首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Efficient plant regeneration through somatic embryogenesis was achieved in Polyscias filicifolia. Embryogenic calluses were induced on Murashige and Skoog (MS) basal medium supplemented with 0.5 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D) and 1.0 mg l−1 benzylaminopurine (BAP; type I callus) and on MS medium with 2.0 mg l−1 2,4-D and 0.01 mg l−1 kinetin (type II callus) from leaf explants of a 2-yr-old plant. Primary somatic embryos (PSEs) developed after four passages of suspension culture established from embryogenic callus when cultured in liquid half-strength MS medium (1/2 MS) without growth regulators. PSEs in the cotyledonary stage were multiplied by adventitious embryogenesis. Single secondary somatic embryos (SSEs) or their clusters developed at the base of PSE hypocotyls and regenerated into plantlets in a one-step process on plant growth regulator-free 1/2 MS medium. Low sucrose concentration of 15 g l−1 promoted development of normal SSEs. All SSEs regenerated into single, well-rooted plantlets on a Nitsch and Nitsch medium supplemented with 0.5 mg l−1 kinetin, 0.1 mg l−1 indole-3-butyric acid, and 10 mg l−1 adenine sulfate. Subsequent two subculture cycles on the same medium were necessary to obtain plantlets sufficiency developed to allow successful transfer to the soil. Rooted plantlets were established in a peat mixture with 90% survival, with the plants showing normal morphological characteristics.  相似文献   

2.
Influence of boron on somatic embryogenesis in papaya (Carica papaya L.) cv. Honey Dew was investigated. Immature zygotic embryos were grown in the induction medium containing Murashige and Skoog basal salts, with B5 vitamins, picloram (1 mg dm−3) or 2,4-dichlorophenoxy acetic acid (2 mg dm−3) and different concentrations of boric acid (30 to 500 mg dm−3). Maximum somatic embryo initiation was observed at 62 mg dm−3 boric acid irrespective of the growth regulator used. The cotyledonary stage somatic embryos were germinated on MS basal medium devoid of growth regulators. The regenerated plantlets were hardened under greenhouse conditions and transferred to field. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
 The development of a rapid protocol for high-efficiency somatic embryogenesis and plant regeneration from seed-derived embryogenic callus cultures of California poppy (Eschscholzia californica Cham.) is reported. The optimized procedure required less than 13 weeks from the initiation of seed cultures to the recovery of plantlets and involved the sequential transfer of cultures onto solid Murashige and Skoog basal medium containing three different combinations of growth regulators. All steps were performed at 25  °C. Friable primary callus was induced from seeds of E. californica cultured on medium supplemented with 1.0 mg l−1 2,4-dichlorophenoxyacetic acid. The primary callus was transferred to medium containing 1.0 mg l−1 1-naphthaleneacetic acid and 0.5 mg l−1 6-benzylaminopurine to establish embryogenic callus and promote somatic embryogenesis. Regenerated plantlets were recovered after the conversion of somatic embryos on medium containing 0.05 mg l−1 6-benzylaminopurine and showed normal development. Embryogenic callus was induced at a frequency of 85%, an average of 45 somatic embryos were produced per callus, 90% of the somatic embryos converted, and about 70% of the plantlets were recovered in soil. The growth rate of somatic embryo-derived shoots could be increased by gibberellic acid treatment, but the resulting plantlets were hyperhydritic. Received: 14 February 1999 / Revision received: 27 April 1999 / Accepted: 14 May 1999  相似文献   

4.
Summary Mature zygotic embryos of eight (open-pollinated) families of loblolly pine (Pinus taeda L.) were cultured on eight different basal salt formulations, each supplemented with 36.2 μM 2,4-dichlorophenoxyacetic acid, 17.8 μM 6-benzyladenine, 18.6 μM kinetin, 500 mg l−1 casein hydrolysate, and 500 mg l−1 l-glutamine for 9 wk; embryogenic tissue was formed on cotyledons, hypocotyls, and radieles of mature zygotic embryos. Callus was subcultured on the callus proliferation medium, the same as the induction medium but with one-fifth concentration of auxin and cytokinin for 9 wk. On this medium a white to translucent, glossy, mucilaginous embryogenic callus containing embryogenic suspensor masses (ESMs) was obtained. The highest frequency of explants forming embryogenic tissue, 17%, occurred on a modified Murashige and Skoog salts basal medium containing the concentration of KNO3, Ca(NO3)2·4H2O, NH4NO3, KCl, ZnSO4·7H2O, and MnSO4·H2O, 720, 1900, 400, 250, 25.8, and 25.35 mg l−1, respectively. Embryogenic suspension cultures were established by culturing embryogenic callus in liquid callus proliferation medium. Liquid cultures containing ESMs were transferred to medium containing abscisic acid, polyethylene glycols, and activated charcoal for stimulating the production of cotyledonary somatic embryos. Mature somatic embryos germinated for 4–12 wk on medium containing indole-butyric acid, gibberellic acid, 6-benzyladenine, activated charcoal, and reduced sucrose concentration (15 g l−1). Two hundred and ninety-one regenerated plantlets were transferred to a perlite:peatmoss:vermiculite (1∶1∶1) mixture, then the plants were transplanted to soil in the earth, and 73 plantlets survived in the field.  相似文献   

5.
We describe culture conditions for a high-efficiency in vitro regeneration system of Papaver nudicaule through somatic embryogenesis and secondary somatic embryogenesis. The embryogenic callus induction rate was highest when petiole explants were cultured on Murashige and Skoog (MS) medium containing 1.0 mg l−1 α-naphthaleneacetic acid (NAA) and 0.1 mg l−1 6-benzyladenine (BA) (36.7%). When transferred to plant growth regulator (PGR)-free medium, 430 somatic embryos formed asynchronously from 90 mg of embryogenic callus in each 100-ml flask. Early-stage somatic embryos were transferred to MS medium containing 1.0 mg l−1 BA and 1.0 mg l−1 NAA to germinate at high frequency (97.6%). One-third-strength MS medium with 1.0% sucrose and 1.0 mg l−1 GA3 had the highest frequency of plantlet conversion from somatic embryos (91.2%). Over 90% of regenerated plantlets were successfully acclimated in the greenhouse. Secondary somatic embryos were frequently induced directly when the excised hypocotyls of the primary somatic embryos were cultured on MS medium without PGRs. Sucrose concentration significantly affected the induction of secondary embryos. The highest induction rate (89.5) and number of secondary somatic embryos per explant (9.3) were obtained by 1% sucrose. Most secondary embryos (87.2–94.3%) developed into the cotyledonary stage on induction medium. All cotyledonary secondary embryos were converted into plantlets both in liquid and on semisolid 1/3-strength MS medium with 1.0% sucrose.  相似文献   

6.
A three-stage procedure for embryogenesis in Trachyspermum ammi was developed from cotyledon and cotyledonary node explants cultured in Murashige and Skoog (MS) liquid medium supplemented with 0.2 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D). Globular somatic embryos without intervening callus phase developed in 4 wk. The development of embryos to heart and torpedo stages required second-stage subculture of the explants (along with developing embryos) in liquid medium with lower concentrations of 2,4-D. Further development of embryos required a third-stage subculture in hormone-free liquid medium supplemented with 100 mg l−1 casein hydrolysate. Regeneration of complete plantlets occurred after the fully developed somatic embryos were transferred to solidified half-strength MS medium supplemented with 1 mg l−1 gibberellic acid.  相似文献   

7.
An improved protocol for high frequency plant regeneration via somatic embryogenesis from zygotic embryo-derived cell suspension cultures of watershield (Brasenia schreberi) was developed. Zygotic embryos formed pale-yellow globular structures and white friable callus at a frequency of 80% when cultured on half-strength MS medium supplemented with 0.3 mg l−1 2,4-D. However, the frequency of formation of pale-yellow globular structures and white friable callus decreased slightly with increasing concentrations of 2,4-D up to 3 mg l−1, where the frequency reached ~50% of the control. Cell suspension cultures from zygotic embryo-derived white friable callus were established using half-strength MS medium supplemented with 0.3 mg l−1 2,4-D. Upon plating of cell aggregates on half-strength MS basal medium, approximately 8.3% gave rise to somatic embryos and developed into plantlets. However, the frequency of plantlet development from cell aggregates was sharply increased (by up to 55%) when activated charcoal and zeatin were applied. Regenerated plantlets were successfully transplanted to potting soil and grown to normal plants in a growth chamber. The distinctive feature of this study is the establishment of a high frequency plant regeneration system via somatic embryogenesis from zygotic embryo-derived cell suspension cultures of watershield, which has not been previously reported. The protocol for plant regeneration of watershield through somatic embryogenesis could be useful for the mass propagation and transformation of selected elite lines.  相似文献   

8.
Plant regeneration was achieved through direct and indirect somatic embryogenesis in Eucalyptus camaldulensis. Callus was induced from mature zygotic embryos and from cotyledon explants collected from 10, 15, 25, and 30-day-old seedlings cultured on Murashige and Skoog (MS) basal medium supplemented with different concentrations of naphthaleneacetic acid (NAA). Maximum callus induction from mature zygotic embryos was obtained on MS basal medium containing 1 mg l−1 NAA. The frequency of callus development varied based on the age of the cotyledon explants 10-day-old explants giving highest percentage on MS basal medium supplemented with 1 mg l−1 NAA. Callus obtained from mature zygotic embryos gave highest frequency of somatic embryogenesis on MS basal medium containing 0.5 mg l−1 benzyladenine (BA) and 0.1 mg l−1 NAA. Separate age wise culture of the calli, obtained from cotyledons of different ages cultured separately, revealed high somatic embryogenic potential on callus from 10-day-old cotyledons. Direct somatic embryogenesis too was obtained from hypocotyl explants without an intervening callus phase on MS basal medium containing 0.5 mg l−1 BA. The effects of abscisic acid (ABA), sucrose, and different strengths of MS medium on somatic embryo maturation and germination were also investigated. Number of mature somatic embryos increased with lower concentrations (0–1 mg l−1) of ABA while no significant differences were observed at higher concentrations (2–5 mg l−1) of ABA. Compared to basal medium containing lower concentrations of sucrose (1%), the MS medium supplemented with higher levels of sucrose (4%) showed significantly lower frequency of mature somatic embryos. Basal medium without any dilution gave the highest number of immature embryos. However, the number of mature embryos was high at higher medium dilutions.  相似文献   

9.
Summary A protocol of somatic embryogenesis and plant regeneration from petiole segments of Parthenocissus tricuspidata Planch. has been developed. Embryogenic tissue was induced on B5 (Gamborg) basal medium supplemented with 2.25–9.0 μM 2,4-dichlorophenoxyacetic acid, 500 mg l−1 casein hydrolysate (CH), and 0.1 gl−1 activated charcoal. Somatic embryos were induced on B5 medium containing various concentrations of benzyladenine (BA) (4.44, 6.66, and 8.88 μM) and α-naphthaleneacetic acid (NAA) (0, 0.54, and 1.61 μM) plus 500 mg l−1 CH. Ninety percent of normal somatic embryos were converted into plantlets directly on Murashige and Skoog (MS) medium free of plant growth regulators. Shoots could be induced from abnormal somatic embryos on MS medium containing 4.44 μM BA, 0.05 μM NAA, and 500 mg l−1 CH. Genotypic differences were found in the process of somatic embryogenesis and plant regeneration. Histological analysis confirmed the process of somatic embryogenesis. Regenerated plantlets with well-developed roots were successfully acclimatized in greenhouse and all plants showed normal morphological characteristics.  相似文献   

10.
Root explants excised from carnation plants maintained in vitro formed off-white, friable calluses after three weeks of culture on Murashige and Skoog (MS) medium supplemented with 1 mg l−1 thidiazuron (TDZ) and 1 mg l−1 α-naphthalaneacetic acid (NAA). These calluses were subsequently transferred to MS basal medium where, after an additional four weeks of culture, approximately 50% of the calluses formed somatic embryos. However, calluses formed on root explants that had been cultured on MS medium supplemented with 2,4-dichlorophenoxyacetic acid did not produce somatic embryos upon transfer to MS basal medium. Somatic embryos developed into plantlets and subsequently were grown to maturity. These results indicate that root explants have a high competence for somatic embryogenesis in carnation. J. Seo and S.W. Kim contributed equally to this work.  相似文献   

11.
Summary A procedure for the regeneration of complete plantlets of Tylophora indica from cultured leaf callus via somatic embryogenesis is described. Callus induction from leaf explants was on Murashige and Skoog (MS) medium with different concentrations of 2,4-dichlorophenoxyacetic acid (2.4-D; 0.03–3 mg l−1; 0.0–13.56 μM) and kinetin (Kn; 0.01 mg l−1; 0.05 μM). The best response for callus induction was obtained on MS medium containing 2 mg l−1 (9.04 μM) 2.4-D and 0.01 mg l−1 (0.05 μM) Kn. After two subeultures on the same medium the embryogenic callus was transferred to MS medium with different concentrations of the cytokinin, 6-benzyladenine (0.5–3 mg l−1; 2.22–13.32 μM) and 2-isopentenyladenine (2ip; 0.53 mg l−1; 2.46–14.76 μM) along with 0.01 mg l−1 (0.05 μM) indole-3-butyric acid (IBA) for somatic embryo development and maturation. MS medium with 2 mg l−1 (9.84 μM) 2ip produced the maximum number of mature somatic embryos. The mature embryos were bipolar and on transfer to MS basal medium produced complete plantlets. After hardening the regenerants were planted in the Gudalur forests of Western Ghats. Total DNA was extracted from 14 regenerants and the mother plant. Random amplified polymorphic, DNA (RAPD) analysis was carried out using 20 arbitrary oligonucleotides. The amplification products were monomorphic among all the plants revealing the genetic homogeneity and true-to-type nature of the regenerants.  相似文献   

12.
In the present study an efficient somatic embryogenesis method has been developed in Catharanthus roseus. Friable embryogenic callus was induced from hypocotyl of in vitro germinated seeds on Murashige and Skoog basal nutrient media supplemented with various auxins particularly 2,4-D (1.0 mg l−1). However, only NAA (1.0 mg l−1) produced somatic embryos in cultures. Embryo proliferation was even high on the same medium added with BAP. Cotyledonary somatic embryo germinated and converted into plantlets in BAP (0.5 mg l−1) added medium following a treatment with gibberellic acid (1.0 mg l−1) for maturation. Carbon sources and concentrations had a marked influence on maturation process. Plantlet conversion was better achieved when embryos were matured on 3% fructose or 3–6% maltose. The result discussed in this paper indicates that somatic embryos were produced in numbers and converted plantlets can be used as raw material, genetic modification to embryo precursor cell may improve alkaloid yield further.  相似文献   

13.
Plants of two accessions of Arachis glabrata were regenerated via somatic embryogenesis. Embryogenic calli were initiated from leaflet explants on Murashige and Skoog medium supplemented with picloram alone or picloram in combination with 6-benzylaminopurine. Leaflets of accession A6138 induced the highest percentage of somatic embryos in media composed of 10 mg dm−3 and 15 mg dm−3 picloram. In contrast, 5 mg dm−3 picloram with 0.1 mg dm−3 6-benzylaminopurine was one of the most effective combinations in accession AF385. MS medium supplemented with 2 g dm−3 activated charcoal (AC) used for 30 days was the most effective for embryo maturation. After 20 days of culture on MS medium devoid of growth regulators, 6 % of embryos converted into plantlets in accession A6138.  相似文献   

14.
The factors affecting the induction and development of somatic embryos and plantlet acclimatization of peach palm (Bactris gasipaes Kunth) were evaluated to establish an efficient regenerative protocol based on somatic embryogenesis. Mature zygotic embryos were cultured in Murashige and Skoog (MS) medium supplemented with 0–40 μM of picloram (4-amino-3,5,6-trichloropicolinic acid) and 0 or 5 μM of 2-isopentyladenine (6-dimethylaminopurine) (2-iP). After 5 mo. in culture embryogenic callus arose from primary calli. Picloram (10 μM) was effective in inducing embryogenic calli in 9.8% of the explants. The use of 1 μM of AgNO3 enhanced embryogenic competence. Embryogenic calli showed an organized structure, a globular aspect, and were white to yellowish in color. Histological analyses showed that cell proliferation arose from subepidermal cells adjacent to vascular bundles, resulting in primary callus formed by a meristematic zone from which somatic embryos arose. Protein profile analyses revealed two high molecular mass bands in these embryogenic calli, but not in other tissues. Embryogenic calli were transferred to a culture medium containing 40 μM of 2,4-dichlorophenoxyacetic acid, 10 μM of 2-iP, plus 1 g l−1 of glutamine, hydrolyzed 0.5 g l−1 casein, and activated 1.5 g l−1 of charcoal. Morphogenetic responses achieved in this medium were the development of somatic embryos, rooting, and loss of embryogenic capacity. Somatic embryos were converted to plantlets on MS medium plus 24.6 μM of 2-iP and 0.44 μM of naphthalene acetic acid. Plantlets were maintained in MS medium with activated charcoal (1.5 g l−1) until they were 6 cm tall, and then acclimatized. After 16 wk, 84.2 ± 6.4% survival was observed. M. P. Guerra and C. R. Clement are Fellows of the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brasília, DF.  相似文献   

15.
Embryogenic callus in Catharanthus roseus was initiated from hypocotyl on Murashige and Skoog’s (MS) medium supplemented with 1.0–2.0 mg dm−3 of 2,4-dichlorophenoxyacetic acid (2,4-D) or chlorophenoxyacetic acid (CPA). Calli from other sources were non-embryogenic. Numerous somatic embryos were induced from primary callus on MS medium suplemented with naphthalene acetic acid (NAA) within two weeks of culture. Embryo proliferation was much faster on medium supplemented with 6-benzylaminopurine (BAP). After transfer to medium with gibberellic acid (GA3, 1.0 mg dm− 3) mature green embryos were developed and germinated well into plantlets on MS liquid medium supplemented with 0.5 mg dm−3 BAP. Later, embryos with cotyledonary leaves were subjected to different auxins treatments for the development of roots. Before transfer ex vitro, plantlets were cultivated on half strength MS medium containing 3 % sucrose and 0.5 mg dm−3 BAP for additional 2 weeks. Additionally, the effect of liquid medium has been evaluated at different morphogenetic stages.  相似文献   

16.
Summary Sodium chloride-tolerant plantlets of Dendrocalamus strictus were regenerated successfully from NaCl-tolerant embryogenic callus via somatic embryogenesis. The selection of embryogenic callus tolerant to 100 mM NaCl was made by exposing the callus to increasing (0–200 mM) concentrations of NaCl in Murashige and Skoog medium having 3% (w/v) sucrose, 0.8% (w/v) agar, 3.0 mg l−1 (13.6 μM) 2,4-dichlorophenoxyacetic acid (2,4-D), and 0.5mg l−1 (2.3μM) kinetin (callus initiation medium). The tolerance of the selected embryogenic callus to 100 mM NaCl was stable through three successive transfers on NaCl-free callus initiation medium. The tolerant embryogenic callus had high levels of Na+, sugar, free amino acids, and proline but a slight decline was recorded in K+ level. The stable 100 mM NaCl-tolerant embryogenic callus differentiated somatic embryos on maintenance medium [MS medium +3% sucrose +0.8% agar +2.0 mg l−1 (9.0 μM) 2,4-D+0.5 mg l−1 (2.3 μM) kinetin] supplemented with different (0–200 mM) concentrations of NaCl. About 39% of mature somatic embryos tolerant to 100 mM NaCl germinated and converted into plantlets in germination medium [half-strength MS+2% sucrose+0.02 mg l−1 (0.1 μM) α-naphthaleneacetic acid +0.1 mg l−1 (0.49 μM) indole-3-butyric acid] containing 100 mM NaCl. Of these plantlets about 31% established well on transplantation into a garden soil and sand (1:1) mixture containing 0.2% (w/w) NaCl.  相似文献   

17.
Embryogenic cultures were induced from immature avocado zygotic embryos representing different botanical races and complex hybrids. The optimum induction medium consisted of B5 major salts, MS minor salts, 0.4 mg l−1 thiamine HCl, 100 mg l−1 myo-inositol, 30 g l−1 sucrose, 0.41 μM picloram and 8 g l−1 TC agar. Somatic embryogenesis occurred directly from the explants on induction medium, and secondary embryos and proembryonic masses proliferated in liquid and on semisolid maintenance medium. Embryogenic culture maintainance was optimized in liquid, filter-sterilized MS medium, supplemented with 30–50 mg l−1 sucrose, 4 mg l−1 thiamine HCl and 0.41 μM picloram. Two types of embryogenic cultures were recognized: –genotypes that proliferated as proembryonic masses in the presence of auxin (PEM-type) and; –genotypes in which the heart stage and later stages of somatic embryos developed in the presence of auxin(SE-type). Embryogenic suspension cultures became increasingly disorganized over time, and this was associated with progressive loss of embryogenic potential. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
Culture conditions for high frequency plant regeneration via somatic embryogenesis from cell suspension cultures of Ranunculus kazusensis are described. Zygotic embryos formed white nodular structures and pale-yellow calluses at a frequency of 84.9% when cultured on half-strength Schenk and Hildebrandt (SH) medium supplemented with 0.1 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D). However, the frequency of white nodular structure and off-white callus formation decreased with an increasing concentration of 2,4-D up to 10 mg l−1, when the frequency reached 25%. Cell suspension cultures were established from zygotic embryo-derived pale-yellow calluses using half-strength SH medium supplemented with 0.1 mg l−1 of 2,4-D. Upon plating onto half-strength SH basal medium, over 90% of cell aggregates gave rise to numerous somatic embryos and developed into plantlets. Regenerated plantlets were successfully transplanted to potting soil and grown to maturity at a survival rate of over 90% in a growth chamber. The plant regeneration system established in this study can be applied to mass propagation and conservation of this species.  相似文献   

19.
Segments taken from flower-stalk internodes of Oncidium Sweet Sugar formed somatic embryos and shoot buds directly from wound surfaces or via nodular masses proliferation within 1.5 months, when cultured on a Gelrite-gelled 1/2-MS basal medium supplemented with thidiazuron (0.1–3 mg l−1) in darkness. In light, when subcultured, these nodular masses proliferated into green compact callus, and produced somatic embryos, shoot buds and/or yellowish abnormal structures spontaneously. Supplementing 0.1–1 mg l−1 NAA enhanced embryo formation, but retarded proliferation of shoot buds and yellowish abnormal structures. Somatic embryos that directly formed from wound surfaces of flower stalk explants usually developed into abnormal structures, but the callus-derived embryos could germinate into PLBs and eventually developed to normal plantlets on a hormone-free basal medium for 3–4 weeks. Both the embryo-and shoot bud-derived regenerants developed into healthly plantlets when potted in sphagnum moss and acclimatized in the greenhouse. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
A protocol has been developed for achieving somatic embryogenesis and plant regeneration from petiole-derived callus of Heracleum candicans Wall. Callus was initiated on MS medium supplemented with 0.5 mg l–1 2,4-D and 0.5 mg l–1 BAP and subcultured on a medium containing double strength MS macrosalts, 1 mg l–12,4-D and 0.25 mg l–1 Kn. Numerous globular embryos were formed on the surface of the callus upon transfer to auxin-rich MS medium that lacked cytokinins. The globular embryos differentiated into mature embryos only when 2,4-D was removed from the medium. Mature embryo formation was significantly influenced by the pH of the medium and the addition of AgNO3 and ABA. Eighty-five percent of the somatic embryos were converted into plantlets when transferred to a medium supplemented with 0.01 mg l–1 BAP and 0.01 mg l–1 IBA. The regenerated plants have been established in soil and appear to be identical to the parent plants in morphology and chromosome number. Received: 5 November 1997 / Revision received: 9 February 1998 / Accepted: 19 February 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号