首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
To investigate the regulation of plant histone H2A gene expression, we isolated two H2A genes (TH254 and TH274) from wheat, which encode two variants of H2A. Both genes had an intron in the coding region. In the promoters, some characteristic sequences, such as Oct and Nona motifs, which are conserved among plant histone genes, were located in a short region (about 120 bp) upstream from the putative TATA box. Transient expression analyses of promoter activity with H2A–GUS fusion genes using tobacco protoplasts revealed novel types of positive cis/-acting sequences in the TH254 promoter: a direct repeat of a 13 bp sequence (AGTTACATTATTG) and a stretch composed of an AT-rich sequence (ATATAGAAAATTAAAA) and a G-box (CACGTG). Quantitative S1 assay of the mRNA amounts from the TH254/GUS and TH274/GUS chimeric genes in stably transformed and cell cycle-synchronized tobacco cell lines showed that the promoters of both genes contained at least one cis/-acting element responsible for S phase-specific expression. Histochemical analysis of transgenic tobacco plants carrying the chimeric genes showed that the promoters of the two H2A genes were active in developing seedlings and flower organs but were regulated in a different manner.  相似文献   

2.
3.
Conservation of the Oct motif (CGCGGATC) is a remarkable feature of plant histone gene promoters. Many of the Oct motifs are paired with a distinct motif, Hex, TCA or CCAAT-box, constituting the type I element (CCACGTCANCGATCCGCG), type II element (TCACGCGGATC) and type III element (GATCCGCG-N14-ACCAATCA). To clarify the roles of these Oct-containing composite elements (OCEs) in cell cycle-dependent and tissue-specific expression, we performed gain-of-function experiments with transgenic tobacco cell lines and plants harboring a derivative of the 35S core promoter/beta-glucuronidase fusion gene in which three or four copies of an OCE had been placed upstream. Although their activities were slightly different, results showed that each of the three types of OCEs could confer the ability to direct S phase-specific expression on a heterologous promoter. In transgenic plants, the type I and III elements exhibited a similar activity, directing expression in meristematic tissues, whereas the activity of the type II element appeared to be restricted to young cotyledons and maturating guard cells. Mutational analyses demonstrated that the co-operation of Oct with another module (Hex, TCA or CCAAT-box) was absolutely required for both temporal and spatial regulation. Thus, OCEs play a pivotal role in regulation of the expression of plant histone genes.  相似文献   

4.
To investigate developmental regulation of wheat histone H3 gene expression, the H3 promoter, which has its upstream sequence to ?1711 (relative to the cap site as +1), was fused to the coding region of the gus A gene (?1711H3/GUS) and introduced into a monocot plant, rice. Detailed histochemical analysis revealed two distinct types of GUS expression in transgenic rice plants; one is cell division-dependent found in the apical meristem of shoots and roots and in young leaves, and another is cell division-independent detected in flower tissues including the anther wall and the pistil. In this study, replication-dependent expression occurring in non-dividing cells which undergo endoreduplication could not be discriminated from strict replication-independent expression. The observed expression pattern in different parts of roots suggested that the level of the H3/GUS gene expression is well correlated with activity of cell division in roots. To identify 5′ sequences of the H3 promoter necessary for an accurate regulation of the GUS expression, two constructs containing truncated promoters, ?908H3/GUS and ?185H3/GUS, were analyzed in transiently expressed protoplasts, stably transformed calli and transgenic plants. The results indicated that the region from ?909 to ?1711 contains the positive cis-acting element(s) and that the proximal promoter region (up to ?185) containing the conserved hexamer, octamer and nonamer motifs is sufficient to direct both cell division-dependent and -independent expression. The use of the meristem of roots regenerated from transformed calli for the analysis of cell division-dependent expression of plant genes is discussed.  相似文献   

5.
6.
7.
8.
A 1023 bp fragment and truncated derivatives of the maize (Zea mays L.) histone H3C4 gene promoter were fused to the ß-glucuronidase (GUS) gene and introduced via Agrobacterium tumefaciens into the genome of Arabidopsis thaliana. GUS activity was found in various meristems of transgenic plants as for other plant histone promoters, but unexplained activity also occurred at branching points of both stems and roots. Deletion of the upstream 558 bp of the promoter reduced its activity to an almost basal expression. Internal deletion of a downstream fragment containing plant histone-specific sequence motifs reduced the promoter activity in all tissues and abolished the expression in meristems. Thus, both the proximal and distal regions of the promoter appear necessary to achieve the final expression pattern in dicotyledonous plant tissues. In mesophyll protoplasts isolated from the transformed Arabidopsis plants, the full-length promoter showed both S phase-dependent and -independent activity, like other plant histone gene promoters. Neither of the 5-truncated nor the internal-deleted promoters were able to direct S phase-dependent activity, thus revealing necessary cooperation between the proximal and distal parts of the promoter to achieve cell cycle-regulated expression. The involvement of the different regions of the promoter in the different types of expression is discussed.  相似文献   

9.
10.
The phenylpropanoid enzyme 4-coumarate:coenzyme A ligase (4CL) plays a key role in linking general phenylpropanoid metabolism to end-product specific biosynthetic pathways. During vascular system and floral organ differentiation, the parsley 4CL-1 gene is expressed in a restricted set of tissues and cell types where 4CL activity is required to supply precursors for the synthesis of diverse phenylpropanoid-derived products such as lignin and flavonoids. In order to localize cis -acting elements which specify complex patterns of 4CL-1 expression, we analyzed the expression of internally deleted promoter fragment— GUS fusions in tobacco plants and parsley protoplasts. Elements located between −244 and −78 were required for most aspects of developmentally regulated expression. Within this region, three separate promoter domains containing partially redundant cis -elements directed vascular-specific expression when combined with a TATA-proximal domain. A negative cis -acting element which represses phloem expression was revealed in one of the domains and appears to be responsible for restricting vascular expression to the xylem. Distinct but overlapping promoter domain combinations were required for expression in floral organs, suggesting that different combinations of cis -acting elements may direct expression in different organs. Gel retardation assays were used to demonstrate the formation of DNA-protein complexes between factors present in nuclear extracts of parsley tissue culture cells and various tobacco organs and a 4CL-1 promoter fragment. Competition experiments showed that complex formation required the presence of a 42 bp promoter domain shown to be critical for 4CL-1 expression in vascular and floral tissues. The results are discussed in light of the coordinate expression of 4CL and other phenylpropanoid genes.  相似文献   

11.
Protein—DNA interactions in the proximal region of an Arabidopsis H4 histone gene promoter were analyzed by DMS in vivo footprinting combined with LMPCR amplification. Interactions were identified over six particular sequence motifs, five of which were previously shown to bind proteins in maize histone H3 and H4 promoters and are commonly found in the corresponding regions of other plant histone gene promoters. These motifs are located within a 126 bp fragment which was previously shown to confer preferential expression in meristems of transgenic plants. The contribution of each cis -element to the overall expression level and specificity was investigated by testing individual or combined mutations in transgenic Arabidopsis plants. All five motifs behaved as positive cis -elements of unequal strength. The GCCAAT-like sequence GCCACT behaved as a strong positive cis -element but had no influence on the specificity. In contrast, the nonamer AGATCGACG and to a lesser extent the closely linked hexamer CCGTCG proved to be essential for meristem-specific expression. Involvement of the highly conserved histone-specific octamer CGCGGATC in specific expression was revealed at some stages of meristem development. Importance of these three cis -elements, nonamer, hexamer, and octamer, was further confirmed by the fact that combining mutations of two of them either abolished the promoter activity or completely modified the promoter specificity. Mutation of the fifth cis -element, a degenerate copy of the octamer, little perturbed the promoter function. However disruption of both octamers had a dramatic negative effect, thus suggesting that the two copies cooperate to achieve maximal function in the wild-type promoter, possibly by mobilizing the proliferation-specific factors binding to the nonamer and CCGTCG cis -elements.  相似文献   

12.
13.
14.
15.
16.
17.
The tissue-specific pattern of expression directed by the H4A748 Arabidopsis histone promoter was investigated by analysis of beta-glucuronidase (GUS) activity in transgenic Arabidopsis containing H4A748-GUS gene fusions. As determined by fluorimetric and histochemical tests, the H4A748 promoter directs preferential expression in meristems of young seedlings and adult plants. The low activity found in nonproliferating tissues may relate to basal constitutive expression of the histone promoter and/or to endoreduplication occurring in some tissues. The endogenous histone mRNA levels parallel the GUS activity found in different tissues. Analysis of the regulatory properties of 5' deleted promoters showed that multiple positive elements exist between -900 and -219 and that the proximal region of the promoter to -219 is sufficient to establish the full tissue-specific pattern of expression. Further deletion to -93 nearly abolished the promoter activity thus suggesting that the 126 bp fragment located between -219 and -93 contains the elements responsible for the specific expression pattern. The presence of several remarkable sequences within this fragment is discussed.  相似文献   

18.
19.
20.
Regulatory elements within the promoter of the pollen-specific NTP303 gene from tobacco were analysed by transient and stable expression analyses. Analysis of precisely targeted mutations showed that the NTP303 promoter is not regulated by any of the previously described pollen-specific cis -regulatory elements. However, two adjacent regions from −103 to −86 bp and from −86 to −59 bp were shown to contain sequences which positively regulated the NTP303 promoter. Both of these regions were capable of driving pollen-specific expression from a heterologous promoter, independent of orientation and in an additive manner. The boundaries of the minimal, functional NTP303 promoter were determined to lie within the region −86 to −51 bp. The sequence AAATGA localized from −94 to −89 bp was identified as a novel cis -acting element, of which the TGA triplet was shown to comprise an active part. This element was shown to be completely conserved in the similarly regulated promoter of the Bp10 gene from Brassica napus encoding a homologue of the NTP303 gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号