首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.

Background

TRPV4 and the cellular cytoskeleton have each been reported to influence cellular mechanosensitive processes as well as the development of mechanical hyperalgesia. If and how TRPV4 interacts with the microtubule and actin cytoskeleton at a molecular and functional level is not known.

Methodology and Principal Findings

We investigated the interaction of TRPV4 with cytoskeletal components biochemically, cell biologically by observing morphological changes of DRG-neurons and DRG-neuron-derived F-11 cells, as well as functionally with calcium imaging. We find that TRPV4 physically interacts with tubulin, actin and neurofilament proteins as well as the nociceptive molecules PKCε and CamKII. The C-terminus of TRPV4 is sufficient for the direct interaction with tubulin and actin, both with their soluble and their polymeric forms. Actin and tubulin compete for binding. The interaction with TRPV4 stabilizes microtubules even under depolymerizing conditions in vitro. Accordingly, in cellular systems TRPV4 colocalizes with actin and microtubules enriched structures at submembranous regions. Both expression and activation of TRPV4 induces striking morphological changes affecting lamellipodial, filopodial, growth cone, and neurite structures in non-neuronal cells, in DRG-neuron derived F11 cells, and also in IB4-positive DRG neurons. The functional interaction of TRPV4 and the cytoskeleton is mutual as Taxol, a microtubule stabilizer, reduces the Ca2+-influx via TRPV4.

Conclusions and Significance

TRPV4 acts as a regulator for both, the microtubule and the actin. In turn, we describe that microtubule dynamics are an important regulator of TRPV4 activity. TRPV4 forms a supra-molecular complex containing cytoskeletal proteins and regulatory kinases. Thereby it can integrate signaling of various intracellular second messengers and signaling cascades, as well as cytoskeletal dynamics. This study points out the existence of cross-talks between non-selective cation channels and cytoskeleton at multiple levels. These cross talks may help us to understand the molecular basis of the Taxol-induced neuropathic pain development commonly observed in cancer patients.  相似文献   

2.
Existence of microtubule cytoskeleton at the membrane and submembranous regions, referred as 'membrane tubulin' has remained controversial for a long time. Since we reported physical and functional interaction of Transient Receptor Potential Vanilloid Sub Type 1 (TRPV1) with microtubules and linked the importance of TRPV1-tubulin complex in the context of chemotherapy-induced peripheral neuropathy, a few more reports have characterized this interaction in in vitro and in in vivo condition. However, the cross-talk between TRPs with microtubule cytoskeleton, and the complex feedback regulations are not well understood. Sequence analysis suggests that other than TRPV1, few TRPs can potentially interact with microtubules. The microtubule interaction with TRPs has evolutionary origin and has a functional significance. Biochemical evidence, Fluorescence Resonance Energy Transfer analysis along with correlation spectroscopy and fluorescence anisotropy measurements have confirmed that TRPV1 interacts with microtubules in live cell and this interaction has regulatory roles. Apart from the transport of TRPs and maintaining the cellular structure, microtubules regulate signaling and functionality of TRPs at the single channel level. Thus, TRPV1-tubulin interaction sets a stage where concept and parameters of 'membrane tubulin' can be tested in more details. In this review, I critically analyze the advancements made in biochemical, pharmacological, behavioral as well as cell-biological observations and summarize the limitations that need to be overcome in the future.  相似文献   

3.
While the importance of Ca(2+) channel activity in axonal path finding is established, the underlying mechanisms are not clear. Here, we show that transient receptor potential vanilloid receptor 1 (TRPV1), a member of the TRP superfamily of nonspecific ion channels, is physically and functionally present at dynamic neuronal extensions, including growth cones. These nonselective cation channels sense exogenous ligands, such as resenifera toxin, and endogenous ligands, such as N-arachidonoyl-dopamine (NADA), and affect the integrity of microtubule cytoskeleton. Using TRPV1-transiently transfected F11 cells and embryonic dorsal root ganglia explants, we show that activation of TRPV1 results in growth cone retraction, and collapse and formation of varicosities along neurites. These changes were due to TRPV1-activation-mediated disassembly of microtubules and are partly Ca(2+)-independent. Prolonged activation with very low doses (1 nM) of NADA results in shortening of neurites in the majority of isolectin B4-positive dorsal root ganglia neurones. We postulate that TRPV1 activation plays an inhibitory role in sensory neuronal extension and motility by regulating the disassembly of microtubules. This might have a role in the chronification of pain.  相似文献   

4.
The transient receptor potential cation channel subfamily V member 1 (TRPV1) is a protein currently under scrutiny as a pharmacological target for pain management therapies. Recently, the role of TRPV1-microtubule interaction in transducing nociception stimuli to cells by cytoskeletal rearrangement was proposed. In this work, we investigate TRPV1-microtubule interaction in living cells under the resting or activated state of TRPV1, as well as in presence of structurally intact or depolymerized cytoskeletal microtubules. We combined a toolbox of high resolution/high sensitivity fluorescence imaging techniques (such as FRET, correlation spectroscopy, and fluorescence anisotropy) to monitor TRPV1 aggregation status, membrane mobility, and interaction with microtubules. We found that TRPV1 is a dimeric membrane protein characterized by two populations with different diffusion properties in basal condition. After stimulation with resiniferatoxin, TRPV1 dimers tetramerize. The tetramers and the slower population of TRPV1 dimers bind dynamically to intact microtubules but not to tubulin dimers. Upon microtubule disassembly, the interaction with TRPV1 is lost thereby inducing receptor self-aggregation with partial loss of functionality. Intact microtubules play an essential role in maintaining TRPV1 functionality toward activation stimuli. This previously undisclosed property mirrors the recently reported role of TRPV1 in modulating microtubule assembly/disassembly and suggests the participation of these two players in a feedback cycle linking nociception and cytoskeletal remodeling.  相似文献   

5.
1. Extracellular ATP is recognized as a peripheral modulator of pain. Activation of ionotropic P2X receptors in sensory neurons has been implicated in induction of pain, whereas metabotropic P2Y receptors in potentiation of pain induced by chemical or physical stimuli via capsaicin sensitive TRPV1 channel. Here we report that P2Y2 receptor activation by ATP can activate the TRPV1 channel in absence of any other stimuli. 2. ATP-induced Ca2+ signaling was studied in Neuro2a cells. ATP evoked release of intracellular Ca2+ from ER and Ca2+ influx through a fast inactivating channel. The Ca2+ response was induced by P2Y receptor agonists in the order of potency ATP>or=UTP>or=ATPgammaS>ADP and was inhibited by suramin and PPADS. The P2X receptor agonist alpha beta methyl ATP was ineffective. 3. The Ca2+ influx was blocked by ruthenium red, an inhibitor of TRPV1 channel. Capsaicin, the most potent activator of the TRPV1 channel, evoked a fast inactivating Ca2+ transient suggesting the presence of endogenous TRPV1 channels in Neuro2a cells. NMS and PDBu, repressors of IP3 formation, drastically inhibited both the components of Ca2+ response. 4. Our data show co-activation of the P2Y2 receptor and capsaicin sensitive TRPV1 channel by ATP. Such functional interaction between endogenous P2Y2 receptor and TRPV1 channels could explain the ATP-induced pain.  相似文献   

6.
Effector molecules such as calmodulin modulate the interactions of membrane-associated guanylate kinase homologs (MAGUKs) and other scaffolding proteins of the membrane cytoskeleton by binding to the Src homology 3 (SH3) domain, the guanylate kinase (GK) domain, or the connecting HOOK region of MAGUKs. Using surface plasmon resonance, we studied the interaction of members of all four MAGUK subfamilies--synapse-associated protein 97 (SAP97), calcium/calmodulin-dependent serine protein kinase (CASK), membrane palmitoylated protein 2 (MPP2), and zona occludens (ZO) 1--and calmodulin to determine interaction affinities and localize the binding site. The SH3-GK domains of the proteins and derivatives thereof were expressed in E. coli and purified. In all four proteins, high-affinity calmodulin binding was identified. CASK was shown to contain a Ca2+-dependent calmodulin binding site within the HOOK region, overlapping with a protein 4.1 binding site. In ZO1, a Ca2+-dependent calmodulin binding site was detected within the GK domain. The equilibrium dissociation constants for MAGUK-calmodulin interaction were found to range from 50 nM to 180 nM. Sequence analyses suggest that binding sites for calmodulin have evolved independently in at least three subfamilies. For ZO1, pulldown of GST-calmodulin was shown to occur in a calcium-dependent manner; moreover, molecular modeling and sequence analyses predict conserved basic residues to be exposed on one side of a helix. Thus, calmodulin binding appears to be a common feature of MAGUKs, and Ca2+-activated calmodulin may serve as a general regulator to affect the interactions of MAGUKs and various components of the cytoskeleton.  相似文献   

7.
The transmission of pain signalling involves the cytoskeleton, but mechanistically this is poorly understood. We recently demonstrated that the capsaicin receptor TRPV1, a non-selective cation channel expressed by nociceptors that is capable of detecting multiple pain-producing stimuli, directly interacts with the tubulin cytoskeleton. We hypothesized that the tubulin cytoskeleton is a downstream effector of TRPV1 activation. Here we show that activation of TRPV1 results in the rapid disassembly of microtubules, but not of the actin or neurofilament cytoskeletons. TRPV1 activation mainly affects dynamic microtubules that contain tyrosinated tubulins, whereas stable microtubules are apparently unaffected. The C-terminal fragment of TRPV1 exerts a stabilizing effect on microtubules when over-expressed in F11 cells. These findings suggest that TRPV1 activation may contribute to cytoskeleton remodelling and so influence nociception.  相似文献   

8.
A spectrin-dependent ATPase of the human erythrocyte membrane   总被引:3,自引:0,他引:3  
Removal of spectrin from erythrocyte membranes results in the simultaneous loss of a calcium-stimulated, magnesium-dependent ATPase with an apparent KD for Ca2+ of 1 microM. This ATPase activity with high Ca2+ affinity is specifically reconstituted by addition of purified spectrin to spectrin-depleted membranes, and the reconstituted activity is directly proportional to the amount of spectrin that is reassociated with the membranes. Spectrin binding and activation of the high Ca2+ affinity Mg2+-ATPase are proportionally inhibited by thermal denaturation, trypsin digestion, or treatment of the membranes with thiol-reactive reagents. Binding of calmodulin to the Ca2+ pump ATPase requires that calmodulin contains bound ca2+. By contrast, spectrin binding to the erythrocyte membrane is Ca2+-independent. Direct assay of calmodulin is purified spectrin and absence of chlorpromazine inhibition of reconstitution demonstrate that activation of the high Ca2+ affinity ATPase resulting from spectrin binding is not a result of contamination of spectrin by calmodulin. Additional evidence that the spectrin-activated ATPase is an entity separate and distinct from the Ca2+ pump is provided by other characteristics of the activation phenomenon. It is suggested that spectrin constitutes part of an ATPase which may function as a component of the "cytoskeleton" controlling erythrocyte shape and membrane flexibility.  相似文献   

9.
The Ca2(+)-dependent regulation of the erythroid membrane cytoskeleton was investigated. The low-salt extract of erythroid membranes, which is mainly composed of spectrin, protein 4.1, and actin, confers a Ca2+ sensitivity on its interaction with F-actin. This Ca2+ sensitivity is fortified by calmodulin and antagonized by trifluoperazine, a potent calmodulin inhibitor. Additionally, calmodulin is detected in the low-salt extract. These results suggest that calmodulin is the sole Ca2(+)-sensitive factor in the low-salt extract. The main target of calmodulin in the erythroid membrane cytoskeleton was further examined. Under native conditions, calmodulin forms a stable and equivalent complex with protein 4.1 as determined by calmodulin affinity chromatography, cross-linking experiments, and fluorescence binding assays with an apparent Kd of 5.5 x 10(-7) M irrespective of the free Ca2+ concentration. Domain mapping with chymotryptic digestion reveals that the calmodulin-binding site resides within the N-terminal 30-kDa fragment of protein 4.1. In contrast, the interaction of calmodulin with spectrin is unexpectedly weak (Kd = 1.2 x 10(-4) M). Given the content of calmodulin in erythrocytes (2-5 microM), these results imply that the major target for calmodulin in the erythroid membrane cytoskeleton is protein 4.1. Low- and high-shear viscometry and binding assays reveal that an equivalent complex of calmodulin with protein 4.1 regulates the spectrin/actin interaction in a Ca2(+)-dependent manner. At a low Ca2+ concentration, protein 4.1 potentiates the actin cross-linking and the actin binding activities of spectrin. At a high Ca2+ concentration, the protein 4.1-potentiated actin cross-linking activity but not the actin binding activity of spectrin is suppressed by Ca2+/calmodulin. The Ca2(+)-dependent regulation of the spectrin/protein 4.1/calmodulin/actin interaction is discussed.  相似文献   

10.
The plasma membrane Ca(2+)-ATPase (PMCA) plays an essential role in maintaining low cytosolic Ca(2+) in resting platelets. During platelet activation PMCA is phosphorylated transiently on tyrosine residues resulting in inhibition of the pump that enhances elevation of Ca(2+). Tyrosine phosphorylation of many proteins during platelet activation results in their association with the cytoskeleton. Consequently, in the present study we asked if PMCA interacts with the platelet cytoskeleton. We observed that very little PMCA is associated with the cytoskeleton in resting platelets but that approximately 80% of total PMCA (PMCA1b + PMCA4b) is redistributed to the cytoskeleton upon activation with thrombin. Tyrosine phosphorylation of PMCA during activation was not associated with the redistribution because tyrosine-phosphorylated PMCA was not translocated specifically to the cytoskeleton. Because PMCA b-splice isoforms have C-terminal PSD-95/Dlg/ZO-1 homology domain (PDZ)-binding domains, a C-terminal peptide was used to disrupt potential PDZ domain interactions. Activation of saponin-permeabilized platelets in the presence of the peptide led to a significant decrease of PMCA in the cytoskeleton. PMCA associated with the cytoskeleton retained Ca(2+)-ATPase activity. These results suggest that during activation active PMCA is recruited to the cytoskeleton by interaction with PDZ domains and that this association provides a microenvironment with a reduced Ca(2+) concentration.  相似文献   

11.
Erythrocytes affected by age and diseases such as sickle cell anemia, hypertension, diabetes, etc., exhibit abnormally high intracellular Ca2+ ion levels, and appear to have altered cytoskeleton properties. It has been proposed that extra binding of Ca2+ to membrane-associated calmodulin attenuates the spectrin-ankyrin-Band 3 tether of the cytoskeleton to the cytoplasmic membrane and might change the cytoskeleton structure. Due to the close apposition of the network, direct observation of such a structural change in vivo is restricted. In this study, atomic force microscopy and quantitative image analysis were applied to investigate the structural change of young healthy erythrocyte cytoskeletons upon extra Ca2+ binding to the cytoplasmic membrane in vitro. The results show that extra Ca2+ binding increased the cytoskeleton rigidity and prevented spectrin aggregation during sample preparation. The cytoskeleton morphology observed in Ca2+ -incubated healthy young cell were similar to the glutaraldehyde-fixed healthy young cells.  相似文献   

12.
TRPV5 and TRPV6 are the most Ca2+-selective members of the transient receptor potential (TRP) family of cation channels and play a pivotal role in the maintenance of Ca2+ balance in the body. However, little is known about the mechanisms controlling the plasma membrane abundance of these channels to regulate epithelial Ca2+ transport. In this study, we demonstrated the direct and specific interaction of GDP-bound Rab11a with TRPV5 and TRPV6. Rab11a colocalized with TRPV5 and TRPV6 in vesicular structures underlying the apical plasma membrane of Ca2+-transporting epithelial cells. This GTPase recognized a conserved stretch in the carboxyl terminus of TRPV5 that is essential for channel trafficking. Furthermore, coexpression of GDP-locked Rab11a with TRPV5 or TRPV6 resulted in significantly decreased Ca2+ uptake, caused by diminished channel cell surface expression. Together, our data demonstrated the important role of Rab11a in the trafficking of TRPV5 and TRPV6. Rab11a exerts this function in a novel fashion, since it operates via direct cargo interaction while in the GDP-bound configuration.  相似文献   

13.
Mast cells are secretory cells that release their granules, which contain inflammatory mediators. Some recent data suggested that cytoskeletons play a role in this process. However, the role of microtubules in Ca2+ signaling has not yet been well defined. In this study, we demonstrate that the microtubule cytoskeleton is important to maintain Ca2+ influx in the degranulation pathway of mast cells, using the microtubule depolymerizers nocodazole and colchicine. The microtubule depolymerizers inhibited Ag-induced degranulation in RBL-2H3 cells and bone marrow-derived mast cells. When the cells were stimulated with Ag in the presence of the microtubule depolymerizers, the Ca2+ influx was decreased without affecting Ca2+ release from the endoplasmic reticulum (ER). Capacitative Ca2+ entry, which was induced by inhibitors of Ca(2+)-ATPase in the ER membrane, thapsigargin and cyclopiazonic acid, was also decreased by nocodazole. Fluorescent probe analysis demonstrated that nocodazole disrupted microtubule formation and changed the cytoplasmic distribution of the ER. The microtubule depolymerizers attenuated the passive cutaneous anaphylaxis reaction in back skin of Sprague Dawley rats. These results suggest that the microtubule cytoskeleton in mast cells is important to maintain Ag-induced capacitative Ca2+ entry, which is responsible for degranulation and the allergic response.  相似文献   

14.
Mechanical and osmotic sensitivity of the transient receptor potential vanilloid 4 (TRPV4) channel depends on phospholipase A2 (PLA2) activation and the subsequent production of the arachidonic acid metabolites, epoxyeicosatrienoic acid (EET). We show that both high viscous loading and hypotonicity stimuli in native ciliated epithelial cells use PLA2-EET as the primary pathway to activate TRPV4. Under conditions of low PLA2 activation, both also use extracellular ATP-mediated activation of phospholipase C (PLC)-inositol trisphosphate (IP3) signaling to support TRPV4 gating. IP3, without being an agonist itself, sensitizes TRPV4 to EET in epithelial ciliated cells and cells heterologously expressing TRPV4, an effect inhibited by the IP3 receptor antagonist xestospongin C. Coimmunoprecipitation assays indicated a physical interaction between TRPV4 and IP3 receptor 3. Collectively, our study suggests a functional coupling between plasma membrane TRPV4 channels and intracellular store Ca2+ channels required to initiate and maintain the oscillatory Ca2+ signal triggered by high viscosity and hypotonic stimuli that do not reach a threshold level of PLA2 activation.  相似文献   

15.
The rationale for the topical application of capsaicin and other vanilloids in the treatment of pain is that such compounds selectively excite and subsequently desensitize nociceptive neurons. This desensitization is triggered by the activation of vanilloid receptors (TRPV1), which leads to an elevation in intracellular free Ca2+ levels. Depending on the vanilloid concentration and duration of exposure, the Ca2+ influx via TRPV1 desensitizes the channels themselves, which may represent not only a feedback mechanism protecting the cell from toxic Ca2+ overload, but also likely contributes to the analgesic effects of capsaicin. This review summarizes the current state of knowledge concerning the mechanisms that underlie the acute capsaicin-induced Ca2+-dependent desensitization of TRPV1 channels and explores to what extent they may contribute to capsaicin-induced analgesia. In view of the polymodal nature of TRPV1, we illustrate how the channels behave in their desensitized state when activated by other stimuli such as noxious heat or depolarizing voltages. We also show that the desensitized channel can be strongly reactivated by capsaicin at concentrations higher than those previously used to desensitize it. We provide a possible explanation for a high incidence of adverse effects of topical capsaicin and point to a need for more accurate clinical criteria for employing it as a reliable remedy.  相似文献   

16.
Caldendrin is a neuronal Ca(2+)-sensor protein (NCS), which represents the closest homologue of calmodulin (CaM) in nerve cells. It is tightly associated with the somato-dendritic cytoskeleton of neurons and highly enriched in the postsynaptic cytomatrix. Here, we report that caldendrin specifically associates with the microtubule cytoskeleton via an interaction with light chain 3 (LC3), a microtubule component with sequence homology to the GABAA receptor-associated protein (GABARAP), which is, like LC3, probably involved in cellular transport processes. Interestingly, two binding sites exist in LC3 for caldendrin from which only one exhibits a strict Ca(2+)-dependency for the interaction to take place but both require the presence of the first two EF-hands of caldendrin. CaM, however, is not capable of binding to LC3 at both sites despite its high degree of primary structure similarity with caldendrin. Computer modelling suggests that this might be explained by an altered distribution of surface charges at the first two EF-hands rendering each molecule, in principle, specific for a discrete set of binding partners. These findings provide molecular evidence that NCS can transduce signals to a specific target interaction irrespective of Ca(2+)-concentrations and CaM-levels.  相似文献   

17.
Store-operated Ca2+ entry (SOCE), a mechanism regulated by the filling state of the intracellular Ca2+ stores, is a major pathway for Ca2+ influx. Hypotheses to explain the communication between the Ca2+ stores and plasma membrane (PM) have considered both the existence of small messenger molecules, such as a Ca2+-influx factor (CIF), and both stable and de novo conformational coupling between proteins in the Ca2+ store and PM. Alternatively, a secretion-like coupling model based on vesicle fusion and channel insertion in the PM has been proposed, which shares some properties with the de novo conformational coupling model, such as the role of the actin cytoskeleton and soluble N-ethylmaleimide (NEM)-sensitive-factor attachment proteins receptor (SNARE) proteins. Here we review recent progress made in the characterization of the de novo conformational coupling and the secretion-like coupling models for SOCE. We pay particular attention into the involvement of SNARE proteins and the actin cytoskeleton in both SOCE models. SNAREs are recognized as proteins involved in exocytosis, participating in vesicle transport, membrane docking, and fusion. As with secretion, a role for the cortical actin network in Ca2+ entry has been demonstrated in a number of cell types. In resting cells, the cytoskeleton may prevent the interaction between the Ca2+ stores and the PM, or preventing fusion of vesicles containing Ca2+ channels with the PM. These are processes in which SNARE proteins might play a crucial role upon cell activation by directing a precise interaction between the membrane of the transported organelle and the PM.  相似文献   

18.
The membrane associated guanylate kinase (MAGUK) family member, human Discs Large 1 (hDlg1) uses a PDZ domain array to interact with the polarity determinant, the Adenomatous Polyposis Coli (APC) microtubule plus end binding protein. The hDLG1-APC complex mediates a dynamic attachment between microtubule plus ends and polarized cortical determinants in epithelial cells, stem cells, and neuronal synapses. Using its multi-domain architecture, hDlg1 both scaffolds and regulates the polarity factors it engages. Molecular details underlying the hDlg1-APC interaction and insight into how the hDlg1 PDZ array may cluster and regulate its binding factors remain to be determined. Here, I present the crystal structure of the hDlg1 PDZ2-APC complex and the molecular determinants that mediate APC binding. The hDlg1 PDZ2-APC complex also provides insight into potential modes of ligand-dependent PDZ domain clustering that may parallel Dlg scaffold regulatory mechanisms. The hDlg1 PDZ2-APC complex presented here represents a core biological complex that bridges polarized cortical determinants with the dynamic microtubule cytoskeleton.  相似文献   

19.
20.
Most Ca2+-permeable ion channels are inhibited by increases in the intracellular Ca2+ concentration ([Ca2+]i), thus preventing potentially deleterious rises in [Ca2+]i. In this study, we demonstrate that currents through the osmo-, heat- and phorbol ester-sensitive, Ca2+-permeable nonselective cation channel TRPV4 are potentiated by intracellular Ca2+. Spontaneous TRPV4 currents and currents stimulated by hypotonic solutions or phorbol esters were reduced strongly at all potentials in the absence of extracellular Ca2+. The other permeant divalent cations Ba2+ and Sr2+ were less effective than Ca2+ in supporting channel activity. An intracellular site of Ca2+ action was supported by the parallel decrease in spontaneous currents and [Ca2+]i on removal of extracellular Ca2+ and the ability of Ca2+ release from intracellular stores to restore TRPV4 activity in the absence of extracellular Ca2+. During TRPV4 activation by hypotonic solutions or phorbol esters, Ca2+ entry through the channel increased the rate and extent of channel activation. Currents were also potentiated by ionomycin in the presence of extracellular Ca2+. Ca2+-dependent potentiation of TRPV4 was often followed by inhibition. By mutagenesis, we localized the structural determinant of Ca2+-dependent potentiation to an intracellular, C-terminal calmodulin binding domain. This domain binds calmodulin in a Ca2+-dependent manner. TRPV4 mutants that did not bind calmodulin lacked Ca2+-dependent potentiation. We conclude that TRPV4 activity is tightly controlled by intracellular Ca2+. Ca2+ entry increases both the rate and extent of channel activation by a calmodulin-dependent mechanism. Excessive increases in [Ca2+]i via TRPV4 are prevented by a Ca2+-dependent negative feedback mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号