首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Alkaline degradation of the ascorbigen 2-C-[(indol-3-yl)methyl]-alpha-L-xylo-hex-3-ulofuranosono-1,4-lactone (1a) led to a mixture of 1-deoxy-1-(indol-3-yl)-L-sorbose (2a) and 1-deoxy-1-(indol-3-yl)-L-tagatose (3a). The mixture of diastereomeric ketoses underwent acetylation and pyranose ring opening under the action of acetic anhydride in pyridine in the presence of 4-dimethylaminopyridine (DMAP) with the formation of a mixture of (E)-2,3,4,5,6-penta-O-acetyl-1-deoxy-1-(indol-3-yl)-L-xylo-hex-1-enitol (4a) and (E)-2,3,4,5,6-penta-O-acetyl-1-deoxy-1-(indol-3-yl)-L-lyxo-hex-1-enitol (5a), which were separated chromatographically. Deacetylation of 4a or 5a afforded cyclised tetrols, tosylation of which in admixture resulted in 1-deoxy-1-(indol-3-yl)-3,5-di-O-tosyl-alpha-L-sorbopyranose (12a) and 1-deoxy-1-(indol-3-yl)-4,5-di-O-tosyl-alpha-L-tagatopyranose (13a). Under alkaline conditions 13a readily formed 2-hydroxy-4-hydroxymethyl-3-(indol-3-yl)cyclopenten-2-one (15a) in 90% yield. Similar transformations were performed for N-methyl- and N-methoxyindole derivatives.  相似文献   

2.
(2R,5S)-5-Amino-2-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl]- 1,2,4-triazine-3(2H)-one (8) and (2R,5R)-5-amino-2-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl]-1,2,4-tr iazine-3(2H)-one (9) have been synthesized via a multi-step procedure from 6-azauridine. (2R,5S)-4-Amino-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl]-1,3, 5-triazine-2(1H)-one (11) and (2R,5R)-4-amino-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl]- 1,3,5-triazine-2(1H)-one (12), and the fluorosubstituted 3-deazanucleosides (19-24) have been synthesized by the transglycosylation of (2R,5S)-1-[2-[[(tert-butyldiphenylsilyl) oxy]methyl]-1,3-oxathiolan-5-yl] cytosine (2) with silylated 5-azacytosine and the corresponding silylated fluorosubstituted 3-deazacytosines, respectively, in the presence of trimethylsilyl trifluoromethanesulfonate as the catalyst in anhydrous dichloroethane, followed by deprotection of the blocking groups. These compounds were tested in vitro for cytotoxicity against L1210, B16F10, and CCRF-CEM tumor cell lines and for antiviral activity against HIV-1 and HBV.  相似文献   

3.
Microbial hydroxylation of 2-(cyclopent-1-enyl)benzoxazole (1) and 2-(cyclohex-1-enyl)benzoxazole (2) by Cunninghamella blakesleeana DSM 1906 and Bacillus megaterium DSM 32, respectively, gave chiral allylic alcohols 3-(benz-1,3-oxazol-2-yl)cyclopent-2-en-1-ol (3) and 3-(benz-1,3-oxazol-2-yl)cyclohex-2-en-1-ol (4) along with achiral ketones 3-(benz-1,3-oxazol-2-yl)cyclopent-2-en-1-one (5) and 3-(benz-1,3-oxazol-2-yl)cyclohex-2-en-1-one (6). Both allylic alcohols were produced in enantiomeric excesses higher than 99%. The determination of their absolute configurations (S in both cases) is described.  相似文献   

4.
A series of [2-(substituted phenyl)-imidazol-1-yl]-pyridin-3-yl-methanones (1-11) were synthesized and screened for their antimicrobial and antimycobacterial activities. Further, a series of [2-(substituted phenyl)-benzimidazol-1-yl]-pyridin-3-yl-methanones (12-20) reported in our earlier study was also screened for their antimycobacterial activity. The antimycobacterial activity results indicated that [2-(4-Nitro-phenyl)-imidazol-1-yl]-pyridin-3-yl-methanone (8, minimum inhibitory concentration [MIC]?=?3.13 μg) was equipotent as standard drug ciprofloxacin and [2-(4-Nitro-phenyl)-benzimidazol-1-yl]-pyridin-3-yl-methanone (16, MIC?=?1.56 μg) was equipotent as standard drug ethambutol. The results of antimicrobial screening demonstrated that 2-[1-(Pyridine-3-carbonyl)-1H-imidazol-2-yl]-benzoic acid (compound 11, MIC?=?0.002 μg) was two times more effective than standard drug ciprofloxacin (MIC?=?0.004 μg) against tested bacterial strains and [2-(2,5-Dimethyl-phenyl)-imidazol-1-yl]-pyridin-3-yl-methanone (compound 3, MIC?=?0.005 μg) was equipotent to the reference compound, fluconazole against tested fungal strains.  相似文献   

5.
Three zinc metallopeptidases are implicated in the regulation of fluid homeostasis and vascular tone and represent interesting targets for the treatment of chronic heart failure. We have previously reported the synthesis of a triple inhibitor able to simultaneously inhibit neprilysin (NEP, EC 3.4.24.11), angiotensin-converting enzyme (ACE, EC 3.4.15.1) and endothelin-converting enzyme (ECE-1, EC 3.4.24.71) with nanomolar potency towards NEP and ACE and a lesser affinity for ECE. Here, we report the optimization and biological activities of analogs derived from lead compound 1 (2S)-2-[(2R)-2-((1S)-5-bromo-indan-1-yl)-3-mercapto-propionylamino]-3- (1H-indol-3-yl)-propionic acid by a structural approach. Among several inhibitors, compound 21, (2S)-2-[(2R)-2-((1S)-5-bromo-indan-1-yl)-3-mercapto-propionylamino]-3-(1H-pyrrolo[2,3-b]pyridin-3-yl)-propionic acid was selected by taking into account its good molecular adaptation with the recently published structures of the three vasopeptidases. This optimization procedure led to an improved pharmacologic activity when compared with 1.  相似文献   

6.
The synthesis, pharmacological evaluation and molecular modelling study of novel naphthalen-2-yl acetate and 1,6-dithia-4,9-diazaspiro [4.4]nonane-3,8-dione derivatives as potential anticonvulsant agents are described. The newly synthesized compounds were characterized by both analytical and spectral data. Alkylation of 1H-imidazole or substituted piperazine with 1-(2-naphthyl)-2-bromoethanone (2) gave naphthalen-2-yl 2-(1H-imidazol-1-yl) acetate (3) and naphthalen-2-yl 2-(substituted piperazin-1-yl) acetate (48). Moreover, condensation of naphthalen-2-yl 2-bromoacetate or 2-bromo-1-(naphthalen-2-yl) ethanone with hydrazine hydrate and acetylacetone resulted in the formation of the cyclic pyrazole products 9 and 13. Sonication of naphthalen-2-yl acetate (1) with 2-chloropyridine, 2-chloropyrimidine and 2-(chloromethyl) oxirane gave naphthalen-2-yl 2-(pyridin-2-yl) acetate (10), naphthalen-2-yl 2-(pyrimidin-2-yl) acetate (11) and naphthalen-2-yl-3-(oxiran-2-yl) propanoate (12) respectively. Cyclocondensation reaction of 2-iminothiazolidin-4-one (14) with thioglycolic acid, thiolactic acid and thiomalic acid gave 1,6-dithia-4,9-diazaspiro [4.4]nonane-3,8-dione derivatives (1517). The compounds were tested in vivo for the anticonvulsant activity by delaying strychnine-induced seizures. The diazaspirononane (17) and 1-(2-naphthyl)-2-bromoethanone (2) showed a high significant delay in the onset of convulsion and prolongation of survival time compared to phenobarbital. The molecular modelling study of anticonvulsant activity of synthesized compounds showed a CNS depressant activity via modulation of benzodiazepine allosteric site in GABA-A receptors.  相似文献   

7.
Most non-steroidal anti-inflammatory drugs (NSAIDs) suffer from the deadlier gastrointestinal (GI) toxicities. The free -COOH group is responsible for the GI toxicity associated with all traditional NSAIDs. In the present research work, the main objective was to develop new chemical entities as potential anti-inflammatory agents with no GI toxicities. The results of synthesis and pharmacological screening of a series of hybrid molecules having general formula 2-(5-(5-(substituted phenyl)-2-oxo-ethylthio)-1,3,4-oxadiazole-2-yl)-2-phenyl-1H-indol-1-yl)-2-oxoethyl nitrate are described. These compounds were tested in vivo for their anti-inflammatory, analgesic, and ulcerogenic properties, and subjected to histopathological studies. Compound 7c, 2-(5-(5-(3-hydroxyphenyl)-2-oxo-ethylthio)-1,3,4-oxadiazole-2-yl)-2-phenyl-1H-indol-1-yl)-2-oxoethyl nitrate, was the most potent in this series. The compounds that showed significantly reduced GI ulcerogenicity also showed promising results in histopathological studies, and they were found to cause no mucosal injury. All the synthesized compounds were found to exhibit significant nitric oxide releasing activity in an in vitro method. In conclusion, the designed hybrid molecules were found to be significantly promising.  相似文献   

8.
The parkinsonian inducing drug 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is bioactivated in a reaction catalyzed by the flavoenzyme monoamine oxidase B (MAO-B) to form the corresponding dihydropyridinium and subsequently pyridinium metabolites. As part of our ongoing studies to characterize the structural features responsible for this unexpected biotransformation, we have examined the MAO-B substrate properties of a variety of MPTP analogues bearing various heteroaryl groups at the 4-position of the tetrahydropyridinyl ring. The newly synthesized analogues are 4-(1-methylimidazol-2-yl)-, 4-(3-methylfuran-2-yl)-, 4-(3-methylthien-2-yl)-, 4-(3,4-dimethylpyrrol-1-yl)-, 4-(3-methylpyrrol-2-yl)-, and 4-(1,3-dimethylpyrrol-2-yl)-1-methyl-1,2,3,6-tetrahydropyridine. Except for the 4-(1-methylimidazol-2-yl) analogue, all compounds displayed good to excellent substrate properties. The 1-methyl-4-(3-methylfuran-2-yl) analogue is the most active member of this series with a kcat/Km value greater than 8,500 min(-1)mM(-1). The results of these studies are discussed in terms of catalytic pathways proposed for MAO-B.  相似文献   

9.
Russian Journal of Bioorganic Chemistry - The recent study reported the designing of substituted 3-[4-(1,3-benzodioxol-5-yl)-6-(pyridin-2-yl)pyrimidin-2-yl]-2-(pyridin-2-yl)-1,3-thiazolidin-4-one...  相似文献   

10.
ROCK has been implicated in many diseases ranging from glaucoma to spinal cord injury and is therefore an important target for therapeutic intervention. In this study, we have designed a series of 1-(4-(1H-indazol-5-yl)piperazin-1-yl)-2-hydroxy(or 2-amino) analogs and a series of 1-(4-(1H-indazol-5-yl amino)piperidin-1-yl)-2-hydroxy(or 2-amino) inhibitors of ROCK-II. SR-1459 has IC(50)=13nM versus ROCK-II while the IC(50)s for SR-715 and SR-899 are 80nM and 100nM, respectively. Many of these inhibitors, especially the 2-amino substituted analogs for both series, are modest/potent CYP3A4 inhibitors as well. However, a few of these inhibitors (SR-715 and SR-899) show strong selectivity for ROCK-II over CYP3A4, but the overall potency of the 2-amino analogs (SR-1459) on CYP3A4 and the high clearance and volume of distribution of these compounds makes the in vivo utility of these analogs undesirable.  相似文献   

11.
Bicyclic dioxetanes bearing a 3-(carbazol-9-yl)-5-hydroxyphenyl 2a, 3-hydroxy-5-(indol-1-yl)phenyl 2b, or 3-(benzotriazol-1-yl)-5-hydroxyphenyl group 2c were synthesized. Base-induced decomposition of dioxetane 2a displayed intense light, the maximum wavelength (lambda(max) (CTICL)) of which changed depending on the crown ether complex of potassium t-butoxide used as a base, although the magnitude of lambda(max) (CTICL) change was considerably smaller than the case of dioxetane bearing a 3-(anthracen-9-yl)-5-hydroxyphenyl group 1. Chemiluminescence (CL) from 2b resembled closely that from 2a in response to the crown ether complexes. On the other hand, dioxetane 2c exhibited emission of red light on treatment with tetrabutylammonium fluoride. The colour of light changed significantly and exhibited two peaks in the CL spectrum when treated with complex of bulky dibenzyldiazacrown ether 13.  相似文献   

12.
《Phytochemistry》1987,26(2):557-560
The alkaloid isostrychnopentamine has been shown to be epimeric with strychnopentamine at the asymmetric carbon atom of the N-methylpyrrolidin-2-yl group. Its lUPAC name is 2-[(1′,2′,3′,4′-tetrahydro-2′-methyl-β-carbolin-1′-yl)methyl]-11-(1″-methyl-pyrrolidin-2″-yl)-3-vinyl-1,2,3,4,6,7,12,12b-octahydro-indolo[2,3-a]quinolizin-10-oL [2(S),3(R),12b(S),1′(S),2″(S)].  相似文献   

13.
14.
Two series of 3,4-disubstituted pyrazole analogues, 3-(benzimidazol-2-yl)-4-[2-(pyridin-3-yl)-vinyl]-pyrazoles (2) and 3-(imidazol-2-yl)-4-[2-(pyridin-3-yl)-vinyl]-pyrazoles (3), were synthesized as novel cyclin-dependent kinase (CDK) inhibitors. Representative compounds showed potent and selective CDK inhibitory activities and inhibited in vitro cellular proliferation in various human tumor cells. The design, synthesis, and preliminary biological evaluation of these pyrazole compounds are reported.  相似文献   

15.
The synthesis of some branched-chain-sugar nucleoside analogues.   总被引:1,自引:1,他引:0       下载免费PDF全文
1-(2,3-Epoxy-5-O-trityl-beta-D-lyxofuranosyl)uracil was treated with a number of carbon nucleophiles. Ethynyl lithium gave 3'-deoxy-3'-ethynyl-5'-O-trityl-ara-uridine, which was reduced to the corresponding 3'-ethenyl compound. Sodium cyanide gave 3'-cyano-3'-deoxy-5'-O-trityl-ara-uridine which upon alkaline hydrolysis gave the corresponding 3'-carboxamido compound. 1,3-Dithian-2-yl lithium gave 3'-deoxy-3'-(1,3-dithian-2-yl)-5'-O-trityl-ara-uridine. The trityl group was removed from each of these compounds by mild acidic hydrolysis. Treatment of 2 with 0.1M H2sO4 and mercury (II) acetate afforded 3'-acetyl-3'-deoxy-ara-uridine which upon reduction with NaBH4 gave 3'-deoxy-3'-(1-hydroxyethan-1-yl)-ara-uridine. Acetylation of 6 yielded 5'-O-acetyl-3'-acetyl-2',3'-didehydro-2',3'-dideoxyuridine which upon reduction with NaBH4 produced a mixture of 5'-O-acetyl-2',3'-didehydro-2',3'-dideoxy-3'-(1-hydroxyethan -1-yl)uridine and 1-(R)[5-(S)-acetoxymethyl-4-(1-hydroxyethan-1-yl)-tetrahydrofuran- 2-yl]- uracil. Reduction of 14 with Raney nickel followed by removal of the trityl group gave 3'-deoxy-3'-methyl-ara-uridine.  相似文献   

16.
Ten new mefloquine-oxazolidine derivatives, 4-[(1S,8aR)-3-(aryl)hexahydro[1,3]oxazolo[3,4-a]pyridin-1-yl]-2,8-bis(trifluoromethyl)quinoline (1: aryl=substituted phenyl) and 4-[(1S,8aR)-3-(heteroaryl)hexahydro[1,3]oxazolo[3,4-a]pyridin-1-yl]-2,8-bis(trifluoromethyl)quinoline [2: heteroaryl=5-nitrothien-2-yl (2a); 5-nitrofuran-2-yl (2b) and 4H-imidazol-2-yl) (2c)], have been synthesized and evaluated against Mycobacterium tuberculosis. Compounds 1f (aryl=3-ethoxyphenyl), 1g (Ar=3,4,5-(MeO)(3)-C(6)H(2)) and 2c were slightly more active than mefloquine (MIC=33μM) with MICs=24.5, 22.5 and 27.4, respectively, whereas compounds 1e (aryl=3,4-(MeO)(2)-C(6)H(3)) and 2a (MICs=11.9 and 12.1μM, respectively) were ca. 2.7 times more active than mefloquine, with a better tuberculostatic activity than the first line tuberculostatic agent ethambutol (MIC=15.9). The compounds were also assayed against the MDR strain T113 and the same MICs were observed. Thus the new derivatives have advantages over such anti-TB drugs as isoniazid, rifampicin, ethambutol and ofloxacin, for which this strain is resistant. The most active compounds were not cytotoxic to Murine Macrophages Cells in a concentration near their MIC values.  相似文献   

17.
Enhancement of magnesium bromide diethyl etherate in addition reaction of trimethylsilylmethylmagnesium chloride 5 to 2-(1H-1,2,4-triazol-1-yl)acetophenones 6 allowed us to prepare silicon-containing azole derivatives, which were tested for fungicidal activity and phytotoxicity. Among them, 2-(4-fluorophenyl)-1-(1H-1,2,4-triazol-1-yl)-3-trimethylsilylpropan-2-ol 1a was determined to be the most effective and potential candidate for novel fungicide.  相似文献   

18.
Hamid HM 《Carbohydrate research》2003,338(22):2301-2309
The allylation of 3-[1-(phenylhydrazono)-L-threo-2,3,4-trihydroxybut-1-yl]quinoxalin-2(1H)one (1) gave, in addition to the anticipated 1-N-allyl derivative (2), a dehydrative cyclized product, 1-N-allyl-3-[5-(hydroxymethyl)-1-phenylpyrazol-3-yl]quinoxalin-2-one (4) and its isomeric O-allyl derivative 3. The O-allyl group in 3 underwent acetolysis under acetylation conditions, in addition to the acetylation of the hydroxyl group, to afford 2-acetoxy-3-[5-(acetoxymethyl)-1-phenylpyrazol-3-yl]quinoxaline (8) instead of the O-acetyl derivative of 3. Allylation of the tri-O-acetyl derivative of 1 caused the elimination of a molecule of acetic acid in addition to N-allylation to give 1-N-allyl-3-[3,4-di-O-acetyl-2-deoxy-1-(phenylhydrazono)but-2-en-1-yl]quinoxalin-2-one (11). Hydroxylation of the allyl group gave a glycerol-1-yl acyclonucleoside which can be alternatively obtained by a displacement reaction of the tosyloxy group in 2,3-O-isopropylidene-1-O-(p-tolylsulfonyl)glycerol (14), followed by deisopropylidenation. 1-N-(2,3-Dibromopropyl)-3-[5-(hydroxymethyl)-1-(4-bromophenyl)pyrazol-3-yl]quinoxalin-2-one (15) underwent azidolysis to give a 2,3-diazido derivative. The assigned structures were based on spectral analysis. The activity of compounds 2, 4, 6, and 15 against hepatitis B virus was studied.  相似文献   

19.
The present study illustrates the design and synthesis of new series of 3-trifluoromethylpyrazole tethered chalcone-pyrrole and pyrazoline-pyrrole derivatives. All compounds were further screened for in vitro cytostatic activities on full NCI 60 cancer cell lines at National Cancer Institute, USA. Compounds (2E)-3-(1H-pyrrol-2-yl)-1-{4-[3-(trifluoromethyl)-1H-pyrazol-1-yl]phenyl}prop-2-en-1-one ( 5a ) and (2E)-1-{3-methyl-4-[3-(trifluoromethyl)-1H-pyrazol-1-yl]phenyl}-3-(1H-pyrrol-2-yl)prop-2-en-1-one ( 5c ) displayed significant antiproliferative activity (Growth Percentage: −77.10 and −92.13, respectively at 10 μM concentration) against the UO-31 cell lines from renal cancer and were further selected for assay at 10-fold dilutions of five different concentrations (10−4 to 10−8 M). Both compounds 5a and 5c exhibited promising antiproliferative activity (GI50: 1.36 to 0.27 μM) against leukemia cancer cell lines HL-60 and RPMI-8226, colon cancer cell lines KM-12; breast cancer cell lines BT-549. Moreover, both compounds 5a and 5c were found to be non-cytotoxic (LC50>100) against HL-60, RPMI-8226, and KM-12 cell lines. Remarkably, GI50 values of compounds 5a and 5c were identified as more promising than sunitinib against most cancer cell lines. In silico study of compounds 5a and 5c exemplified the desired ADME properties for drug-likeness as well as tighter interactions with VEGFR-2. Hence, compounds 5a and 5c would be good cytotoxic agents after further clinical study.  相似文献   

20.
The dual serotonin (5-HT) re-uptake inhibitor and 5-HT(1A) receptor agonist vilazodone was found to increase central serotonin levels in rat brain. In the course of structural modifications of vilazodone 3-[4-[4-(2-oxo-2H-1-benzopyran-6-yl)-1-piperazinyl]-butyl]-1H-indole-5-carbonitrile 8i and its fluorine analogue 6-[4-[4-(5-fluor-3-indolyl)-butyl]-1-piperazinyl]-2H-1-benzopyran-2-one have been identified. These unsubstituted chromenones are equally potent at the 5-HT(1A) receptor and 5-HT transporter. The implementation of nitrogen functionalities in position 3 of the chromenones resulted in compounds acting as agonists at the 5-HT(1A) receptor and as 5-HT re-uptake inhibitors like vilazodone. Ex vivo 5-HT re-uptake inhibition and in vitro 5-HT agonism were determined in the PCA- and GTPgammaS-assay, respectively. The potential of these chromenones to increase central 5-HT levels was measured in microdialysis studies and especially the derivatives 3-[4-[4-(3-amino-2-oxo-2H-chromen-6-yl)-piperazin-1-yl]-butyl]-1H-indole-5-carbonitrile 8f, ethyl (6-[4-[4-(5-cyano-1H-indol-3-yl)-butyl]-piperazin-1-yl]-2-oxo-2H-chromen-3-yl)-carbamate 8h and N-(6-[4-[4-(5-cyano-1H-indol-3-yl)-butyl]-piperazin-1-yl]-2-oxo-2H-chromen-3-yl)-acetamide 8k give rise to rapid development of increased serotonin levels in rat brain cortex, lasting longer than 3h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号