首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
When leaves of Citrus sinensis (L.) Osbeck cv. Shamouti senesce, they become more susceptible to abscission and the proximal 2 mm of their lamina-petiole abscission zones exhibit callose deposition. The degree of senescence, assayed with the DAR-WIN image processor (Telewski et al. 1983), was positively correlated in a linear fashion with callose deposition. Explant of non-senescing leaves were observed. Excision of the leaf at the stem-petiole junction induced callose deposition throughout the petiole, but not in the lamina. Callose deposition began immediately upon excision and reached a maximum at 3 h. It then decreased slightly and remained at the same level for up to 5 days. Exogenous compounds that decrease callose deposition, e.g. laminarase and 2-deoxy-D-glucose, inhibited the rate of abscission of explants. Compounds that promote callose deposition, e.g. uridine diphosphoglucose and mannose, increased the rate of abscission of explants. Exogenous callose, e.g. laminarin, increased the rate of abscission. It is not known how callose might be causally involved in promoting abscission.  相似文献   

3.
4.

Background  

Abscission is the cell separation process by which plants are able to shed organs. It has a great impact on the yield of most crop plants. At the same time, the process itself also constitutes an excellent model to study cell separation processes, since it occurs in concrete areas known as abscission zones (AZs) which are composed of a specific cell type. However, molecular approaches are generally hampered by the limited area and cell number constituting the AZ. Therefore, detailed studies at the resolution of cell type are of great relevance in order to accurately describe the process and to identify potential candidate genes for biotechnological applications.  相似文献   

5.
6.
Flavonol synthase gene expression during citrus fruit development   总被引:4,自引:0,他引:4  
  相似文献   

7.
8.
Gil-Amado JA  Gomez-Jimenez MC 《Planta》2012,235(6):1221-1237
Exogenous ethylene and some inhibitors of polyamine biosynthesis can induce mature-fruit abscission in olive, which could be associated with decreased nitric oxide production as a signaling molecule. Whether H?O? also plays a signaling role in mature-fruit abscission is unknown. The possible involvement of H?O? and polyamine in ethylene-induced mature-fruit abscission was examined in the abscission zone and adjacent cells of two olive cultivars. Endogenous H?O? showed an increase in the abscission zone during mature-fruit abscission, suggesting that accumulated H?O? may participate in abscission signaling. On the other hand, we followed the expression of two genes involved in the polyamine biosynthesis pathway during mature-fruit abscission and in response to ethylene or inhibitors of ethylene and polyamine. OeSAMDC1 and OeSPDS1 were expressed differentially within and between the abscission zones of the two cultivars. OeSAMDC1 showed slightly lower expression in association with mature-fruit abscission. Furthermore, our data show that exogenous ethylene or inhibitors of polyamine encourage the free putrescine pool and decrease the soluble-conjugated spermidine, spermine, homospermidine, and cadaverine in the olive abscission zone, while ethylene inhibition by CoCl? increases these soluble conjugates, but does not affect free putrescine. Although the impact of these treatments on polyamine metabolism depends on the cultivar, the results confirm that the mature-fruit abscission may be accompanied by an inhibition of S-adenosyl methionine decarboxylase activity, and the promotion of putrescine synthesis in olive abscission zone, suggesting that endogenous putrescine may play a complementary role to ethylene in the normal course of mature-fruit abscission.  相似文献   

9.
In this study, we present a method for transient expression of the type III effector AvrGf1 from Xanthomonas citri subsp. citri strain Aw in grapefruit leaves (Citrus paradisi) via Agrobacterium tumefaciens. The coding sequence of avrGf1 was placed under the control of the constitutive CaMV 35S promoter in the binary vectors pGWB2 and pGWB5. Infiltration of grapefruit leaves with A. tumefaciens carrying these constructs triggered a hypersensitive response (HR) in grapefruit 4 days after inoculation. When transiently expressed in grapefruit leaves, two mutants, AvrGf1ΔN116 and AvrGf1ΔC83, failed to induce an HR. Moreover, using bioinformatics tools, a chloroplast transit signal was predicted at the N terminus of AvrGf1. We demonstrated chloroplast localization by using an AvrGf1::GFP fusion protein, where confocal images revealed that GFP fluorescence was accumulating in the stomatal cells that are abundant in chloroplasts. Transient expression in citrus has the potential for aiding in the development of new disease defense strategies in citrus.  相似文献   

10.
Mechanical wounding and abscission in citrus   总被引:1,自引:0,他引:1  
Fruit detachment force (FDF), ethylene evolution, fruit and leaf drop were determined in Citrus sinensis for periods up to 96 h after mechanical wounding. Injury by removing a thin section of mature fruit flavedo reduced FDF, increased ethylene evolution and promoted abscission. Injuring flavedo 1 cm below the calyx was more effective at reducing FDF than injuring flavedo at the equator or the blossom‐end of mature fruit. Injuring the calyx or peduncle of mature fruit, or injuring three leaves closest to the mature fruit did not reduce FDF. Immature fruitlets either did not abscise or underwent low rates of abscission in response to mechanical wounding, depending on age. Inhibiting ethylene binding in wounded mature fruit with 1‐methylcyclopropene (1‐MCP) increased ethylene evolution compared with wounded fruit alone, but the reduction in FDF was similar. When an ethylene biosynthesis inhibitor (aminoethoxyvinylglycine, AVG) was used, reduction in FDF of wounded mature fruit exposed to AVG was similar to that of wounded fruit alone but ethylene production was markedly reduced. Wounding mature leaf blades in the presence or absence of 1‐MCP resulted in elevated but equal ethylene evolution up to 48 h after wounding, however, no leaf drop occurred. Thereafter, ethylene evolution was higher in 1‐MCP‐treated wounded leaves. Removing up to 77% of the total mature leaf area did not cause leaf drop, nor did wounding tissue across the laminar or petiolar abscission zones. Leaflets of 5 mm length reached nearly 100% abscission after mechanical wounding, whereas wounding leaves 20 mm length resulted in 15% abscission. The data suggest that mechanical wounding of flavedo results in mature fruit abscission, and ethylene binding may not be mandatory to initiate abscission in citrus fruit. The differential response of fruit and leaves at different ages to wounding may be related to potential contribution to carbohydrate accumulation, and production and sensitivity of tissues to an abscission signal(s).  相似文献   

11.
12.
Effects of girdling on carbohydrate status and carbohydrate-related gene expression in citrus trees were investigated. Alternate-bearing 'Murcott' (a Citrus reticulata hybrid of unknown origin) trees were girdled during autumn (25 Sep. 2001) and examined 10 weeks later. Girdling brought about carbohydrate (soluble sugar and starch) accumulation in leaves and shoot bark above the girdle, in trees during their fruitless, 'off' year. Trees during their heavy fruit load, 'on' year did not accumulate carbohydrates above the girdle due to the high demand for carbohydrates by the developing fruit. Girdling caused a strong decline in soluble sugar and starch concentrations in organs below the girdle (roots), in both 'on' and 'off' trees. Expression of STPH-L and STPH-H (two isoforms of starch phosphorylase), Agps (ADP-glucose pyrophosphorylase, small subunit), AATP (plastidic ADP/ATP transporter), PGM-C (phosphoglucomutase) and CitSuS1 (sucrose synthase), all of which are associated with starch accumulation, was studied. It was found that gene expression is related to starch accumulation in all 'off' tree organs. RNA levels of all the genes examined were high in leaves and bark that accumulated high concentrations of starch, and low in roots with declining starch concentrations. It may be hypothesized that changes in specific sugars signal the up- and down-regulation of genes involved in starch synthesis.  相似文献   

13.
14.
15.
<正>Domestication of livestock involves drastic phenotypic changes driven by strong artificial selection, such as tame behavior and coat color. These abundant phenotypic variations established during animal domestication have provided valuable resources to study the evolutionary mechanisms underlying  相似文献   

16.
Effect of 1-methylcyclopropene on ethylene-induced abscission in citrus   总被引:1,自引:0,他引:1  
Pre-treatment of citrus leaves and leaf explants ( Citrus sinensis [L.] Osbeck cv. Shamouti), with 1-methylcyclopropene (1-MCP), induced endogenous ethylene production when leaves were further incubated in air. The induction of ethylene production was 1-MCP concentration-dependent. Abscission was concomitantly delayed. In leaves pre-treated with 1-MCP followed by exposure to ethylene, abscission was significantly delayed in comparison with those without 1-MCP pre-treatment. When leaf explants were co-treated for 24 h with ethylene and 1-MCP, abscission was delayed quite efficiently. The Lineweaver-Burke plot yielded a half-maximal value of 0.234 μl l−1 for the effect of ethylene on abscission. 1-MCP−1 competed kinetically with ethylene with a Ki value of approximately 1.4−5.5 nl l−1 1-MCP. Under these experimental conditions there was some competition between 1-MCP and ethylene. However, ethylene was not able to completely counteract the inhibitory effect of 1-MCP. Pre-treatment with 1-MCP, followed by exogenous ethylene treatment, suppressed the induction of endo- β -glucanase (EG) activity at the laminar abscission zone. The ethylene-dependent accumulation of the hydrolyse gene was demonstrated by blocking the accumulation of CsCel a1 mRNA by 1-MCP. Six hours of exposure of leaves to 1-MCP at various times during a total of 24 h ethylene treatment efficiently reversed ethylene induction of CsCel a1 gene at mRNA level up to 18 h. The results demonstrate that the induction of abscission by ethylene is controlled at mRNA level at the abscission zone.  相似文献   

17.
18.
We have carried out a large-scale, semi-automated whole-mount in situ hybridization screen of 8369 cDNA clones in Xenopus laevis embryos. We confirm that differential gene expression is prevalent during embryogenesis since 24% of the clones are expressed non-ubiquitously and 8% are organ or cell type specific marker genes. Sequence analysis and clustering yielded 723 unique genes displaying a differential expression pattern. Of these, 18% were already described in Xenopus, 47% have homologs and 35% are lacking significant sequence similarity in databases. Many of them encode known developmental regulators. We classified 363 of the 723 genes for which a Gene Ontology annotation for molecular function could be attributed and found 'DNA binding' and 'enzyme' the most represented terms. The most common protein domains encoded in these embryonic, differentially expressed genes are the homeobox and RNA Recognition Motif (RRM). Fifty-nine putative orthologs of human disease genes, and 254 organ or cell specific marker genes were identified. Markers were found for nasal placode and archenteron roof, organs for which a specific marker was previously unavailable. Markers were also found for novel subdomains of various other organs. The tissues for which most markers were found are muscle and epidermis. Expression of cell cycle regulators fell in two classes, containing proliferation-promoting and anti-proliferative genes, respectively. We identified 66 new members of the BMP4, chromatin, endoplasmic reticulum, and karyopherin synexpression groups, thus providing a first glimpse of their probable cellular roles. Cluster analysis of tissues to measure tissue relatedness yielded some unorthodox affinities besides expectable lineage relationships. In conclusion, this study represents an atlas of gene expression patterns, which reveals embryonic regionalization, provides novel marker genes, and makes predictions about the functional role of unknown genes.  相似文献   

19.
The speed of ethylene-induced leaf abscission in cotton (Gossypium hirsutum L. cv LG-102) seedlings is dependent on leaf position (i.e. physiological age). Fumigation of intact seedlings for 18 hours with 10 microliters per liter of ethylene resulted in 40% abscission of the still-expanding third true (3°) leaves but had no effect on the fully expanded first true (1°) leaves. After 42 hours of fumigation with 50 microliters per liter of ethylene, total abscission of the 3° leaves occurred while <50% abscission of the 1° leaves was observed. On a leaf basis, endogenous levels of free IAA in 1° leaves were approximately twice those of 3° leaves. Free IAA levels were reduced equally (approximately 55%) in both leaf types after 18 hours of ethylene (10 microliters per liter) treatment. Ethylene treatment of intact seedlings inhibited the basipetal movement of [14C]IAA in petiole segments isolated from both leaf types in a dose-dependent manner. The auxin transport inhibitor N-1-naphthylphthalamic acid increased the rate and extent of ethylene-induced leaf abscission at both leaf positions but did not alter the relative pattern of abscission. Abscission-zone explants prepared from 3° leaves abscised faster than 1° leaf explants when exposed to ethylene. Ethyleneinduced abscission of 3° explants was not appreciably inhibited by exogenous IAA while 1° explants exhibited a pronounced and protracted inhibition. The synthetic auxins 2,4-D and 1-naphthaleneacetic acid completely inhibited ethylene-induced abscission of both 1° and 3° explants for 40 hours. It is proposed that the differential abscission response of cotton seedling leaves is primarily a result of the limited abscission-inhibiting effects of IAA in the abscission zone of the younger leaves.  相似文献   

20.
D. J. Carr  W. J. Burrows 《Planta》1967,73(4):357-368
Summary In blue lupin leaves, each leaflet abscises at an abscission zone situated in the pulvinus at its base. The time to abscission of leaflets of detached leaves is proportional to leaf age. Light accelerates abscission; within certain limits the acceleration is the greater the younger the leaf. At a given concentration, kinetin applied to a single leaflet accelerates leaflet abscission in young leaves kept in darkness, delays it in older ones. There is an interaction between kinetin and light which is dependent also on leaf age and kinetin concentration. The leaf can be considered as consisting of three regions, the petiole, the pulvinar region and the leaflets. The effects of kinetin and of light as well as their interactions depent on the regions of the leaf treated with these agents. Kinetin applied to a leaflet of a young leaf kept in darkness accelerates abscission, but kinetin applied to the pulvinar region of a similar leaf kept in darkness delays abscission. When any part of a leaf is illuminated, abscission is accelerated. The most light-sensitive region of the leaf is the pulvinar region, despite its relatively small area. Acceleration of abscission by light is greatest when illumination of the pulvinar region is combined with illumination of either the leaflets or the petiole. The interaction of light with kinetin is complex. Where the illuminated area includes the pulvinar region, kinetin delays abscission. This effect is most marked in the case where the pulvinar region alone is illuminated and kinetin is applied to a leaflet.Intrafoliar abscission as found in lupin leaves permits study of complex interactions of both distal and proximal stimuli involved in abscission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号