首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We studied lung mechanics and regional lung function in five young men during restrictive chest strapping. The effects on lung mechanics were similar to those noted by others in that lung elastic recoil increased as did maximum expiratory flow at low lung volumes. Chest strapping reduced the maximum expiratory flow observed at a given elastic recoil pressure. Breathing helium increased maximum expiratory flow less when subjects were strapped than when they were not. These findings indicated that strapping decreased the caliber of airways upstream from the equal pressure point. Regional lung volumes from apex to base were measured with xenon 133 while subjects were seated. The distribution of regional volumes was measured at RV, and at volumes equal to strapped FRC and strapped TLC; no change due to chest strapping was observed. Similarly, the regional distribution of 133Xe boluses inhaled at RV and strapped TLC was unaffected by chest strapping. Closing capacity decreased with chest strapping. We concluded that airway closure decreased during chest strapping and that airway closure was not the cause of the observed increase in elastic recoil of the lung. The combination of decreased slope of the static pressure-volume curve and unchanged regional volumes suggested that strapping increased the apex-to-base pleural pressure gradient.  相似文献   

2.
The lung volume at which airway closure begins during expiration (closing volume, CV) can be measured 1) with a radioactive bolus inspired at residual volume (RV) and 2) with the single-breath N2 elimination test. In previous studies in dogs, we observed that N2 CV was systematically larger than 133Xe bolus CV (Xe CV) [N2 CV %vital capacity (VC) = 35 +/- 2.3 (SE) vs. Xe CV %VC = 24 +/- 2.2, P less than 0.01]. Because the regional RV in the dog is evenly distributed throughout the lung and all airways closed at RV, N2 CV is related to the regional distribution of the tracheal N2; differences between N2 and Xe CV could then be related to the size of the inhaled dead space. Simultaneous measurements of Xe and N2 CV were performed at various sites of Xe bolus injection while the regional distribution of the bolus was measured. Injections at the level of the carina increased Xe CV to a value (30 +/- 1.4%VC) near simultaneous N2 CV (32 +/- 1.5%VC) and increased the unevenness of regional distribution of the Xe bolus. The difference between N2 and Xe CV is then the result of the size of the inspired tracheal dead space. Moreover, comparisons between different values of Xe CV require injections of the boluses at the same distance from the carina.  相似文献   

3.
We examined airway closure with methacholine-induced bronchoconstriction in eight normal seated adults at a mean lung volume of 39% total lung capacity. Closure was evaluated in two ways. Regional closure was examined by comparing the regional distributions of 133Xe boluses distributed according to N2O uptake with those distributed by pulmonary perfusion; regions that exhibited less N2O uptake than perfusion were interpreted as having airway closure. In addition, we measured single-breath washouts of the same boluses; differences between the washouts indicated closure that was not necessarily regional. Basal airway closure increased with methacholine inhalation from 21 +/- 3 to 46 +/- 4% (means +/- SE; P less than 0.001). This was due to both decreased basal N2O uptake and a relative increase of basal perfusion. Washout curves of boluses distributed by perfusion did not change with bronchoconstriction. Before bronchoconstriction, washouts of boluses distributed by N2O uptake did not differ significantly from those distributed by perfusion. During bronchoconstriction, single-breath washouts of boluses distributed by N2O uptake showed increased concentration differences (P less than 0.015) that were significantly greater than those resulting from boluses delivered by perfusion. Changes in basal closure did not correlate with washout changes. We conclude that methacholine inhalation induced bronchoconstriction-increased basal airway closure and also increased airway closure in other lung regions in a way that did not relate to basal closure.  相似文献   

4.
Twelve stable adult asthmatics slowly inhaled boluses of He at 20, 40, or 60% vital capacity (VC); these volumes were achieved either by expiring from total lung capacity (TLC) or by inspiring from residual volume (RV). Inspirations were continued to TLC and then were followed by slow expirations to RV while expired He was measured as a function of expired volume. At 20% VC slopes of alveolar plateaus (phase III) were positive, at 40% VC they were flat, and at 60% VC they were negative; at 20 and 60% VC the slopes were steeper than those in normals. When boluses were administered at 40 and 60% VC, He washout curves were independent of lung volume history. However at 20% VC the slope of phase III was significantly less positive when boluses were given after inspiration from RV than after expiration from TLC. In eight subjects, who were given inhaled beta-agonists, slopes of all He washouts decreased and became independent of volume history at 20% VC. We conclude that in asthmatics at low lung volumes the airways that determine ventilation distribution behave as though they have less hysteresis than the lung parenchyma probably due to increased airway tone.  相似文献   

5.
After partial equilibration of the lung with a N2O gas mixture absorption of N2O by the pulmonary circulation results in a flow of gas into the lungs during breath holding. A bolus of 133Xe introduced at the mouth at the beginning of the breath hold is carried in by the gas flow and distributed according to regional perfusion. In three subjects, breath holding at FRC, apex-to-base distribution of a 133Xe bolud delivered by N2O absorption (Xecar) was similar to that of a bolus injected intravenously (Xeiv). Near RV however, much less of Xecar penetrated into dependent zones than expected from the distribution of Xeiv. In fact, distribution of Xecar did not differ from that of a slowly inhaled bolus. Correction for Compton scatter in the chest wall, measured in one subject, accounted only in part for the radioactivity recorded over dependent lung regions. The findings indicate that near RV some but not all of the dependent airways must be closed. Furthermore, the distribution of airway closure completely accounts for the distribution of a bolus inhaled from RV.  相似文献   

6.
Airway distensibility appears to be unaffected by airway smooth muscle (ASM) tone, despite the influence of ASM tone on the airway diameter-pressure relationship. This discrepancy may be because the greatest effect of ASM tone on airway diameter-pressure behavior occurs at low transpulmonary pressures, i.e., low lung volumes, which has not been investigated. Our study aimed to determine the contribution of ASM tone to airway distensibility, as assessed via the forced oscillation technique (FOT), across all lung volumes with a specific focus on low lung volumes. We also investigated the accompanying influence of ASM tone on peripheral airway closure and heterogeneity inferred from the reactance versus lung volume relationship. Respiratory system conductance and reactance were measured using FOT across the entire lung volume range in 22 asthma subjects and 19 healthy controls before and after bronchodilator. Airway distensibility (slope of conductance vs. lung volume) was calculated at residual volume (RV), functional residual capacity (FRC), and total lung capacity. At baseline, airway distensibility was significantly lower in subjects with asthma at all lung volumes. After bronchodilator, distensibility significantly increased at RV (64.8%, P < 0.001) and at FRC (61.8%, P < 0.01) in subjects with asthma but not in control subjects. The increased distensibility at RV and FRC in asthma were not associated with the accompanying changes in the reactance versus lung volume relationship. Our findings demonstrate that, at low lung volumes, ASM tone reduces airway distensibility in adults with asthma, independent of changes in airway closure and heterogeneity.  相似文献   

7.
We evaluated the importance of cardiogenic gas mixing in the acini of 13 dogs during 2 min of apnea. 133Xe (1-2 mCi in 4 ml of saline) was injected into an alveolar region through an occluded pulmonary artery branch, and washout was measured by gamma scintillation scanning during continued occlusion or with blood flow reinstated. The monoexponential rate constant for Xe washout (XeW) was -0.4 +/- 0.08 (SE) min-1 at functional residual capacity (FRC) with no blood flow in the injected region. It decreased by more than half at lung volumes 500 ml above and 392 ml below FRC. With intact pulmonary blood flow, XeW was -1.0 +/- 0.08 (SE) min-1 at FRC, and it increased with decreasing lung volume. However, if calculated Xe uptake by the blood was subtracted from the XeW measured with blood flow intact, resulting values at FRC and at FRC + 500 ml were not different from XeW with no blood flow. Reasonable calculation of Xe blood uptake at 392 ml below FRC was not possible because airway closure, increased shunt, and other factors affect XeW. After death, no significant XeW could be measured, which suggests that XeW caused by molecular diffusion was small. We conclude that 1) the effect of heart motion on the lung parenchyma increases acinar gas mixing during apnea, 2) this effect diminishes above or below FRC, and 3) there is probably no direct effect of pulmonary vascular pulsatility on acinar gas mixing.  相似文献   

8.
We examined the effect of volume history on the dynamic relationship between airways and lung parenchyma (relative hysteresis) in 20 asthmatic subjects. The acoustic reflection technique was employed to evaluate changes in airway cross-sectional areas during a slow continuous expiration from total lung capacity to residual volume and inspiration back to total lung capacity. Lung volume was measured continuously during this quasi-static maneuver. We studied three anatomic airway segments: extra- and intrathoracic tracheal and main bronchial segments. Plots of airway area vs. lung volume were obtained for each segment to assess the relative magnitude and direction of the airway and parenchymal hysteresis. We also performed maximal expiratory flow-volume and partial expiratory flow-volume curves and calculated the ratio of maximal to partial flow rates (M/P) at 30% of the vital capacity. We found that 10 subjects (group I) showed a significant predominance of airway over parenchymal hysteresis (P < 0.005) at the extra- and intrathoracic tracheal and main bronchial segments; these subjects had high M/P ratios [1.53 +/- 0.27 (SD)]. The other 10 subjects (group II) showed similar airway and parenchymal hysteresis for all three segments and significantly lower M/P ratios (1.16 +/- 0.20, P < 0.01). We conclude that the effect of volume history on the relative hysteresis of airway and lung parenchyma and M/P ratio at 30% of vital capacity in nonprovoked asthmatic subjects is variable. We suggest that our findings may result from heterogeneous airway tone in asthmatic subjects.  相似文献   

9.
Using the technique of rapid airway occlusion during constant-flow inflation, we studied the effects of inflation volume, different baseline tidal volumes (10, 20, and 30 ml/kg), and vagotomy on the resistive and elastic properties of the lungs and chest wall in six anesthetized tracheotomized paralyzed mechanically ventilated cats. Before vagotomy, airway resistance decreased significantly with increasing inflation volume at all baseline tidal volumes. At any given inflation volume, airway resistance decreased with increasing baseline tidal volume. After vagotomy, airway resistance decreased markedly and was no longer affected by baseline tidal volume. Prevagotomy, pulmonary tissue resistance increased progressively with increasing lung volume and was not affected by baseline tidal volume. Pulmonary tissue resistance decreased postvagotomy. Chest wall tissue resistance increased during lung inflation but was not affected by either baseline tidal volume or vagotomy. The static volume-pressure relationships of the lungs and chest wall were not affected by either baseline tidal volume or vagotomy. The data were interpreted in terms of a linear viscoelastic model of the respiratory system (J. Appl. Physiol. 67: 2276-2285, 1989).  相似文献   

10.
Using 133Xe measured the regional distribution of FRC and of boluses administered at FRC in seated subjects during relaxation, lateral compression of the lower rib cage, and contraction of the inspiratory muscles so that mouth pressure was 50 cmH2O subatmospheric. Lateral compression increased apex-to-base differences of volume and bolus distribution, suggesting an increase of the apex-to-base gradient of pleural surface pressure. Changes in rib cage shape were measured with magnetometers and were qualitatively similar to those associated with increases in apex-to-base difference of pleural surface pressure in animals. Inspiratory effort decreased apex-to-base difference in volume and induced a similar trend in bolus distribution. Though changes in the rib cage shape were directionally similar, they were much smaller than those associated with decreased pleural surface pressure gradients in animals, and the changes in regional volume we observed were more likely due to forces generated by diaphragmatic contraction. These results were compatible with the apex-to-base gradient of pleural pressure being strongly influenced by shape adaptation between lung and chest wall.  相似文献   

11.
We performed single-breath washout (SBW) tests in which He and sulfur hexafluoride (SF6) were inspired throughout the vital capacity inspirations or were inhaled as discrete boluses at different points in the inspiration. Tests were performed in normal gravity (1 G) and in up to 27 s of microgravity (microG) during parabolic flight. The phase III slope of the SBW could be accurately reconstructed from individual bolus tests when allowance for airways closure was made. Bolus tests showed that most of the SBW phase III slope results from events during inspiration at lung volumes below closing capacity and near total lung capacity, as does the SF6-He phase III slope difference. Similarly, the difference between 1 G and microG in phase III slopes for both gases was entirely accounted for by gravity-dependent events at high and low lung volumes. Phase IV height was always larger for SF6 than for He, suggesting at least some airway closure in close proximity to airways that remain open at residual volume. These results help explain previous studies in microG, which show large changes in gas mixing in vital capacity maneuvers but only small effects in tidal volume breaths.  相似文献   

12.
The effects of breathing depth in attenuating induced bronchoconstriction were studied in 12 healthy subjects. On four separate, randomized occasions, the depth of a series of five breaths taken soon (approximately 1 min) after methacholine (MCh) inhalation was varied from spontaneous tidal volume to lung volumes terminating at approximately 80, approximately 90, and 100% of total lung capacity (TLC). Partial forced expiratory flow at 40% of control forced vital capacity (V(part)) and residual volume (RV) were measured at control and again at 2, 7, and 11 min after MCh. The decrease in V(part) and the increase in RV were significantly less when the depth of the five-breath series was progressively increased (P < 0.001), with a linear relationship. The attenuating effects of deep breaths of any amplitude were significantly greater on RV than V(part) (P < 0.01) and lasted as long as 11 min, despite a slight decrease with time when the end-inspiratory lung volume was 100% of TLC. In conclusion, in healthy subjects exposed to MCh, a series of breaths of different depth up to TLC caused a progressive and sustained attenuation of bronchoconstriction. The effects of the depth of the five-breath series were more evident on the RV than on V(part), likely due to the different mechanisms that regulate airway closure and expiratory flow limitation.  相似文献   

13.
Pressure-volume and length-stress relationships in canine bronchi in vitro   总被引:2,自引:0,他引:2  
Intraparenchymal canine airway segments with branches tied off were mounted between two fluid-filled cannulas in an organ chamber. Airways were inflated to successive volumes ranging from 4 to 100% of the segment volume at 25 cmH2O. At each volume, pressure was monitored during isovolumetric contractions elicited by 10(-3) M acetylcholine. Small bronchi developed pressures greater than 30 cmH2O in response to acetylcholine at all volumes and were able to constrict to closure. Large bronchi developed pressures greater than 30 cmH2O only near maximal volumes and were able to constrict to only 30% of maximal volume. Maximal active pressures occurred at low volumes in small bronchi and at high volumes in large bronchi. However, maximal active circumferential tension and stress occurred at near-maximal volumes in both large and small bronchi. Circumferential length active-stress curves and maximal active-stress development for bronchi and trachealis muscle strips were similar. Similar length active-stress properties in different bronchi may produce significant differences in volume-pressure characteristics.  相似文献   

14.
To examine the mechanisms of lung filling and emptying, Ar-bolus and N2 single-breath washout tests were conducted in 10 anesthetized dogs (prone and supine) and in three of those dogs with body rotation. Transpulmonary pressure was measured simultaneously, allowing identification of the lung volume above residual volume at which there was an inflection point in the pressure-volume curve (VIP). Although phase IV for Ar was upward, phase IV for N2 was small and variable, especially in the prone position. No significant prone to supine differences in closing capacity for Ar were seen, indicating that airway closure was generated at the same lung volumes. The maximum deflections of phase IV for Ar and N2 from extrapolated phase III slopes were smaller in the prone position, suggesting more uniform tracer gas concentrations across the lungs. VIP was smaller than the closing volume for Ar, which is consistent with the effects of well-developed collateral ventilation in dogs. Body rotation tests in three dogs did not generally cause an inversion of phase III or IV. We conclude that in recumbent dogs regional distribution of ventilation is not primarily determined by the effect of gravity, but by lung, thorax, and mediastinum interactions and/or differences in regional mechanical properties of the lungs.  相似文献   

15.
Intrahepatic blood volume-pressure relationships were studied using plethysmography to measure hepatic blood volume and a hepatic venous long-circuit to control intrahepatic pressure. In cats anesthetized with pentobarbital or with ketamine-chloralose, hemorrhage (to reduce hepatic blood flow to 60% of control) caused marked reductions in hepatic blood volume and intrahepatic pressure but did not significantly change hepatic blood volume-pressure relationships. We were unable to demonstrate an active reflex venous response to hemorrhage in these preparations, although a large passive response occurred. The volume-pressure relationships in innervated livers were different from those in denervated livers: apparent venous compliance was much greater and apparent unstressed volume was zero or negative. Hepatic nerve stimulation in denervated livers caused a marked decrease in hepatic blood volume at low intrahepatic pressures but failed to alter hepatic blood volumes at high intrahepatic pressures (15 mmHg) (1 mmHg = 133.3 Pa). This resulted in large apparent compliances and apparently negative unstressed volumes, as seen in the innervated livers. Thus blood volume-pressure relationships in innervated livers may not give valid measurements of compliance and unstressed volume. A remarkable feature in all these experiments was the linearity of the relationship between hepatic blood volume and intrahepatic pressure. Exudation of fluid begins at higher intrahepatic pressures in innervated compared with denervated livers.  相似文献   

16.
Absolute lung volumes such as functional residual capacity, residual volume (RV), and total lung capacity (TLC) are used to characterize emphysema in patients, whereas in animal models of emphysema, the mechanical parameters are invariably obtained as a function of transrespiratory pressure (Prs). The aim of the present study was to establish a link between the mechanical parameters including tissue elastance (H) and airway resistance (Raw), and thoracic gas volume (TGV) in addition to Prs in a mouse model of emphysema. Using low-frequency forced oscillations during slow deep inflation, we tracked H and Raw as functions of TGV and Prs in normal mice and mice treated with porcine pancreatic elastase. The presence of emphysema was confirmed by morphometric analysis of histological slices. The treatment resulted in an increase in TGV by 51 and 44% and a decrease in H by 57 and 27%, respectively, at 0 and 20 cmH(2)O of Prs. The Raw did not differ between the groups at any value of Prs, but it was significantly higher in the treated mice at comparable TGV values. In further groups of mice, tracheal sounds were recorded during inflations from RV to TLC. All lung volumes but RV were significantly elevated in the treated mice, whereas the numbers and size distributions of inspiratory crackles were not different, suggesting that the airways were not affected by the elastase treatment. These findings emphasize the importance of absolute lung volumes and indicate that tissue destruction was not associated with airway dysfunction in this mouse model of emphysema.  相似文献   

17.
The present study was undertaken to gain further insight into the mechanisms responsible for the sustained active expiratory upper airway closure previously observed during high-permeability pulmonary edema in lambs. The experiments were conducted in nonsedated lambs, in which airflow and thyroarytenoid and inferior pharyngeal constrictor muscle electromyographic activity were recorded. We first studied the consequences of hemodynamic pulmonary edema (induced by impeding pulmonary venous return) on upper airway dynamics in five lambs; under this condition, a sustained expiratory upper airway closure consistently appeared. We then tested whether expiratory upper airway closure was related to vagal afferent activity from bronchopulmonary receptors. Five bivagotomized lambs underwent high-permeability pulmonary edema: no sustained expiratory upper airway closure was observed. Finally, we studied whether a sustained decrease in lung volume induced a sustained expiratory upper airway closure. Five lambs underwent a 250-ml pleural infusion: no sustained expiratory upper airway closure was observed. We conclude that 1) the sustained expiratory upper airway closure observed during pulmonary edema in nonsedated lambs is related to stimulation of vagal afferents by an increase in lung water and 2) a decrease in lung volume does not seem to be the causal factor.  相似文献   

18.
We studied the effect of body position in humans on the relationship between exhaled vital capacity (VC) and both helium (He) and nitrogen (N2) concentrations after delivery of an He bolus at residual volume (RV) followed by 100% oxygen to total lung capacity. Phase IV, defined as the % VC at the first sharp and permanent increase in N2 and He, occurred at a mean of 15.7% VC while seated, 60.0% VC in right lateral and 59.6% VC in left lateral positions. He bolus delivery above RV but well below 60% VC resulted in the disappearance of phase IV. Lung pressure-volume (PV) curves had inflections at the volume of phase IV in the seated position: but the inflections were well below phase IV in lateral positions. Phase IV increased to higher volumes at higher mouth pressures. The relationship between phase IV and mouth pressure fell near the respiratory system relaxation PV curves. The findings suggest the higher phase IV in lateral positions is due to sequence of emptying without airway closure and is influenced by active expiration.  相似文献   

19.
Pharyngeal cross-sectional area in normal men and women   总被引:4,自引:0,他引:4  
Pharyngeal size and the dynamic behavior of the upper airway may be important factors in modulating respiratory airflow. Patients with obstructive sleep apnea are known to have reduced pharyngeal cross-sectional area. However, no systematic measurements of pharyngeal area in healthy asymptomatic subjects are available, in part due to the lack of simple, rapid, and noninvasive measurement techniques. We utilized the acoustic reflection technique to measure pharyngeal cross-sectional area in 24 healthy volunteers (14 males, 10 females). Pharyngeal area was measured during a continuous slow expiration from total lung capacity (TLC) to residual volume (RV). We compared pharyngeal cross-sectional areas in males and females at three lung volumes: TLC, 50% of vital capacity (VC), and RV. In males, pharyngeal areas (means +/- SD) were 6.4 +/- 1.3 cm2 at TLC, 5.4 +/- 0.9 cm2 at 50% VC, and 4.1 +/- 0.8 cm2 at RV. In females, pharyngeal areas were 4.8 +/- 0.6 cm2 at TLC, 4.2 +/- 0.5 cm2 at 50% VC, and 3.7 +/- 0.6 cm2 at RV. The difference in area between males and females was statistically significant at TLC and 50% VC but not at RV. However, when the pharyngeal cross-sectional area was normalized for body surface area, this difference was not significant. In males there was a negative correlation of pharyngeal area with age. We conclude that sex differences in pharyngeal area are related to body size, pharyngeal area shows a similar variation with lung volumes in males and females, and in males pharyngeal area reduces with age.  相似文献   

20.
We measured regional lung volumes from apex to base in humans during changes in thoracoabdominal shape which we monitored with magnetometers. In erect subjects, voluntary changes of shape at FRC did not change regional volume distribution. In supine subjects, the effect of negative pressure applied to the abdomen and a similar thoracoabdominal configuration achieved by voluntary means were studied. The distribution of regional volumes in both situations was the same as that measured during relaxation at the same overall lung volumes. We concluded that neither voluntary changes in shape nor negative abdominal pressure influenced the human pleural pressure gradient. This result, which differed from findings in animals, was probably because the human chest was relatively stiff and behaved with one degree of freedom; all parts of the human rib cage changed dimensions proportionally while negative abdominal pressure distorted the rib cage of animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号