首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The flexuosa (fle1-1) mutant, isolated in Podospora anserina, displays vegetative defects and two antagonistic sexual phenotypes: it produces several 1000-fold fewer microconidia (male gametes) than the wild-type strain and, conversely, more abundant protoperithecia (female organs). Cloning and sequencing of the fle1 gene and of cDNA identified an open reading frame encoding a 382-amino-acid polypeptide with two C2H2 zinc finger motifs. The predicted FLE1 protein shares 46% identity with the FlbC protein of Aspergillus nidulans and 68% identity with a putative protein identified by a search in the Neurospora crassa database. The nuclear localization of FLE1 was demonstrated by fusion with the green fluorescent protein. Sequencing of the fle1-1 mutant allele revealed a frameshift mutation upstream of the zinc finger domain. The fle1-1 mutant was a null mutant, as targeted disruption of fle1 sequence led to the same pleiotropic phenotype. When fle1 was overexpressed by introduction of a transgenic copy of the native fle1 gene or a fusion with a strong promoter, formation of protoperithecia was impaired, leading to partial or complete female sterility. We propose that fle1 acts as a repressor of female sexual differentiation in order to maintain the balance between male and female sexual pathways.  相似文献   

4.
During sexual development, mycelial cells from most filamentous fungi differentiate into typical fruiting bodies. Here, we describe the isolation and characterization of the Sordaria macrospora developmental mutant per5, which exhibits a sterile phenotype with defects in fruiting body maturation. Cytological investigations revealed that the mutant strain forms only ascus precursors without any mature spores. Using an indexed cosmid library, we were able to complement the mutant to fertility by DNA-mediated transformation. A single cosmid clone, carrying a 3.5-kb region able to complement the mutant phenotype, has been identified. Sequencing of the 3.5-kb region revealed an open reading frame of 2.1 kb interrupted by a 66-bp intron. The predicted polypeptide (674 amino acids) shows significant homology to eukaryotic ATP citrate lyases (ACLs), with 62 to 65% amino acid identity, and the gene was named acl1. The molecular mass of the S. macrospora ACL1 polypeptide is 73 kDa, as was verified by Western blot analysis with a hemagglutinin (HA) epitope-tagged ACL1 polypeptide. Immunological in situ detection of the HA-tagged polypeptide demonstrated that ACL is located within the cytosol. Sequencing of the mutant acl1 gene revealed a 1-nucleotide transition within the coding region, resulting in an amino acid substitution within the predicted polypeptide. Further evidence that ACL1 is essential for fruiting body maturation comes from experiments in which truncated and mutated versions of the acl1 gene were used for transformation. None of these copies was able to reconstitute the fertile phenotype in transformed per5 recipient strains. ACLs are usually involved in the formation of cytosolic acetyl coenzyme A (acetyl-CoA), which is used for the biosynthesis of fatty acids and sterols. Protein extracts from the mutant strain showed a drastic reduction in enzymatic activity compared to values obtained from the wild-type strain. Investigation of the time course of ACL expression suggests that ACL is specifically induced at the beginning of the sexual cycle and produces acetyl-CoA, which most probably is a prerequisite for fruiting body formation during later stages of sexual development. We discuss the contribution of ACL activity to the life cycle of S. macrospora.  相似文献   

5.
Fruiting body formation in ascomycetes is a highly complex process that is under polygenic control and is a fundamental part of the fungal sexual life cycle. However, the molecular determinants regulating this cellular process are largely unknown. Here we show that the sterile pro40 mutant is defective in a 120-kDa WW domain protein that plays a pivotal role in fruiting body maturation of the homothallic ascomycete Sordaria macrospora. Although WW domains occur in many eukaryotic proteins, homologs of PRO40 are present only in filamentous ascomycetes. Complementation analysis with different pro40 mutant strains, using full-sized or truncated versions of the wild-type pro40 gene, revealed that the C terminus of PRO40 is crucial for restoring the fertile phenotype. Using differential centrifugation and protease protection assays, we determined that a PRO40-FLAG fusion protein is located within organelles. Further microscopic investigations of fusion proteins with DsRed or green fluorescent protein polypeptides showed a colocalization of PRO40 with HEX-1, a Woronin body-specific protein. However, the integrity of Woronin bodies is not affected in mutant strains of S. macrospora and Neurospora crassa, as shown by fluorescence microscopy, sedimentation, and immunoblot analyses. We discuss the function of PRO40 in fruiting body formation.  相似文献   

6.
Developmental mutants with defects in fruiting body formation are excellent resources for the identification of genetic components that control cellular differentiation processes in filamentous fungi. The mutant pro4 of the ascomycete Sordaria macrospora is characterized by a developmental arrest during the sexual life cycle. This mutant generates only pre-fruiting bodies (protoperithecia), and is unable to form ascospores. Besides being sterile, pro4 is auxotrophic for leucine. Ascospore analysis revealed that the two phenotypes are genetically linked. After isolation of the wild-type leu1 gene from S. macrospora, complementation experiments demonstrated that the gene was able to restore both prototrophy and fertility in pro4. To investigate the control of leu1 expression, other genes involved in leucine biosynthesis specifically and in the general control of amino acid biosynthesis (“cross-pathway control”) have been analysed using Northern hybridization and quantitative RT-PCR. These analyses demonstrated that genes of leucine biosynthesis are transcribed at higher levels under conditions of amino acid starvation. In addition, the expression data for the cpc1 and cpc2 genes indicate that cross-pathway control is superimposed on leucine-specific regulation of fruiting body development in the leu1 mutant. This was further substantiated by growth experiments in which the wild-type strain was found to show a sterile phenotype when grown on a medium containing the amino acid analogue 5-methyl-tryptophan. Taken together, these data show that pro4 represents a novel mutant type in S. macrospora, in which amino acid starvation acts as a signal that interrupts the development of the fruiting body. Electronic Supplementary Material Supplementary material is available for this article at http://dx.doi.org/10.1007/s00438-005-0021-8  相似文献   

7.
K Koo  W D Stuart 《Génome》1991,34(4):644-651
  相似文献   

8.
Fruiting body development in fungi is a complex cellular differentiation process that is controlled by more than 100 developmental genes. Mutants of the filamentous fungus Sordaria macrospora showing defects in fruiting body formation are pertinent sources for the identification of components of this multicellular differentiation process. Here we show that the sterile mutant pro11 carries a defect in the pro11 gene encoding a multimodular WD40 repeat protein. Complementation analysis indicates that the wild-type gene or C-terminally truncated versions of the wild-type protein are able to restore the fertile phenotype in mutant pro11. PRO11 shows significant homology to several vertebrate WD40 proteins, such as striatin and zinedin, which seem to be involved in Ca2+-dependent signaling in cells of the central nervous system and are supposed to function as scaffolding proteins linking signaling and eukaryotic endocytosis. Cloning of a mouse cDNA encoding striatin allowed functional substitution of the wild-type protein with restoration of fertility in mutant pro11. Our data strongly suggest that an evolutionarily conserved cellular process controlling eukaryotic cell differentiation may regulate fruiting body formation.  相似文献   

9.
The transition from the vegetative to the sexual cycle in filamentous ascomycetes is initiated with the formation of ascogonia. Here, we describe a novel type of sterile mutant from Sordaria macrospora with a defect in ascogonial septum formation. This mutant, named pro22, produces only small, defective protoperithecia and carries a point mutation in a gene encoding a protein that is highly conserved throughout eukaryotes. Sequence analyses revealed three putative transmembrane domains and a C-terminal domain of unknown function. Live-cell imaging showed that PRO22 is predominantly localized in the dynamic tubular and vesicular vacuolar network of the peripheral colony region close to growing hyphal tips and in ascogonia; it is absent from the large spherical vacuoles in the vegetative hyphae of the subperipheral region of the colony. This points to a specific role of PRO22 in the tubular and vesicular vacuolar network, and the loss of intercalary septation in ascogonia suggests that PRO22 functions during the initiation of sexual development.  相似文献   

10.
We report here the partial characterization of a new human zinc finger (ZNF75) gene of the Kruppel type mapping to the long arm of the X chromosome. A cosmid clone was isolated from a library specific to the Xq24-qter region by hybridization to a degenerate oligonucleotide representing the link between two contigous fingers of the C2H2 type. The sequence of the pertinent cosmid fragments demonstrated five consecutive zinc finger motifs, all pertaining to the Kruppel family. A reading frame starting at least 75 amino acids before the first zinc finger and ending 11 amino acids after the last one was identified; comparison with other ZF genes suggests that this genomic fragment represents the carboxy-terminal exon of the gene. Homology of approximately 55% in the zinc finger region was detected with many zinc finger genes including mouse Zfp-35 and human ZFN7 cDNA clones. Mapping using a panel of sematic cell hybrids and chromosomal in situ hybridization localized the gene to Xq26, in a region not previously known to contain zinc finger genes.  相似文献   

11.
12.
陈琼  林刚  王娜  胡成钰 《动物学杂志》2008,43(6):97-102
从草鱼(Ctenopharyngodon idella)肝肾cDNA文库中克隆到细胞核酸结合蛋白基因CNBP的完整开放阅读框序列.分析表明草鱼CNBP由163个氨基酸残基组成,含有7个保守CCHC型锌指结构、核定位信号区和RGG框,与其他鱼类的同源性很高.与人及其他脊椎动物的相比,草鱼细胞核酸结合蛋白在第3个锌指中的第5个氨基酸残基由Gly变成His,另外在第1锌指和第2锌指结构间,缺失6~14个氨基酸残基.虽然如此,适应性进化分析显示细胞核酸结合蛋白没有经历正达尔文选择(ω≤1),即这种结构的差异还不足以产生新的功能.这表明CNBP处于中性进化中.  相似文献   

13.
A constitutive mutation, fil1, that causes filamentous growth in the haplophase of the dimorphic smut fungus Ustilago hordei, was previously shown to be genetically associated with a 50-kb deletion within a 940-kb chromosome. Physiological studies suggested that a gene that functions upstream of adenylyl cyclase was deleted in the mutant. Representational difference analysis of isolated chromosomes was used to obtain deletion-specific DNA probes and corresponding genomic cosmid clones. Complementation analysis identified a cosmid clone and subsequently a 2.1-kb insert that converted transformants of the mutant strain10.1a(fil1) from the filamentous to the sporidial cell type. A single open reading frame of 354 codons that encodes a putative α-subunit of the heterotrimeric G-proteins was identified. Fil1 displayed a high degree of sequence identity to Gpa1 from the basidiomycete Cryptococcus neoformans and CPG-2 from the ascomycete Cryphonectria parasitica. FIL1, when introduced on a self-replicating vector, was found to suppress filamentous growth of starved haploid wild-type strains and restore normal mating response to the fil1 mutant, but did not suppress sexual dimorphism of either strain. Fil1 appears to function analogously to mammalian Gα proteins, which are coupled to cAMP production via adenylyl cyclase, to regulate dimorphic switching in ?U.?hordei.  相似文献   

14.
A 3.0-kb region involved in lipopolysaccharide biosynthesis in Bradyrhizobium japonicum was sequenced. One complete open reading frame was identified which encodes a polypeptide of 354 amino acid residues with a predicted molecular mass of 38 209 Da. Expression of the protein using a T7 gene expression system revealed a band of similar molecular mass after sodium dodecyl sulfate polyacrylamide gel electrophoresis. A database search against known gene sequences revealed a significant sequence similarity to the rfaF gene cloned from several Gram-negative bacteria. The rfaF gene is known to encode heptosyltransferase II that transfers a second heptose to the inner core of lipopolysaccharide. The cloned B. japonicum open reading frame was able to functionally complement a rfaF mutant of Salmonella typhimurium SL3789. Transformation of this mutant with the B. japonicum gene restored production of an intact lipopolysaccharide and resistance to the hydrophobic antibiotic, novobiocin. An additional open reading frame having a significant sequence similarity to the rfaD gene was found to be divergently oriented to the rfaF gene.  相似文献   

15.
16.
17.
Components involved in the activation of the MAPK cascades in filamentous fungi are not well known. Here, we provide evidence that IDC1, a pezizomycotina-specific gene is involved along with the PaNox1 NADPH oxidase in the nuclear localization of the PaMpk1 MAP kinase, a prerequisite for MAPK activity. Mutants of IDC1 display the same phenotypes as mutants in PaNox1 and PaMpk1, i.e., lack of pigment and of aerial hyphae, female sterility, impairment in hyphal interference and inability to develop Crippled Growth cell degeneration. As observed for the PaNox1 mutant, IDC1 mutants are hypostatic to PaMpk1 mutants. IDC1 seems to play a key role in sexual reproduction. Indeed, fertility is diminished in strains with lower level of IDC1. In strains over-expressing IDC1, protoperithecia reach a later stage of development towards perithecia without fertilization; however, upon fertilization maturation of fertile perithecia is diminished and delayed. In addition, heterokaryon construction shows that IDC1 is necessary together with PaNox1 in the perithecial envelope but not in the dikaryon resulting from fertilization.  相似文献   

18.
We have developed a means to identify genes associated with particular aspects of virulence. By beginning with an avirulent deletion mutant of rabbitpox virus and systematically reintroducing overlapping segments of the deleted region, we have identified two regions of the viral genome associated with increased virulence in mice. Evaluation of illness has been aided by the exploitation of weight loss as an indicator of pathogenesis. One of the regions identified by this method contains several open reading frames and includes two previously described genes. A third, as yet undescribed, gene within this region potentially encodes a product related to the C5 protein of human complement. The second region of DNA associated with increased virulence is the HindIII M fragment, which contains only one complete open reading frame. Analysis of this previously unreported gene shows coding potential for a polypeptide of 254 amino acids (approximately 25 kDa) which is related to the C4 component of human complement. The elucidation of two new viral genes related to complement components, taken together with the recent report of the biological activity of a poxvirus-encoded complement-binding protein, suggests the importance of interactions of the virus with the complement system during a normal infection.  相似文献   

19.
A constitutive mutation, fil1, that causes filamentous growth in the haplophase of the dimorphic smut fungus Ustilago hordei, was previously shown to be genetically associated with a 50-kb deletion within a 940-kb chromosome. Physiological studies suggested that a gene that functions upstream of adenylyl cyclase was deleted in the mutant. Representational difference analysis of isolated chromosomes was used to obtain deletion-specific DNA probes and corresponding genomic cosmid clones. Complementation analysis identified a cosmid clone and subsequently a 2.1-kb insert that converted transformants of the mutant strain10.1a(fil1) from the filamentous to the sporidial cell type. A single open reading frame of 354 codons that encodes a putative α-subunit of the heterotrimeric G-proteins was identified. Fil1 displayed a high degree of sequence identity to Gpa1 from the basidiomycete Cryptococcus neoformans and CPG-2 from the ascomycete Cryphonectria parasitica. FIL1, when introduced on a self-replicating vector, was found to suppress filamentous growth of starved haploid wild-type strains and restore normal mating response to the fil1 mutant, but did not suppress sexual dimorphism of either strain. Fil1 appears to function analogously to mammalian Gα proteins, which are coupled to cAMP production via adenylyl cyclase, to regulate dimorphic switching in  U. hordei. Received: 8 May 1997 / Accepted: 30 May 1997  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号