瘤中的抗凋亡。方法建立稳定表达MKP-1的SH-SY5Y细胞,用H2O2诱导细胞凋亡,并通过Western blotting比较分析MKP-1的表达对JNK和p38磷酸化的调节。结果①H2O2诱导SH-SY5Y细胞表达MKP-1,同时导致JNK和p38的去磷酸化;②在稳定表达MKP-1的SH-SY5Y细胞中,MKP-1可以抑制JNK和p38的磷酸化。③稳定表达MKP-1的SH-SY5Y细胞抵抗H2O2诱导细胞凋亡的能力比对照细胞提高了1倍左右。结论MKP-1对神经细胞的凋亡具有重要的调节作用,提示MKP-1作为调节ERK、JNK和p38蛋白激酶信号途径的重要分子,可能对退行性神经系统疾病的发病机制和治疗有重要的作用。  相似文献   

20.
Ubiquitously expressed mu- and m-calpain proteases are implicated in development and apoptosis. They consist of 80-kDa catalytic subunits encoded by the capn1 and capn2 genes, respectively, and a common 28-kDa regulatory subunit encoded by the capn4 gene. The regulatory subunit is required to maintain the stability and activity of mu- and m-calpains. Accordingly, genetic disruption of capn4 in the mouse eliminated both ubiquitous calpain activities. In embryonic fibroblasts derived from these mice, calpain deficiency correlated with resistance to endoplasmic reticulum (ER) stress-induced apoptosis, and this was directly related to a calpain requirement for activation of both caspase-12 and the ASK1-JNK cascade. This study provides compelling genetic evidence for calpain's role in caspase-12 activation at the ER, and reveals a novel role for the ubiquitous calpains in ER-stress induced apoptosis and JNK activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号