首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sterol C-14 reductase (erg24-1) mutant of Saccharomyces cerevisiae was selected in a fen1, fen2, suppressor background on the basis of nystatin resistance and ignosterol (ergosta-8,14-dienol) production. The erg24-1 allele segregated genetically as a single, recessive gene. The wild-type ERG24 gene was cloned by complementation onto a 12-kb fragment from a yeast genomic library, and subsequently subcloned onto a 2.4-kb fragment. This was sequenced and found to contain an open reading frame of 1,314 bp, predicting a polypeptide of 438 amino acids (M(r) 50,612). A 1,088-bp internal region of the ERG24 gene was excised, replaced with a LEU2 gene, and integrated into the chromosome of the parental strain, FP13D (fen1, fen2) by gene replacement. The ERG24 null mutant produced ergosta-8,14-dienol as the major sterol, indicating that the delta 8-7 isomerase, delta 5-desaturase and the delta 22-desaturase were inactive on sterols with the C14 = 15 double bond.  相似文献   

2.
A Oulmouden  F Karst 《Gene》1990,88(2):253-257
The ERG12 gene of Saccharomyces cerevisiae has been cloned by complementation of an erg12-1 mutation affecting mevalonate kinase. From the 2.8-kb insert isolated, the functional gene has been localized on a DNA fragment of 2.1 kb. The mRNA is 1.45 kb long. Gene disruption shows that the ERG12 gene is essential in yeast, both for spore germination and vegetative growth.  相似文献   

3.
In yeast, deletion of ERG27, which encodes the sterol biosynthetic enzyme, 3-keto-reductase, results in a concomitant loss of the upstream enzyme, Erg7p, an oxidosqualene cyclase (OSC). However, this phenomenon occurs only in fungi, as mammalian Erg27p orthologues are unable to rescue yeast Erg7p activity. In this study, an erg27 mutant containing the mouse ERG27 orthologue was isolated that was capable of growing without sterol supplementation (FGerg27). GC/MS analysis of this strain showed an accumulation of squalene epoxides, 3-ketosterones, and ergosterol. This strain which was crossed to a wildtype and daughter segregants showed an accumulation of squalene epoxides as well as ergosterol indicating that the mutation entailed a leaky block at ERG7. Upon sequencing the yeast ERG7 gene an A598S alteration was found in a conserved alpha helical region. We theorize that this mutation stabilizes Erg7p in a conformation that mimics Erg27p binding. This mutation, while decreasing OSC activity still retains sufficient residual OSC activity such that the strain in the presence of the mammalian 3-keto reductase enzyme functions and no longer requires the yeast Erg27p. Because sterol biosynthesis occurs in the ER, a fusion protein was synthesized combining Erg7p and Erg28p, a resident ER protein and scaffold of the C-4 demethyation complex. Both FGerg27 and erg27 strains containing this fusion plasmid and the mouse ERG27 orthologue showed restoration of ergosterol biosynthesis with minimal accumulation of squalene epoxides. These results indicate retention of Erg7p in the ER increases its activity and suggest a novel method of regulation of ergosterol biosynthesis.  相似文献   

4.
Phosphomevalonate kinase catalyzes the conversion of mevalonate-5-phosphate to mevalonate-5-diphosphate and was originally believed to be a cytosolic enzyme. In this study we have localized the phosphomevalonate kinase gene to chromosome 1p13-1q22-23 and present a genomic map indicating that the gene spans more than 8.4 kb in the human genome. Furthermore, we show that message levels and enzyme activity of rat liver phosphomevalonate kinase are regulated in response to dietary sterol levels and that this regulation is coordinate with 3-hydroxy-3-methylglutaryl coenzyme A reductase, the rate-limiting enzyme of cholesterol biosynthesis. In addition, we demonstrate that phosphomevalonate kinase is a peroxisomal protein which requires the C-terminal peroxisomal targeting signal, Ser-Arg-Leu, for localization to the organelle.  相似文献   

5.
Squalene epoxidase, encoded by the ERG1 gene in yeast, is a key enzyme of sterol biosynthesis. Analysis of subcellular fractions revealed that squalene epoxidase was present in the microsomal fraction (30,000 × g) and also cofractionated with lipid particles. A dual localization of Erg1p was confirmed by immunofluorescence microscopy. On the basis of the distribution of marker proteins, 62% of cellular Erg1p could be assigned to the endoplasmic reticulum and 38% to lipid particles in late logarithmic-phase cells. In contrast, sterol Δ24-methyltransferase (Erg6p), an enzyme catalyzing a late step in sterol biosynthesis, was found mainly in lipid particles cofractionating with triacylglycerols and steryl esters. The relative distribution of Erg1p between the endoplasmic reticulum and lipid particles changes during growth. Squalene epoxidase (Erg1p) was absent in an erg1 disruptant strain and was induced fivefold in lipid particles and in the endoplasmic reticulum when the ERG1 gene was overexpressed from a multicopy plasmid. The amount of squalene epoxidase in both compartments was also induced approximately fivefold by treatment of yeast cells with terbinafine, an inhibitor of the fungal squalene epoxidase. In contrast to the distribution of the protein, enzymatic activity of squalene epoxidase was only detectable in the endoplasmic reticulum but was absent from isolated lipid particles. When lipid particles of the wild-type strain and microsomes of an erg1 disruptant were mixed, squalene epoxidase activity was partially restored. These findings suggest that factor(s) present in the endoplasmic reticulum are required for squalene epoxidase activity. Close contact between lipid particles and endoplasmic reticulum may be necessary for a concerted action of these two compartments in sterol biosynthesis.  相似文献   

6.
A 14-bp segment in the promoter region of the tdcABC operon of Escherichia coli shows sequence identity with the consensus binding site for the E. coli integration host factor (IHF). In an himA (IHF-deficient) strain, expression of beta-galactosidase from a tdcB'-'lacZ protein fusion plasmid was about 10% of that seen with an isogenic himA+ strain. Threonine dehydratase activity from the chromosomal tdcB gene in the himA mutant was also about 10% of the wild-type enzyme level. Two different mutations introduced into the putative IHF-binding site in the fusion plasmid greatly reduced the plasmid-coded beta-galactosidase activity in cells containing IHF. In vitro gel retardation and DNase I footprinting analyses showed binding of purified IHF to the wild-type but not to the mutant promoter. IHF protected a 31-bp region between -118 and -88 encompassing the conserved IHF consensus sequence. These results suggest that efficient expression of the tdc operon in vivo requires a functional IHF and an IHF-binding site in the tdc promoter.  相似文献   

7.
8.
Gene expression analysis of cold and freeze stress in Baker's yeast   总被引:1,自引:0,他引:1  
We used mRNA differential display to assess yeast gene expression under cold or freeze shock stress conditions. We found both up- and down-regulation of genes, although repression was more common. We identified and sequenced several cold-induced genes exhibiting the largest differences. We confirmed, by Northern blotting, the specificity of the response for TPI1, which encodes triose-phosphate isomerase; ERG10, the gene for acetoacetyl coenzyme A thiolase; and IMH1, which encodes a protein implicated in protein transport. These genes also were induced under other stress conditions, suggesting that this cold response is mediated by a general stress mechanism. We determined the physiological significance of the cold-induced expression change of these genes in two baker's yeast strains with different sensitivities to freeze stress. The mRNA level of TPI1 and ERG10 genes was higher in freeze-stressed than in control samples of the tolerant strain. In contrast, both genes were repressed in frozen cells of the sensitive strain. Next, we examined the effects of ERG10 overexpression on cold and freeze-thaw tolerance. Growth of wild-type cells at 10 degrees C was not affected by high ERG10 expression. However, YEpERG10 transformant cells exhibited increased freezing tolerance. Consistent with this, cells of an erg10 mutant strain showed a clear phenotype of cold and freeze sensitivity. These results give support to the idea that a cause-and-effect relationship between differentially expressed genes and cryoresistance exists in Saccharomyces cerevisiae and open up the possibility of design strategies to improve the freeze tolerance of baker's yeast.  相似文献   

9.
The ADE1 gene of the yeast Saccharomyces cerevisiae has been cloned by complementation of the ade1 mutation. The nucleotide sequence has been determined for the 918-bp coding region, 240-bp 5'-noncoding region and 292-bp 3'-noncoding region. The sequenced region includes a single large open reading frame coding for a protein of 306 amino acid (aa) residues. The promoter of the ADE1 gene contains a copy of the 5'-TGACTC hexanucleotide, a feature characteristic of promoters under general aa control. Subsequent search of other published purine biosynthesis gene sequences revealed that all of them also contain general aa control signals in their promoter regions. An expression plasmid containing the ADE1 coding region under control of the PHO5 promoter produced N-succinyl-5-aminoimidazole-4-carboxamide ribotide (SAICAR) synthetase in yeast cells at a level of 40% of total cellular protein. One-step purification resulted in an almost homogeneous preparation of SAICAR synthetase.  相似文献   

10.
11.
In Saccharomyces cerevisiae, the 3-keto reductase (Erg27p) encoded by ERG27 gene is one of the key enzymes involved in the C-4 demethylation of the sterol intermediate, 4,4-dimethylzymosterol. The oxidosqualene cyclase (Erg7p) encoded by the ERG7 gene converts oxidosqualene to lanosterol, the first cyclic component of sterol biosynthesis. In a previous study, we found that erg27 strains grown on cholesterol- or ergosterol-supplemented media did not accumulate lanosterol or 3-ketosterols but rather squalene, oxidosqualene, and dioxidosqualene intermediates normally observed in ERG7 (oxidosqualene cyclase) mutants. These results suggested a possible interaction between these two enzymes. In this study, we present evidence that Erg27p interacts with Erg7p, facilitating the association of Erg7p with lipid particles (LPs) and preventing digestion of Erg7p both in the endoplasmic reticulum (ER) and LPs. We demonstrate that Erg27p is required for oxidosqualene cyclase (Erg7p) activity in LPs, and that Erg27p co-immunoprecipitates with Erg7p in LPs but not in microsomal fractions. While Erg27p is essentially a component of the ER, it can also be detected in LPs. In erg27 strains, a truncated Erg7p mislocalizes to microsomes. Restoration of Erg7p enzyme activity and LPs localization was achieved in an erg27 strain transformed with a plasmid containing a wild-type ERG27 allele. We suggest that the physical interaction of Erg27p with Erg7p is an essential regulatory tool in yeast sterol biosynthesis.  相似文献   

12.
T Bergs  D Guyonnet    F Karst 《Journal of bacteriology》1997,179(15):4664-4670
The mevalonate diphosphate decarboxylase is an enzyme which converts mevalonate diphosphate to isopentenyl diphosphate, the building block of isoprenoids. We used the Saccharomyces cerevisiae temperature-sensitive mutant defective for mevalonate diphosphate decarboxylase previously described (C. Chambon, V. Ladeveve, M. Servouse, L. Blanchard, C. Javelot, B. Vladescu, and F. Karst, Lipids 26:633-636, 1991) to characterize the mutated allele. We showed that a single change in a conserved amino acid accounts for the temperature-sensitive phenotype of the mutant. Complementation experiments were done both in the erg19-mutated background and in a strain in which the ERG19 gene, which was shown to be an essential gene for yeast, was disrupted. Epitope tagging of the wild-type mevalonate diphosphate decarboxylase allowed us to isolate the enzyme in an active form by a versatile one-step immunoprecipitation procedure. Furthermore, during the course of this study, we observed that a high level of expression of the wild-type ERG19 gene led to a lower sterol steady-state accumulation compared to that of a wild-type strain, suggesting that this enzyme may be a key enzyme in mevalonate pathway regulation.  相似文献   

13.
The yeast SOC8-1 gene was originally identified by partial complementation of cdc8 mutant strains. We have carried out Bal31 deletion analysis of the SOC8-1 gene to define the minimal size which is required for the complementation of the cdc8 mutation. When the SOC8-1 gene is cloned in a multicopy plasmid, it enables temperature-resistant growth in the cdc8 mutant strain, while the SOC8-1 gene in a single copy plasmid does not. Thus, its suppression of the cdc8 mutant is dosage dependent. The high copy number vector carrying the SOC8-1 gene can complement five different cdc8 alleles, indicating that the suppression is not allele specific. Since CDC8 encodes thymidylate kinase, cells bearing a high copy number plasmid containing SOC8-1 gene were tested for the ability to phosphorylate several nucleoside monophosphates, including UMP, GMP and dTMP. Significantly increased phosphorylation activity was observed, suggesting that SOC8-1 encodes a nucleotide kinase. Both restriction enzyme analysis of the SOC8-1 gene and partial purification of the overproduced kinase in SOC8-1 overproducing strains suggest that SOC8-1 may be allelic with URA6. Consistent with these results, both SOC8-1 and URA6 are located on chromosome XI. Thus, one possible suppression mechanism is that SOC8-1 may provide a trans-acting dTMP kinase activity, bypassing the cdc8 gene defect.  相似文献   

14.
In Saccharomyces cerevisiae, the C-24 sterol methyltransferase (Erg6p) converts zymosterol to fecosterol, an enzymatic step following C-4 demethylation of 4,4-dimethylzymosterol. Our previous study showed that an endoplasmic reticulum (ER) transmembrane protein, Erg28p, functions as a scaffold to tether the C-4 demethylation enzymatic complex (Erg25p-Erg26p-Erg27p) to the ER. To determine whether Erg28p also interacts with other ergosterol biosynthetic proteins, we compared protein levels of Erg3p, Erg6p, Erg7p, Erg11p and Erg25p in three pairs of erg28 and ERG28 strains. In erg28 strains, the Erg6p level in the ER fraction was decreased by about 50% relative to the wild-type strain, while ER protein levels of the four other ergosterol proteins showed no significant differences. Co-immunoprecipitation experiments, using an erg28 strain transformed with the epitope-tagged plasmid pERG28-HA and proteins detected with anti-HA and anti-Erg6p antibodies, indicated that Erg6p and Erg28p reciprocally co-immunoprecipitate. Further, the split ubiquitin yeast membrane two-hybrid system designed to detect protein interactions between membrane bound proteins also indicated an Erg28p-Erg6p interaction when pERG6-Cub was used as the bait and pERG28-NubG was used as the prey. We conclude that Erg28p may not only anchor the C-4 demethylation enzyme complex to the ER but also acts as a protein bridge to the Erg6p enzyme required for the next ergosterol biosynthetic step.  相似文献   

15.
The wild-type ERG19 gene of the yeast Saccharomyces cerevisiae encoding mevalonate diphosphate decarboxylase (MVD) and the mutated recessive erg19-34 allele leading to a decrease of sterol production and to a thermosensitive phenotype have been characterized [2]. The mutated erg19-34 allele bears a single amino acid leucine79-to-proline (L79P) substitution. It was shown that this mutation does not affect the level of production of the enzyme. We performed a two-hybrid assay to show that the yeast Saccharomyces cerevisiae MVD forms homodimers in vivo and that the single point mutation drastically impairs the oligomerization of the protein, thereby explaining the deficiency of MVD activity observed in the temperature-sensitive strain. Received: 2 January 1999 / Accepted: 4 January 1999  相似文献   

16.
The first gene encoding gamma-glutamyl transpeptidase (GGTI) of the fission yeast has previously been characterized, and its expression was found to be regulated by various oxidative stress-inducing agents. In this work, a second gene, encoding GGTII, was cloned and characterized from the fission yeast Schizosaccharomyces pombe. The structural gene encoding GGTII was amplified from the genomic DNA of the fission yeast and ligated into the shuttle vector pRS316 to generate the recombinant plasmid pPHJ02. The determined sequence contains 3040 bp and is able to encode the putative 611 amino acid sequence of GGTII, which resembles the counterparts of Saccharomyces cerevisiae, Homo sapiens, Rattus norvegicus, and Escherichia coli. The DNA sequence also contains 940-bp upstream and 289-bp downstream regions of the GGTII gene. The Schizosaccharomyces pombe cells harboring plasmid pPHJ02 showed about 4-fold higher GGT activity in the exponential phase than the cells harboring the vector only, indicating that the cloned GGTII gene is functional. The S. pombe cells containing the cloned GGTII gene were found to contain higher levels of both intracellular glutathione (GSH) content and GSH uptake. The S. pombe cells harboring plasmid pPHJ02 showed increased survival on solid media containing hydrogen peroxide, diethylmaleate, aluminum chloride, cadmium chloride, or mercuric chloride. The GGTII mRNA level was significantly elevated by treatment with GSH-depleting diethylmaleate. These results imply that the S. pombe GGTII gene produces functional GGTII protein and is involved in the response to oxidative stresses in S. pombe cells.  相似文献   

17.
18.
《Gene》1996,169(1):105-109
The ERG5 gene from Saccharomyces cerevisiae was cloned by complementation of an erg5-1 mutation using a negative selection protocol involving screening for nystatin-sensitive transformants. ERG5 is the putative gene encoding the C-22 sterol desaturase required in ergosterol biosynthesis. The functional gene was localized to a 2.15-kb SacI-EcoRI DNA fragment containing an open reading frame of 538 amino acids (aa). ERG5 contains a 10-aa motif consistent with its role as a cytochrome P-450 (CyP450) enzyme and is similar to a number of mammalian CyP450 enzymes. Gene disruption demonstrates that ERG5 is not essential for cell viability  相似文献   

19.
Two overlapping genomic clones spanning 16.5 kb of cotton DNA were found to encompass a Delta-12 fatty acid desaturase (FAD2-3) gene. A partial FAD2-3 cDNA clone was also analyzed. The FAD2-3 gene has one large intron of 2967 bp entirely within its 5'-untranslated region, only 12 bp upstream from the ATG initiation codon. Several potential promoter elements, including several light-responsive motifs, occur in the 5'-flanking region. The continuous FAD2-3 coding region is 1155 bp and would encode a protein of 384 amino acids. The polypeptide has four putative membrane-spanning helices, indicative of an integral membrane protein, and is most likely localized in the endoplasmic reticulum. Yeast cells transformed with a plasmid construct containing the cotton FAD2-3 coding region accumulate an appreciable amount of linoleic acid (18:2), not normally present in wild-type yeast cells, indicating that the gene encodes a functional FAD2 enzyme.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号