首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Packs of autumn-shed maple leaves were placed at coal ash effluent-exposed and reference sites in streams on December 5, 1977 and removed after 27 and 96 days. Leaf surface area (cm2/leaf) and disc weight (ash-free dry wt/15 mm disc) were greater at the effluent-exposed site than at the reference site after 96 days (p < .001). ATP content of leaves from the reference stream quadrupled between 27 and 96 days while ATP content of effluent-exposed leaves remained low. Macroinvertebrates colonized the leaf packs in the reference site but were not found on or in effluent-exposed packs. We concluded that leaf processing beyond the leaching of soluble organics did not occur in the effluent-exposed packs owing to reduced colonization and decomposition by fungi. Since stream invertebrates prefer decomposed leaf material and animals grow faster on leaves colonized by microbes, the ash effuent appears to indirectly affect macroinvertebrates by interfering with leaf decomposition and thus reducing the quality of their food.  相似文献   

2.
Accurately identifying species is a crucial step for developing conservation strategies for freshwater mussels, one of the most imperiled faunas in North America. This study uses genetic data to re‐examine species delineation in the genus Cyprogenia. Historically, Cyprogenia found west of the Mississippi River have been ascribed to Cyprogenia aberti (Conrad 1850 ), and those east of the Mississippi River were classified as Cyprogenia stegaria (Rafinesque 1820). Previous studies using mitochondrial DNA sequences indicated that C. aberti and C. stegaria were not reciprocally monophyletic groups, suggesting the need for systematic revision. We generated a novel dataset consisting of 10 microsatellite loci and combined it with sequence data from the mitochondrial ND1 gene for 223 Cyprogenia specimens. Bayesian analysis of the ND1 nucleotide sequences identified two divergent clades that differ by 15.9%. Members of these two clades occur sympatrically across most sampling locations. In contrast, microsatellite genotypes support recognition of three allopatric clusters defined by major hydrologic basins. The divergent mitochondrial lineages are highly correlated with the color of the conglutinate lures used by mussels to attract and infest host fishes, and tests for selection at the ND1 locus were positive. We infer that the incongruence between mtDNA and microsatellite data in Cyprogenia may be the result of a combination of incomplete lineage sorting and balancing selection on lure color. Our results provide further evidence that mitochondrial markers are not always neutral with respect to selection, and highlight the potential problems of relying on a single‐locus‐marker for delineating species.  相似文献   

3.
4.
Bilaterally asymmetrical glochidia (i.e. bivalved parasitic larvae bearing a large marginal appendage on a single valve) have been reported from five Asian freshwater mussel genera belonging to two separate subfamilies, the Gonideinae (i.e. Pseudodon, Solenaia, and Physunio) and Rectidentinae (i.e. Contradens and Trapezoideus). This classification requires that the bilaterally asymmetrical glochidium‐bearing mussels are not monophyletic, and suggests that this atypical larval morphology evolved twice in the same geographic region. Although homoplastic glochidium characters are known (e.g. marginal appendages and size), we hypothesized that bilaterally asymmetrical glochidia represent a novel morphological synapomorphy. We tested the monophyly of the mussels bearing bilaterally asymmetrical glochidia using a molecular matrix consisting of representatives from all six freshwater mussel families and three molecular markers (28S, 16S, and COI). Bayesian inference, maximum likelihood, and ancestral state reconstruction were employed to estimate the phylogeny and larval trait transformations. The reconstructed phylogeny rejects the monophyly of the asymmetrical glochidium‐bearing mussels and resolves two putative origins of asymmetrical glochidia; however, ancestral state reconstruction supports asymmetrical glochidia as a synapomorphy of only one supraspecific taxon of the Rectidentinae. In the Gonideinae, asymmetrical glochidia were autapomorphic of Pseudodon cambodjensis (Petit, 1865). That is, no other taxa resolved among the Gonideinae had bilaterally asymmetrical glochidia, including other Pseudodon species. We describe how the alleged intrageneric glochidial variation in Pseudodon, and in the other genera of the Gonideinae reported to have asymmetrical glochidia (i.e. Solenaia and Physunio), challenge the resolved convergence of asymmetrical glochidia. Our results are discussed in the context of freshwater mussel larval evolution, patterns in life‐history traits, and the classification of freshwater mussels generally. © 2015 The Linnean Society of London  相似文献   

5.
Development of European bitterling in the gills of freshwater mussels   总被引:5,自引:0,他引:5  
The development of bitterling embryos within the unique environment of a freshwater mussel's gills requires a departure from typical cyprinid embryological development. Eggs are large (2·6×1·7 mm), illustrating the low risk of predation, and elliptical; a response to unionid gill morphology and a way of increasing the transfer rates of respiratory and excretory products to and from the tissues. The yolk sac develops elongated lateral processes during early ontogeny; these secure the embryo into the host's interlamellar space. Once the larva is capable of movement (8·2 mm) the lateral processes are lost and the larva becomes less dependent of the host's gills for the provision of oxygen. Hatching (3·3 mm) and pigmentation of the blood (6·4 mm) occur relatively early; this may increase the rate of oxygen supply to the tissues. Pigmentation of the eyes and appearance of the melanophores occurs relatively late (7·4 mm and 7·9 mm, respectively); embryos are not required to detect or avoid predators. Bitterling larvae generally emerge from the host once the yolk sac has been consumed (10·5 mm); this may mark a change in respiratory and nutritional requirements.  相似文献   

6.
The rate of oxygen consumption (OC) of 9 species of freshwater mussels was measured under declining dissolved oxygen (DO) concentrations. The effects of temperature for some species also was investigated. The pattern of the OC vs. DO curve for each species was used in a hyperbolic model to compare abilities to regulate OC under low oxygen conditions. At 24.5 °C, Pyganodon grandis (from lakes), Amblema plicata and Quadrula pustulosa (from mud or sand in large rivers), Elliptio complanata (from pool areas in rivers), and Elliptio fisheriana and Elliptio lanceolata (from bank margins of rivers) were better able to maintain OC under low DO than were Villosa iris and Villosa constricta (which inhabit riffles) and Pleurobema cordatum (found in rivers with moderate flow). Villosa iris was especially sensitive to low oxygen conditions. The ability to maintain normal OC at low DO was improved considerably at 16.5 °C for V. iris, P. grandis and E. complanata. It is concluded that oxygen regulation ability appears to be related to the degree of hypoxia a species normally experiences in its habitat type, and it is enhanced at low temperature. The measurement of OC vs. DO may be a useful technique for estimating DO water quality criteria for endangered species because it is noninvasive.  相似文献   

7.
The relationship between dispersal and differentiation of the European freshwater mussel Unio pictorum (Linnaeus, 1758) was studied with molecular genetic methods. Forty‐two populations from France, Italy and central Europe were analysed. Genetic relationships were assessed from the geographical distribution of allele frequencies at 17 enzyme loci. Neighbouring groups of populations show small to moderate mean genetic distances (0.020 < Dmean < 0.263). With a few exceptions the genetic affinities of the populations are the closest within the same drainage basin. In central Europe and Northern Italy genetic differences between drainage systems are relatively large. Populations from north‐eastern Italy are genetically similar to Danubian populations. Mussels from the islands of Corsica and Sardinia are more closely related to populations from the Italian peninsula than to French populations from the Rhône drainage system. Genetic relationships within U. pictorum from central Europe reflect palaeogeographical relationships between river systems during the Pliocene and Pleistocene. Literature data on two North American unionid species and one European fish species show the same relationship between genetic diversity and the history of drainage systems, although the correlations are less strong. In France and Italy this correspondence is much less evident. Population dynamic processes and human activities leading to populational bottlenecks might have obscured it.  相似文献   

8.
9.
Aim Geographic patterns of species distributions and the factors contributing to species endangerment are necessary for the development of integrative conservation strategies. Freshwater mussels Unionidae have among the highest levels of imperilment recorded in North America. This paper describes the biogeography and diversity of Unionidae along climate and habitat gradients in Texas, evaluates human impact, and identifies the hot spots of diversity and endemism that should be targeted for conservation. Location Texas, North America. Methods Unionids were surveyed in all major Texas river basins in 2003–2009. Multivariate statistics were used to test for differences in environmental parameters and among unionid assemblages in different bioprovinces, and to determine to what extent the multivariate pattern of species distribution was affected by environmental factors. To estimate human impact, we examined the relationship between human population density and the proportion of rare species, as well with the proportion of historically present species that persist in the watershed. Results Correlation between biotic and environmental similarity matrices indicated concordance in the differences among unionid assemblages and environmental factors that could cause these differences. Lake surface evaporation rate and percentage of forest cover in the watershed were among the most important parameters explaining the differences in unionid assemblages. Human population density was negatively correlated with the proportion of rare species. The proportion of species found live relative to the total number of live and relic species found in our surveys and to the number of historically known species decreased with the increase in human population density. Main conclusions Climate, landscape, geology, and land use type were important factors influencing unionid distribution patterns among biotic provinces. Increased human population density was associated with the loss of rare species over several decades, but this loss was not recognized because of a lack of assessing the conservation status of unionids.  相似文献   

10.
We developed 13 species‐specific microsatellite markers for the federally endangered Atlantic slope unionid Alasmidonta heterodon. Four to 18 alleles per locus were observed among 30 individuals. Observed heterozygosity throughout the loci ranged from 26.9 to 86.2% and averaged 63.6%. Estimates of individual pairwise genetic distances indicated that levels of genetic diversity among loci were sufficient to produce unique multilocus genotypes for all animals surveyed. Randomization tests showed that genotypes for this collection were consistent with Hardy–Weinberg expectations, and no significant linkage disequilibrium was observed between loci. These loci therefore appear suitable for population surveys, kinship assessment and other such applications.  相似文献   

11.
Freshwater mollusk shell morphology exhibits clinal variation along a stream continuum that has been termed the Law of Stream Distribution. We analyzed phylogenetic relationships and morphological similarity of two freshwater mussels (Bivalvia: Unionidae), Obovaria jacksoniana and Villosa arkansasensis, throughout their ranges. The objectives were to investigate phylogenetic structure and evolutionary divergence of O. jacksoniana and V. arkansasensis and morphological similarity between the two species. Our analyses were the first explicit tests of phenotypic plasticity in shell morphologies using a combination of genetics and morphometrics. We conducted phylogenetic analyses of mitochondrial DNA (1416 bp; two genes) and morphometric analyses for 135 individuals of O. jacksoniana and V. arkansasensis from 12 streams. We examined correlations among genetic, morphological, and spatial distances using Mantel tests. Molecular phylogenetic analyses revealed a monophyletic relationship between O. jacksoniana and V. arkansasensis. Within this O. jacksoniana/V. arkansasensis complex, five distinct clades corresponding to drainage patterns showed high genetic divergence. Morphometric analysis revealed relative differences in shell morphologies between the two currently recognized species. We conclude that morphological differences between the two species are caused by ecophenotypic plasticity. A series of Mantel tests showed regional and local genetic isolation by distance. We observed clear positive correlations between morphological and geographic distances within a single drainage. We did not observe correlations between genetic and morphological distances. Phylogenetic analyses suggest O. jacksoniana and V. arkansasensis are synonomous and most closely related to a clade composed of Oretusa, Osubrotunda, and Ounicolor. Therefore, the synonomous O. jacksoniana and V. arkansasensis should be recognized as Obovaria arkansasensis (Lea 1862) n. comb. Phylogenetic analyses also showed relative genetic isolation among drainages, suggesting no current gene flow. Further investigation of in‐progress speciation and/or cryptic species within O. arkansasensis is warranted followed by appropriate revision of conservation management designations.  相似文献   

12.
We have documented the first microsatellites isolated from a unionid and demonstrated that these markers can be useful for surveys of neutral genetic variation in several Lampsilis species. We describe the isolation and characterization of 15 polymorphic microsatellite DNA loci for the endangered unionid Lampsilis abrupta. Among individuals from five collections, allelic diversity ranged from six to 17 alleles and averaged 10.4 alleles per locus. Individual heterozygosity was observed to range from 20.0% to 86.7% and averaged 46.9%. Cross‐species amplification was investigated in nine additional Lampsilis species. A high level of flanking sequence similarity was inferred as 13 of 15 loci amplified in at least seven species.  相似文献   

13.
Extrinsic and intrinsic forces combined shape the population structure of every species differently. Freshwater mussels are obligate parasites to a host fish during a juvenile stage (glochidia). Elliptio dilatata (ED) and Actinonaias ligamentina (AL) are co-occurring freshwater mussel taxa with similar North American distribution and share some potential host fish. Using mitochondrial DNA, we determined the genotypes of 190 + individuals from collection sites in at least two tributaries in the Lake Erie and Ohio River watersheds, along with the Ouachita and Strawberry rivers in the southeast. Both species had followed a stepping-stone model of dispersal, with greater pairwise genetic structure among collection sites of ED. Also, phylogeographical analysis for ED found significant geographical structuring of haplotype diversity. Overall, within-population variation increased significantly from north to south, with low genetic diversity in the Strawberry River. We calculated significant among-population structure for both species (ED: Phi(ST) = 0.62, P < 0.001; AL: Phi(ST) = 0.16, P < 0.001). Genetic analysis identified the Ouachita River as an area of significant reproductive isolation for both species. Results for AL indicated dispersal into northern areas from two genetically distinct glacial refugia, where results for ED indicated dispersal followed by low gene flow in northern areas. The conservation strategies for mussels that co-occur in the same 'bed' could be species specific. Species such as ED have management units on the population scale, where AL has a more homogeneous genetic structure across its range.  相似文献   

14.
This study aimed to identify the importance of ecological factors to distribution patterns of the invasive Clam (Corbicula fluminea) relative to native mussels (family: Unionidae) across seven rivers within the Mobile and Tennessee basins, Southeast United States. We quantitatively surveyed dense, diverse native mussel aggregations across 20 river reaches and estimated mussel density, biomass, and species richness along with density of invasive C. fluminea (hereafter Corbicula). We measured substrate particle size, velocity, and depth in quadrats where animals were collected. Additionally, we characterized reach scale environmental parameters including seston quantity and quality (% Carbon, % Nitrogen, % Phosphorous), water chemistry (ammonium [NH4+], soluble reactive phosphorous [SRP]), and watershed area and land cover. Using model selection, logistic regression, and multivariate analysis, we characterized habitat features and their association to invasive Corbicula within mussel beds. We found that Corbicula were more likely to occur and more abundant in quadrats with greater mussel biomass, larger substrate size, faster water velocity, and shallower water depth. At the reach scale, Corbicula densities increased where particle sizes were larger. Mussel richness, density, and biomass increased with watershed area. Water column NH4+ increased at reaches with more urban land cover. No land cover variables influenced Corbicula populations or mussel communities. The strong overlapping distribution of Corbicula and mussels support the hypothesis that Corbicula are not necessarily limited by habitat factors and may be passengers of change in rivers where mussels have declined due to habitat degradation. Whether Corbicula is facilitated by mussels or negatively interacts with mussels in these systems remains to be seen. Focused experiments that manipulate patch scale variables would improve our understanding of the role of species interactions (e.g., competition, predation, facilitation) or physical habitat factors in influencing spatial overlap between Corbicula and native mussels.  相似文献   

15.
Major geological processes have shaped biogeographical patterns of riverine biota. The Edwards Plateau of central Texas, USA, exhibits unique aquatic communities and endemism, including several species of freshwater mussels. Lampsilis bracteata (Gould, 1855) is endemic to the Edwards Plateau region; however, its phylogenetic relationship with other species in the Gulf coastal rivers and Mississippi River basin is unknown. We evaluated phylogenetic relationships, shell morphologies and soft anatomy characters of L. bracteata and a closely related congener, Lampsilis hydiana (Lea, 1838) throughout their ranges. Our results showed the presence of an undescribed species: Lampsilis bergmanni sp.n. Lampsilis bracteata and L. bergmanni sp.n. share similar shell morphologies and soft anatomy characters; however, they are genetically distinct. Geological processes, such as faulting and sea-level changes during the Miocene to Pliocene, are likely to have facilitated diversification of Lampsilis species, resulting in isolation of L. bracteata on the Edwards Plateau and diversification between L. bergmanni sp.n. and L. hydiana. We conclude that L. bracteata range is restricted to the Colorado River basin, whereas L. bergmanni sp.n. occurs only in upstream reaches of the Guadalupe River basin. Conservation actions are warranted for both species due to their restricted distributions and potential anthropogenic threats.  相似文献   

16.
Intra‐ and interspecific morphological variation due to both phenotypic plasticity and evolutionary convergence hinder the work of taxonomists and lead to over‐ and underestimates of species richness. Nevertheless, most species on Earth are recognized solely based on morphological characters. We used molecular phylogenetic and morphometric techniques to examine two freshwater mussel species. One is common and widespread, while the other is imperiled and endemic to the Interior Highlands of the USA. Phylogenetic and molecular clock analyses revealed that divergence of Arcidens confragosus and Arkansia wheeleri is small and relatively recent. Divergence in these and other taxa is probably due to isolation of streams in the Interior Highlands. Morphometric analyses showed distinct shell shapes using traditional morphometrics, but not through geometric morphometrics. Outlined shell shapes are indistinguishable; geometric morphometrics could not capture a three‐dimensional component. Our analyses support the validity of these two species as congeners, with the nomen Arcidens (Simpson 1900) having priority. Because shell morphologies are both heritable and environmentally determined, our study emphasizes the importance of considering both molecular and morphometric analyses for identification of freshwater molluscs of conservation concern. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 112 , 535–545.  相似文献   

17.
1. The freshwater pearl mussel (Margaritifera margaritifera) is endangered and of conservation importance. We used its survival/mortality during the critical post‐parasitic phase as a biological indicator for the habitat quality of the stream substratum. 2. We established and tested biological, physical and chemical methods of assessing the stream bed in 26 streams from seven European countries. We analysed penetration resistance, texture, the concentrations and ratios of C, N, S, P, Fe, Mn in fine material <100 μm, and redox, pH and electric conductivity at the surface and at 5 and 10 cm into the substratum. 3. Sites with high stream bed quality (promoting pearl mussel populations with good juvenile recruitment) had coarser and better sorted substrata with significantly lower quantities of fines, and a higher Mn concentration in the fines, than poor quality sites. Redox potential (Eh) at sites without recruitment differed markedly between the free‐flowing water at the surface and at 5 and 10 cm in the bed, whereas no differences were detectable at good quality sites. This was also true of electric conductivity and, to a lesser extent, pH. The stream bed at sites lacking pearl mussel recruitment had a more variable and higher penetration resistance, indicating clogging of the interstitial macropore system by the deposition of mud and compaction of the stream bed. 4. Our results show that habitat quality for pearl mussels depends strongly on the exchange between the surface and the interstices, which is governed by physicochemical characteristics of the stream substratum. Combined measurements of penetration resistance, depth gradients of Eh and texture were most suitable for assessing stream bed quality, while water chemistry was insufficient because of the decoupling of interstitial and free‐flowing water at poor quality sites.  相似文献   

18.
Global diversity of freshwater mussels (Mollusca, Bivalvia) in freshwater   总被引:1,自引:0,他引:1  
The term freshwater bivalve is very inclusive and not very informative. There are representatives of at least 19 families that have at least one representative living in freshwater. This suggests at least 14 different invasions of freshwater. At least nine families have small to large radiations in the freshwater environment: Corbiculidae, Sphaeriidae, Dreissenidae, and the unioniforme families: Hyriidae, Margaritiferidae, Unionidae, Etheriidae, Iridinidae, and Mycetopodidae. The unioniforme families contain at least 180 genera and about 800 species. This order is characterized by the unique parasitic larval stage on the gills, fins or the body of a particular host fish. This order of freshwater bivalves is suffering a very high rate of extinction, with about 37 species considered presumed extinct in North America alone. The level of endangerment and extinction facing these animals is primarily the result of habitat destruction or modification. Guest editors: E. V. Balian, C. Lévêque, H. Segers & K. Martens Freshwater Animal Diversity Assessment  相似文献   

19.
1. North American lacustrine freshwater mussels (Bivalvia: Unionidae) are one of the world's most imperilled groups of organisms. Knowledge of their age structure and longevity is needed for the understanding and management of mussels. Current methods for age estimation in freshwater mussels are insufficient and may have resulted in an erroneous view of the ages of lacustrine freshwater mussels.
2. We collected growth data through mark-recapture in Minnesota and Rhode Island, U.S.A., examining four lentic populations of three of the most common species of freshwater mussels, Elliptio complanata , Lampsilis siliquoidea , and Pyganodon grandis . Using an inversion of the von Bertalanffy growth equation, we estimated age at length from length-specific growth relationships.
3. In some populations, lacustrine mussels may be much older than previously predicted. Ages predicted from actual growth rates suggest that individuals in some populations frequently reach ages in excess of a century, placing unionid mussels among the Earth's longest-lived animals. Alternatively, if growth has only recently slowed in these populations, generalized growth cessation may be occurring over a broad distributional range of some common North American lacustrine mussels.  相似文献   

20.
Abstract

A review is given of the species of Anodontinae in Anatolia and the adjacent areas, based mainly on the author’s collections. Five species (A. anatina, A. cygnae, A. palustris, A. pseudodopsis, A. vescoiana) and several subspecies are recognized. Their distribution and the patterns of subspeciation are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号