首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We used exogenous gonadotropin hormones to physiologically enlarge litter size in the bank vole (Clethrionomys glareolus). This method allowed the study design to include possible production costs of reproduction and a trade-off between offspring number and body size at birth. Furthermore, progeny rearing and survival and postpartum survival of the females took place in outdoor enclosures to capture salient naturalistic effects that might be present during the fall and early winter. The aim of the study was to assess the effects of the manipulation on the growth and survival of the offspring and on the reproductive effort, survival, and future fecundity of the mothers. Mean offspring body size was smaller in enlarged litters compared to control litters at weaning, but the differences disappeared by the winter. Differences in litter sizes disappeared before weaning age due to higher mortality in enlarged litters. In addition to the effects of the litter size, offspring performance was probably also influenced by the ability of the mother to support the litter. Experimental females had higher reproductive effort at birth, and they also tended to have higher mortality during nursing. Combined effects of high reproductive effort at birth and high investment in nursing the litter entailed costs for the experimental females in terms of decreased probability of producing a second litter and a decreased body mass gain. Thus, enlarged litter size had both survival and fecundity costs for the mothers. Our results suggest that the evolution of litter size and reproductive effort is determined by reproductive costs for the mothers as well as by a trade-off between offspring number and quality.  相似文献   

2.
In territorial microtines intra-specific density dependent processes can limit the maturation of individuals during the summer of their birth. This may have demographic consequences by affecting the number and the age distribution of breeding individuals in the population. Little is known about this process on a community level, though populations of many northern microtine species fluctuate in synchrony and are known to interfere socially with each other. We experimentally studied the influence of the field vole Microtus agrestis on maturation, breeding, space use and survival of weanling bank voles, Clethrionomys glareolus. Two additive competition experiments on bank vole populations were conducted in large outdoor enclosures, half of them additionally housing a field vole population. In a mid-summer experiment low population density and absence of older breeding females minimised intra-specific competition. Survival was not affected by the presence of field voles. Season had a significant effect on both the probability of maturation and breeding of the weanlings. Competition with field voles significantly delayed breeding, and coupled with seasonal effects decreased the probability of breeding. In a late-summer experiment breeding and survival of bank vole weanlings were studied for three weeks as part of a high density breeding bank vole population. Weanlings did not mature at all nor were their space use and survival affected by the presence of field voles. Our results show that competition with other species can also have an impact on breeding of immatures. In an extreme seasonal environment, even a short delay of breeding may decrease survival chances of offspring. Seasonal and competition effects together may thus limit the contribution of year born females to reproductive output of the population. Other studies have shown that adult breeding bank voles suffer lower survival in the presence of field voles, but this study showed no survival effects on the weanlings. Thus it might be beneficial for weanlings to stay immature especially in the end of the breeding season and postpone reproduction to the next breeding season if densities of competing species are high.  相似文献   

3.
Life-history theory predicts that older females will increase reproductive effort through increased fecundity. Unless offspring survival is density dependent or female size constrains offspring size, theory does not predict variation in offspring size. However, empirical data suggest that females of differing age or condition produce offspring of different sizes. We used a dynamic state-variable model to determine when variable offspring sizes can be explained by an interaction between female age, female state and survival costs of reproduction. We found that when costs depend on fecundity, young females with surplus state increase offspring size and reduce number to minimize fitness penalties. When costs depend on total reproductive effort, only older females increase offspring size. Young females produce small offspring, because decreasing offspring size is less expensive than number, as fitness from offspring investment is nonlinear. Finally, allocation patterns are relatively stable when older females are better at acquiring food and are therefore in better condition. Our approach revealed an interaction between female state, age and survival costs, providing a novel explanation for observed variation in reproductive traits.  相似文献   

4.
One of the main tenets of modern life-history theory is the negative relationship (trade-off) between the number and quality of offspring produced. Theory predicts a negative genetic correlation between these traits since both are closely related to fitness of individuals. However, the genetic basis of the trade-off has only been tested to a limited extent in natural populations. We examined whether size and quality of offspring are negatively related to litter size in the bank vole Clethrionomys glareolus. First, we found a significant negative phenotypic correlation between the number and size of offspring at birth in both laboratory and field populations of the bank vole. Second, a larger size at birth decreased the maturation age of female offspring in the laboratory, and increased the probability of breeding and the size of the first litter in the field. Furthermore, manipulation of offspring size at weaning indicated that structural effects of birth size in mammals have a more profound effect on the expression of life-history traits than weaning size. Finally, in addition to the phenotypic negative correlation between the number and size of offspring, we found evidence for a negative genetic correlation between these two traits, which confirms the genetic basis of the trade-off. This negative genetic covariation may have considerable effects on the rate and direction of evolution of the two related life-historical traits.  相似文献   

5.
Maternal investment in offspring development is a major determinant of the survival and future reproductive success of both the mother and her young. Mothers might therefore be expected to adjust their investment according to ecological conditions in order to maximise their lifetime fitness. In cooperatively breeding species, where helpers assist breeders with offspring care, the size of the group may also influence maternal investment strategies because the costs of reproduction are shared between breeders and helpers. Here, we use longitudinal records of body mass and life history traits from a wild population of meerkats (Suricata suricatta) to explore the pattern of growth in pregnant females and investigate how the rate of growth varies with characteristics of the litter, environmental conditions, maternal traits and group size. Gestational growth was slight during the first half of pregnancy but was marked and linear from the midpoint of gestation until birth. The rate of gestational growth in the second half of pregnancy increased with litter size, maternal age and body mass, and was higher for litters conceived during the peak of the breeding season when it is hot and wet. Gestational growth rate was lower in larger groups, especially when litter size was small. These results suggest that there are ecological and physiological constraints on gestational growth in meerkats, and that females may also be able to strategically adjust their prenatal investment in offspring according to the likely fitness costs and benefits of a particular breeding attempt. Mothers in larger groups may benefit from reducing their investment because having more helpers might allow them to lower reproductive costs without decreasing breeding success.  相似文献   

6.
1.?Timing of birth/hatching may have strong effects on offspring fitness. Breeding time is generally considered to have evolved to match offspring arrival with optimal seasonal environmental conditions, though this is rarely tested experimentally and factors shaping the relations between timing of birth and reproductive success are often poorly understood. 2.?By manipulating incubation temperature of Atlantic salmon embryos, and hence controlling for maternal and genetic effects, we obtained offspring emerging from nests prior to (accelerated), during and after (decelerated) normal emergence times, and accordingly experienced widely different seasonal environmental conditions at emergence (stream temperature range 4-16 °C). The accelerated group emerged at temperatures that are generally considered to be highly sub-optimal for growth and likely imposes strong constraints on feeding and activity, and during a peak in water discharge which is expected to negatively influence habitat availability. 3.?In the wild, overall mortality during the period after emergence was 79%, and was significantly affected by both release density and emergence timing. Accelerated offspring, which emerged earliest and experienced the harshest environmental conditions, had both highest survival and largest final body size. The effect was particularly strong at the high density release site, where survival of accelerated offspring was significantly higher than both the normal and decelerated groups. 4.?In more controlled semi-natural environments, all developmental groups were able to perform well, but accelerated offspring had a relatively better performance than the later emerging offspring when density was high. Furthermore, the relative performance of the different groups was not sensitive to water discharge regimes (temporally stable vs. fluctuating). 5.?These results suggest that the performance of offspring in relation to seasonal timing of emergence is highly affected by competitive interactions in Atlantic salmon. Although a match between phenology and optimal seasonal environmental conditions may be highly important for organisms depending on specific resources that are only available during a limited period of the season, such resources may be available in variable amounts year around for many organisms. For these, offspring success may to a larger degree be shaped by the timing of their hatching/birth relative to each other, and particularly so under high population densities.  相似文献   

7.
Life-history traits are influenced by environmental factors throughout the lifespan of an individual. The relative importance of past versus present environment on individual fitness, therefore, is a relevant question in populations that face the challenge of temporally varying environment. We studied the interacting effects of past and present density on body mass, condition, and survival in enclosure populations of the bank vole (Myodes glareolus) using a reciprocal transplant design. In connection with the cyclic dynamics of natural vole populations, our hypothesis was that individuals born in low-density enclosures would do better overwintering in low-density enclosures than in high-density enclosures and vice versa. Our results show that the effect of summer (past) density was strong especially on survival and body mass. The response of body mass to summer density was negative in both winter (present) density groups, whereas the response of survival probability was nonlinear and differed between the winter density groups. In particular, our data show a trend for higher overwintering success of individuals originating from the lowest summer densities in low winter density and vice versa. We therefore conclude that the capacity of individuals to respond to a change in density was constrained by the delayed density-dependent effects of environment experienced in the past. These effects have the potential to contribute to vole population dynamics. Possible mechanisms mediating the effects of past environment into present performance include both intrinsic and environmental factors.  相似文献   

8.
The evolutionary maintenance of cooperative breeding systems is thought to be a function of relative costs and benefits to breeders, helpers and juveniles. Beneficial effects of helpers on early-life survivorship and performance have been established in several species, but lifetime fitness benefits and/or costs of being helped remain unclear, particularly for long-lived species. We tested for effects of helpers on early- and late-life traits in a population of reintroduced red wolves (Canis rufus), while controlling for ecological variables such as home-range size and population density. We found that the presence of helpers in family groups was positively correlated with pup mass and survival at low population density, but negatively correlated with mass/size at high density, with no relation to survival. Interestingly, mass/size differences persisted into adulthood for both sexes. While the presence of helpers did not advance age at first reproduction for pups of either sex, females appeared to garner long-term fitness benefits from helpers through later age at last reproduction, longer reproductive lifespan and a greater number of lifetime reproductive events, which translated to higher lifetime reproductive success. In contrast, males with helpers exhibited diminished lifetime reproductive performance. Our findings suggest that while helper presence may have beneficial short-term effects in some ecological contexts, it may also incur long-term sex-dependent costs with critical ramifications for lifetime fitness.  相似文献   

9.
1. Population density often has strong effects on the population dynamics and reproductive processes of territorial animals. However, most estimates of density-dependent effects use the number of breeding pairs per unit area in a given season and look for correlations across seasons, a technique that assigns the same density score to each breeding pair, irrespective of local spatial variation. 2. In this study, we employed GIS techniques to estimate individual breeding densities for great tits breeding in Wytham Woods UK, between 1965 and 1996. We then used linear mixed modelling to analyse the effect of density on reproductive processes. 3. The areas of Thiessen polygons formed around occupied nestboxes were used to approximate territory size (necessarily inverse of breeding density). There were significant, independent and positive relationships between clutch size, fledging mass and the number of offspring recruited to the population, and territory size (all P < 0.001), but no effect of territory size on lay-date or egg mass. 4. Thiessen polygons are contiguous and cover all of the available area. Therefore, at low nest densities territory polygons were excessively oversized. Using a novel procedure to address this limitation, territory sizes were systematically capped through a range of maxima, with the greatest effect in the models when territories were capped at 0.9-2.3 ha. This figure approximates to the maximum effective territory size in our population and is in close agreement with several field-based studies. This capping refinement also revealed a significant negative relationship between lay-date and territory size capped at 0.9 ha (P < 0.001). 5. These density-dependent effects were also detected when analyses were restricted to changes within individual females, suggesting that density effects do not merely result from either increased proportions of low-quality individuals, or increased occupation of poor sites, when population density is high. 6. Overall, these results suggest that, in the current population, great tits with territories smaller than c. 2 ha independently lay smaller and later clutches, have lighter fledglings, and recruit fewer offspring to the breeding population. These analyses thus suggest a pervasive and causal role of local population density in explaining individual reproductive processes.  相似文献   

10.
Török J  Hegyi G  Tóth L  Könczey R 《Oecologia》2004,141(3):432-443
Investment into the current reproductive attempt is thought to be at the expense of survival and/or future reproduction. Individuals are therefore expected to adjust their decisions to their physiological state and predictable aspects of environmental quality. The main predictions of the individual optimization hypothesis for bird clutch sizes are: (1) an increase in the number of recruits with an increasing number of eggs in natural broods, with no corresponding impairment of parental survival or future reproduction, and (2) a decrease in the fitness of parents in response to both negative and positive brood size manipulation, as a result of a low number of recruits, poor future reproduction of parents, or both. We analysed environmental influences on costs and optimization of reproduction on 6 years of natural and experimentally manipulated broods in a Central European population of the collared flycatcher. Based on dramatic differences in caterpillar availability, we classified breeding seasons as average and rich food years. The categorization was substantiated by the majority of present and future fitness components of adults and offspring. Neither observational nor experimental data supported the individual optimization hypothesis, in contrast to a Scandinavian population of the species. The quality of fledglings deteriorated, and the number of recruits did not increase with natural clutch size. Manipulation revealed significant costs of reproduction to female parents in terms of future reproductive potential. However, the influence of manipulation on recruitment was linear, with no significant polynomial effect. The number of recruits increased with manipulation in rich food years and tended to decrease in average years, so control broods did not recruit more young than manipulated broods in any of the year types. This indicates that females did not optimize their clutch size, and that they generally laid fewer eggs than optimal in rich food years. Mean yearly clutch size did not follow food availability, which suggests that females cannot predict food supply of the brood-rearing period at the beginning of the season. This lack of information on future food conditions seems to prevent them from accurately estimating their optimal clutch size for each season. Our results suggest that individual optimization may not be a general pattern even within a species, and alternative mechanisms are needed to explain clutch size variation.  相似文献   

11.
Survival is a key component of fitness. Species that occupy discrete breeding colonies with different characteristics are often exposed to varying costs and benefits associated with group size or environmental conditions, and survival is an integrative net measure of these effects. We investigated the extent to which survival probability of adult (≥1-year old) cliff swallows (Petrochelidon pyrrhonota) occupying different colonies resembled that of their parental cohort and thus whether the natal colony had long-term effects on individuals. Individuals were cross-fostered between colonies soon after hatching and their presence as breeders monitored at colonies in the western Nebraska study area for the subsequent decade. Colony-specific adult survival probabilities of offspring born and reared in the same colony, and those cross-fostered away from their natal colony soon after birth, were positively and significantly related to subsequent adult survival of the parental cohort from the natal colony. This result held when controlling for the effect of natal colony size and the age composition of the parental cohort. In contrast, colony-specific adult survival of offspring cross-fostered to a site was unrelated to that of their foster parent cohort or to the cohort of non-fostered offspring with whom they were reared. Adult survival at a colony varied inversely with fecundity, as measured by mean brood size, providing evidence for a survival–fecundity trade-off in this species. The results suggest some heritable variation in adult survival, likely maintained by negative correlations between fitness components. The study provides additional evidence that colonies represent non-random collections of individuals.  相似文献   

12.
Summary Most species of woodlice in temperate habitats have discrete breeding seasons. It is hypothesised that breeding synchronises with favourable environmental conditions to maximise offspring growth and survivorship (Willows 1984). We measured the breeding phenology of a species introduced to a tropical environment, primarily to consider the assumption that life histories in the tropics will differ fundamentally from those in temperate habitats. In addition to breeding phenology we considered variation in reproductive effort between individual females and the division of this effort between the size and number of young.A continuous breeding phenology was observed in a synanthropic population of Porcellionides pruinosus within the tropics. Reproductive effort varied between months, showed a weak relationship with female size and was independent of female fecundity. Female sizefecundity relationships varied between samples and when the proportion of reproductive females was high size-fecundity slopes were steeper than at other times. Mean offspring size varied between months and there was a wide range in offspring size within broods. Offspring size was not related to female body mass, reproductive effort or fecundity; consequently brood mass increased linearly with an increase in fecundity. Increased reproductive effort goes into more rather than larger offspring.We propose that the continuous breeding in this population was the result of the constant presence of an environmental cue to reproduction evolved in temperate habitats. Continuous breeding is not necessarily equivocal to high individual reproductive success even though overall population growth may be rapid. However, variation in reproductive effort suggests that individuals respond to current environmental conditions on short time scales.  相似文献   

13.
Experimental studies have often been employed to study costs of reproduction, but rarely to study costs of gestation. Disentangling the relative importance of each stage of the reproductive cycle should help to assess the costs and benefits of different reproductive strategies. To that end, we experimentally reduced litter size during gestation in a viviparous lizard. We measured physiological and behavioural parameters during gestation and shortly after parturition, as well as survival and growth of females and their offspring. This study showed four major results. First, the experimental litter size reduction did not significantly affect the cellular immune response, the metabolism and the survival of adult females. Second, females with reduced litter size decreased their basking time. Third, these females also had an increased postpartum body condition. As postpartum body condition is positively related to future reproduction, this result indicates a gestation cost. Fourth, even though offspring from experimentally reduced litters had similar weight and size at birth as other offspring, their growth rate after birth was significantly increased. This shows the existence of a maternal effect during gestation with delayed consequences. This experimental study demonstrates that there are some costs to gestation, but it also suggests that some classical trade-offs associated with reproduction may not be explained by gestation costs.  相似文献   

14.
Geographical variation in offspring size effects across generations   总被引:2,自引:0,他引:2  
Dustin J. Marshall 《Oikos》2005,108(3):602-608
Offspring size is thought to strongly affect offspring fitness and many studies have shown strong offspring size/fitness relationships in marine and terrestrial organisms. This relationship is strongly mitigated by local environmental conditions and the optimal offspring size that mothers should produce will vary among different environments. It is assumed that offspring size will consistently affect the same traits among populations but this assumption has not been tested. Here I use a common garden experiment to examine the effects of offspring size on subsequent performance for the marine bryozoan Bugula neritina using larvae from two very different populations. The local conditions at one population (Williamstown) favour early reproduction whereas the other population (Pt. Wilson) favours early growth. Despite being placed in the same habitat, the effects of parental larval size were extremely variable and crossed generations. For larvae from Williamstown, parental larval size positively affected initial colony growth and larval size in the next generation. For larvae from the other population, parental larval size positively affected colony fecundity and negatively affected larval size in the next generation. Traditionally, exogenous factors have been viewed as the sole source of variation in offspring size/fitness relationship but these results show that endogenous factors (maternal source population) can also cause variation in this crucial relationship. It appears offspring size effects can be highly variable among populations and organisms can adapt to local conditions without changing the size of their offspring.  相似文献   

15.
Determinants of geographic variation in body size are often poorly understood, especially in organisms with complex life cycles. We examined patterns of adult body size and metamorphic traits variation in Iberian spadefoot toad ( Pelobates cultripes ) populations, which exhibit an extreme reduction in adult body size, 71.6% reduction in body mass, within just about 30 km at south-western Spain. We hypothesized that size at and time to metamorphosis would be predictive of the spatial pattern observed in adult body size. Larvae from eight populations were raised in a common garden experiment at two different larval densities that allow to differentiate whether population divergence was genetically based or was simply a reflection of environmental variation and, in addition, whether this population divergence was modulated by differing crowding larval environments. Larger adult size populations had higher larval growth rates, attaining larger sizes at metamorphosis, and exhibited higher survival than smaller-sized populations at both densities, although accentuated at a low larval density. These population differences appeared to be consistent once embryo size variation was controlled for, suggesting that this phenotypic divergence is not due to maternal effects. Our results suggest considerable genetic differentiation in metamorphic traits that parallels and may be a causal determinant of geographic variation in adult body size.  相似文献   

16.
In an attempt to test predictions of the optimisation hypothesis of life history traits in birds, we estimated fitness consequences of brood size manipulations. Experiments were carried out over a period of 4 years in a Mediterranean population of blue tits Parus caeruleus which is confronted with a particular set of environmental constraints. Effects of brood size manipulation were investigated in relation to year-to-year variation in environmental conditions, especially caterpillar abundance. There was a strong variation in the effects of brood size manipulation depending on year. Most effects were on offspring quality (fledging mass, tarsus length). The absolute number of recruits did not significantly differ among categories (reduced, control, enlarged broods) but varied considerably among years. Females recruited from enlarged broods were of lower quality, started to breed later and laid fewer eggs than those recruited from control and reduced broods. Neither parental survival nor reproductive performances of adults in year n + 1 was affected by brood size manipulation in year n. Thus there was no evidence for a cost of reproduction in this population. Since the number of recruits did not depend on brood size manipulation (recruitment rates were higher in reduced broods), but recruits from reduced broods were of better quality compared with other groups, we conclude that adults lay a clutch that is larger than that which is predicted by the optimisation hypothesis. Producing more young could incur some penalties because offspring from large broods are of lower quality and less likely to recruit in the population. Two possible reasons why decision rules in this population seem to be suboptimal are discussed. Received: 10 March 1998 / Accepted: 1 July 1998  相似文献   

17.
Summary Because seed size is often associated with survival and reproduction in plant populations, genetic variation for seed size may be reduced or eliminated by natural selection. To test this hypothesis we assessed genetic sources of variation in seed size in a population ofPhlox drummondii to determine whether genetic differences among seeds influence the size they attain. A diallel cross among 12 plants from a population at Bastrop, Texas, USA allowed us to partition variance in the mass of seeds among several genetic and parental effects. We found no evidence of additive genetic variance or dominance genetic variance for seed mass in the contribution of plants to their offspring. Extranuclear maternal effects accounted for 56% of the variance in seed mass. A small interaction was observed between seed genotype and maternal plant. Results of this study support theory that predicts little genetic variation for traits associated with fitness.  相似文献   

18.
Intergenerational fitness effects on offspring due to the early life of the parent are well studied from the standpoint of the maternal environment, but intergenerational effects owing to the paternal early life environment are often overlooked. Nonetheless, recent laboratory studies in mammals and ecologically relevant studies in invertebrates predict that paternal effects can have a major impact on the offspring's phenotype. These nongenetic, environment‐dependent paternal effects provide a mechanism for fathers to transmit environmental information to their offspring and could allow rapid adaptation. We used the bank vole Myodes glareolus, a wild rodent species with no paternal care, to test the hypothesis that a high population density environment in the early life of fathers can affect traits associated with offspring fitness. We show that the protein content in the diet and/or social environment experienced during the father's early life (prenatal and weaning) influence the phenotype and survival of his offspring and may indicate adaptation to density‐dependent costs. Furthermore, we show that experiencing multiple environmental factors during the paternal early life can lead to a different outcome on the offspring phenotype than stimulated by experience of a single environmental factor, highlighting the need to study developmental experiences in tandem rather than independent of each other.  相似文献   

19.
Polyandry, i.e. mating with multiple males within one reproductive event, is a common female mating strategy but its adaptive function is often unclear. We tested whether polyandrous females gain genetic benefits by comparing fitness traits of monandrous (mated twice with a single male) and polyandrous (mated twice with two different males) female bank voles Clethrionomys glareolus. We raised the offspring in the laboratory until adulthood and measured their body size, before releasing them to outdoor enclosures to overwinter. At the onset of the breeding season in the following spring, we found that offspring of polyandrous females performed significantly better at reproduction than those of monandrous females. This was mainly due to sons of polyandrous females producing significantly more offspring than those of monandrous females. No significant differences were found for offspring body mass or winter survival between the two treatments. Our results appear to provide evidence that bank vole females gain long-term benefits from polyandry.  相似文献   

20.
田鼠种群波动的原因和时间   总被引:2,自引:0,他引:2  
本文总结了橙腹田鼠(Microtus ochrogaster)和草原田鼠(M.permsylvanicus)25年的种群统计学研究结果和结论。探讨了田鼠种群波动周期性、诱发种群波动以及导致波动期间峰值变异的因素。并对种群存活值和繁殖活动的作用进行了分析和评价。根据两种田鼠种群波动周期性、波动峰值出现的时间以及特定年份峰值的高度等特征,证明两物种波动均具有不稳定性。两种田鼠存活值的变化是由特定年份是否发生波动以及波动峰值出现的时间决定。增加初始阶段的种群密度及时间长度是造成两种动物种群波动峰值不同的主要原因。橙腹田鼠种群停止增长的原因是存活值降低,而草原田鼠则是繁殖活动减少。据推测,与种群波动初始密度相关的种群死亡率的差异是由捕食者的净效应(Net effect)决定的,调控两种群密度的因素均为非密度的其它生态学因子。由于特定年份田鼠种群捕食压力的不确定性,导致了橙腹田鼠和草原田鼠种群波动的不稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号