首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mapping Ds insertions in barley using a sequence-based approach   总被引:3,自引:0,他引:3  
A transposon tagging system, based upon maize Ac/Ds elements, was developed in barley (Hordeum vulgare subsp. vulgare). The long-term objective of this project is to identify a set of lines with Ds insertions dispersed throughout the genome as a comprehensive tool for gene discovery and reverse genetics. AcTPase and Ds-bar elements were introduced into immature embryos of Golden Promise by biolistic transformation. Subsequent transposition and segregation of Ds away from AcTPase and the original site of integration resulted in new lines, each containing a stabilized Ds element in a new location. The sequence of the genomic DNA flanking the Ds elements was obtained by inverse PCR and TAIL-PCR. Using a sequence-based mapping strategy, we determined the genome locations of the Ds insertions in 19 independent lines using primarily restriction digest-based assays of PCR-amplified single nucleotide polymorphisms and PCR-based assays of insertions or deletions.The proncipal strategy was to identify and map sequence polymorphisms in the regions corresponding to the flanking DNA using the Oregon Wolfe Barley mapping population. The mapping results obtained by the sequence-based approach were confirmed by RFLP analyses in four of the lines. In addition, cloned DNA sequences corresponding to the flanking DNA were used to assign map locations to Morex-derived genomic BAC library inserts, thus integrating genetic and physical maps of barley. BLAST search results indicate that the majority of the transposed Ds elements are found within predicted or known coding sequences. Transposon tagging in barley using Ac/Ds thus promises to provide a useful tool for studies on the functional genomics of the Triticeae.Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by M.-A. GrandbastienThe first three authors contributed equally to this work  相似文献   

2.
The availability of diversified germplasm resources is the most important for developing improved rice varieties with higher seed yield or tolerance to various biotic or abiotic stresses. Here we report an efficient tool to create increased variations in rice by maize Ac/Ds transposon (a gene trap system) insertion mutagenesis. We have generated around 20,000 Ds insertion rice lines of which majority are homozygous for Ds element. We subjected these lines to phenotypic and abiotic stress screens and evaluated these lines with respect to their seed yields and other agronomic traits as well as their tolerance to drought, salinity and cold. Based on this evaluation, we observed that random Ds insertions into rice genome have led to diverse variations including a range of morphological and conditional phenotypes. Such differences in phenotype among these lines were accompanied by differential gene expression revealed by GUS histochemical staining of gene trapped lines. Among the various phenotypes identified, some Ds lines showed significantly higher grain yield compared to wild-type plants under normal growth conditions indicating that rice could be improved in grain yield by disrupting certain endogenous genes. In addition, several 1,000s of Ds lines were subjected to abiotic stresses to identify conditional mutants. Subsequent to these screens, over 800 lines responsive to drought, salinity or cold stress were obtained, suggesting that rice has the genetic potential to survive under abiotic stresses when appropriate endogenous genes were suppressed. The mutant lines that have higher seed yielding potential or display higher tolerance to abiotic stresses may be used for rice breeding by conventional backcrossing combining with molecular marker-assisted selection. In addition, by exploiting the behavior of Ds to leave footprints upon remobilization, we have shown an alternative strategy to develop new rice varieties without foreign DNA sequences in their genome. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
We describe genetic screens, molecular methods and web resources newly available to utilize Dissociation (Ds) as an insertional mutagen in maize. Over 1700 Ds elements have been distributed throughout the maize genome to serve as donor elements for local or regional mutagenesis. Two genetic screens are described to identify Ds insertions in genes-of-interest (goi). In scheme I, Ds is used to generate insertion alleles when a recessive reference allele is available. A Ds insertion will enable the cloning of the target gene and can be used to create an allelic series. In scheme II, Ds insertions in a goi are identified using a PCR-based screen to identify the rare insertion alleles among a population of testcross progeny. We detail an inverse PCR protocol to rapidly amplify sequences flanking Ds insertion alleles and describe a high-throughput 96-well plate-based DNA extraction method for the recovery of high-quality genomic DNA from seedling tissues. We also describe several web-based tools for browsing, searching and accessing the genetic materials described. The development of these Ds insertion lines promises to greatly accelerate functional genomics studies in maize.  相似文献   

4.
Insertional mutagenesis is a powerful tool for generating knockout mutations that facilitate associating biological functions with as yet uncharacterized open reading frames (ORFs) identified by genomic sequencing or represented in EST databases. We have generated a collection of Dissociation(Ds) transposon lines with insertions on all 5 Arabidopsischromosomes. Here we report the insertion sites in 260 independent single-transposon lines, derived from four different Ds donor sites. We amplified and determined the genomic sequence flanking each transposon, then mapped its insertion site by identity of the flanking sequences to the corresponding sequence in the Arabidopsisgenome database. This constitutes the largest collection of sequence-mapped Ds insertion sites unbiased by selection against the donor site. Insertion site clusters have been identified around three of the four donor sites on chromosomes 1 and 5, as well as near the nucleolus organizers on chromosomes 2 and 4. The distribution of insertions between ORFs and intergenic sequences is roughly proportional to the ratio of genic to intergenic sequence. Within ORFs, insertions cluster near the translational start codon, although we have not detected insertion site selectivity at the nucleotide sequence level. A searchable database of insertion site sequences for the 260 transposon insertion sites is available at http://sgio2.biotec.psu.edu/sr. This and other collections of Arabidopsislines with sequence-identified transposon insertion sites are a valuable genetic resource for functional genomics studies because the transposon location is precisely known, the transposon can be remobilized to generate revertants, and the Ds insertion can be used to initiate further local mutagenesis.  相似文献   

5.
Various functional genomic tools are being used to identify and characterize genes in plants. The Activator/Dissociation (Ac/Ds) transposon-based approach offers great potential, especially in barley, due to its limited success of genetic transformation and its large genome size. The bias of the Ac/Ds system towards genic regions and its tendency toward localized transpositions can greatly enhance the discovery and tagging of genes linked to Ds. Barley is a key ingredient in malting and brewing industry; therefore, gene discovery in relation to malting has an industrial perspective. Malting quality in barley is a complex and quantitatively inherited trait. Two major quantitative trait loci (QTLs) affecting malting quality traits have been located on chromosome 4H. In this study, Ds was reactivated from parent transposants (TNP) lines, TNP-29 and TNP-79, where Ds was mapped in the vicinity of important malting QTLs. Reactivation of Ds was carried out both by conventional breeding and in vitro approaches. A threefold increase in reactivation frequency through the in vitro approach enabled the development of a new genomic resource for the dissection of malting QTL and gene discovery in barley. Identification of unique flanking sequences, using high-efficiency thermal asymmetric interlaced PCR and inverse PCR from these populations, has further emphasized the new location of Ds in the barley genome and provided new transposon mutants especially in β-GAL1, β-amylase-like gene and ABC transporter for functional genomic studies.  相似文献   

6.
Effective transposon tagging with theAc/Ds system in heterologous plant species relies on the accomplishment of a potentially high transposon-induced mutation frequency. The primary parameters that determine the mutation frequency include the transposition frequency and the transposition distance. In addition, the development of a generally applicable transposon tagging strategy requires predictable transposition behaviour. We systematically analysedDs transposition frequencies andDs transposition distances in tobacco. An artificialDs element was engineered with reporter genes that allowed transposon excision and integration to be monitored visually. To analyse the variability ofDs transposition between different tobacco lines, eight single copy T-DNA transformants were selected. Fortrans-activation of theDs elements, differentAc lines were used carrying an unmodifiedAc + element, an immobilizedsAc element and a stableAc element under the control of a heterologous chalcone synthas (chsA) promoter. With allAc elements, eachDs line showed characteristic and heritable variegation patterns at the seedling level. SimilarDs line-specificity was observed for the frequency by whichDs transpositions were germinally transmitted, as well as for the distances of theDs transpositions. ThesAc element induced transposition ofDs late in plant development, resulting in low germinal transposition frequencies (0.37%) and high incidences of independent transposition (83%). The majority of theseDs elements (58%) transposed to genetically closed linked sites (10 cM).  相似文献   

7.
We have created a DNA construct, TREGED (transposon-and recombinase-mediated genome deletion), that will automatically induce deletions in plant genomes. TREGED contains the maizeAc/Ds transposon, the yeast R-RS site-specific recombination system, the bacterialtetR repression systems, a novel artificial superintron, and the marker genesGUS andLc. The novelty of TREGED is that only one cross is required to trigger a sequence of events leading to deletion and, simultaneously, to a color assay to detect the deletion. Crossing is done to introduceAc transposase which activatesDs transposition from TREGED to a nearby chromosome region.Ds transposition, in turn, activates recombination between an engineeredRS site on TREGED and anRS site on the transposedDs fragment, thus deleting the genome segment between TREGED andDs. The recombination event also deletesLc orGUS and part oftetR, which triggers expression ofGUS orLc color genes for an upstream or downstream deletion respectively. Each TREGED insertion site will produce multiple kinds of deletions identifiable by inspecting a single F1 plant and its progeny for colored tissue. The color markers can also be used to differentiate between deletion and other more rare events such as translocation and inversion. We anticipate TREGED will greatly simplify the steps required to obtain useful deletions—eventually allowing the creation of detailed deletion libraries. Such libraries will be particularly useful for anlaysis of gene and chromatin function in plant species with large genomes.  相似文献   

8.
Summary The Bz2 locus of Zea mays has been cloned, utilizing the presence of the transposable element Dissociation (Ds) at the locus as a gene tag. The Ds element inserted in the bz2-m allele was identified among many members of the Ac/Ds family in a Southern blot analysis of a population segregating for bz2-m and Bz2. After cloning a DNA fragment from the bz2-m allele, sequences flanking the Ds insertion were shown to be Bz2-specific and were used to isolate a homologous fragment from a wild-type Bz2 line. The Ds insertion in the bz2-m allele was found to be a Ds2 element identical to the Ds insertion in adh1-2F11.  相似文献   

9.
We describe the use of plasmid rescue to facilitate studies on the behaviour ofDs andAc elements in transgenic tomato plants. The rescue ofDs elements relies on the presence of a plasmid origin of replication and a marker gene selective inEscherichia coli within the element. The position within the genome of modifiedDs elements, rescued both before and after transposition, is assigned to the RFLP map of tomato. Alternatively to the rescue ofDs elements equipped with plasmid sequences,Ac elements are rescued by virtue of plasmid sequences flanking the element. In this way, the consequences of the presence of an (active)Ac element on the DNA structure at the original site can be studied in detail. Analysis of a library ofAc elements, rescued from the genome of a primary transformant, shows thatAc elements are, infrequently, involved in the formation of deletions. In one case the deletion refers to a 174 bp genomic DNA sequence immediately flankingAc. In another case, a 1878 bp internalAc sequence is deleted.  相似文献   

10.
To develop an efficient gene tagging system in rice, a plasmid was constructed carrying a non-autonomous maize Ds element in the untranslated leader sequence of a hygromycin B resistance gene fused with the 35S promoter of cauliflower mosaic virus. This plasmid was cotransfected by electroporation into rice protoplasts together with a plasmid containing the maize Ac transposase gene transcribed from the 35S promoter. Five lines of evidence obtained from the analyses of hygromycin B-resistant calli, regenerated plants and their progeny showed that the introduced Ds was trans-activated by the Ac transposase gene in rice. (1) Cotransfection of the two plasmids is necessary for generation of hygromycin B resistant transformants. (2) Ds excision sites are detected by Southern blot hybridization. (3) Characteristic sequence alterations are found at Ds excision sites. (4) Newly integrated Ds is detected in the rice genome. (5) Generation of 8 by target duplications is observed at the Ds integration sites on the rice chromosomes. Our results also show that Ds can be trans-activated by the transiently expressed Ac transposase at early stages of protoplast culture and integrated stably into the rice genome, while the cotransfected Ac transposase gene is not integrated. Segregation data from such a transgenic rice plant carrying no Ac transposase gene showed that four Ds copies were stably integrated into three different chromosomes, one of which also contained the functional hph gene restored by Ds excision. The results indicate that a dispersed distribution of Ds throughout genomes not bearing the active Ac transposase gene can be achieved by simultaneous transfection with Ds and the Ac transposase gene.  相似文献   

11.
A gene detection strategy using two-component Ac/Ds construct, with the mobile Ds transposon, has been developed to better understand gene functions in crops. Currently, 115,000 Ds insertion lines have been generated through the Ac/Ds gene trap system in Korea using japonica rice Dongjin as donor. Four hundred and thirty-seven mutants from 12,162 Ds-tagged lines were catalogued, including physiological and agronomic traits. Different traits were identified with distinct characteristics in terms of tillers, panicles, leaves, flowers, seed, chlorophyll content, and height. Culm and panicle length, number of panicles, and days to flowering of the Dongjin Ds population revealed high standard deviations compared with the donor cultivar. An evaluation of the Ds distribution on the chromosome revealed that 74.5% of the Ds were reinserted into gene-rich regions, making this Ac/Ds-mediated gene trap system useful in helping to gain an understanding of the function of genes and thus improve the gene-tagging system in rice.  相似文献   

12.
A two-element transposon system based on the maize elements Ac and Ds is currently being used for insertional mutagenesis in Arabidopsis. With the aim of making this system as efficient as possible we have continued to analyse several parameters which affect Ds activity in Arabidopsis. The influence of genomic position on Ds excision has been analysed in five lines carrying Ds integrated in different genomic locations. Differences in both somatic and germinal excision were observed between the different lines. The relationship between somatic and germinal excision, the timing of excision events and environmental influences on transposition frequency have been investigated. The effect of varying dosage of the different elements was also analysed. A strong positive dosage effect was observed for the transposase source, but not for the Ds element. Analysis of germinal excision events showed that the majority of them occurred very late in the development of the plant, resulting in the majority of Ds transpositions being independent events.  相似文献   

13.
We have developed a novel four-element based gene tagging system in Arabidopsis to minimize the number of starter lines required to generate genome-wide insertions for saturation mutagenesis. In this system, the non-autonomous cassette, Ds(dSpm), comprises of both Ds and dSpm elements cloned one within the other along with appropriate selection markers to allow efficient monitoring of excision and re-integration of the transposons. Trans-activation of the outer borders (Ds) and selection against the negative selection marker (iaaH) linked to the cassette ensures unlinked spread of the Ds(dSpm) cassette from the initial site of integration of the T-DNA. This creates several launch pads within the genome from where the internal element (dSpm) can be subsequently mobilized to generate secondary insertions. In this study, starting from a single T-DNA integration we could spread the Ds(dSpm) cassette to 11 different locations over all the five chromosomes of Arabidopsis. The frequency of unlinked Ds transpositions in the F2 generation varied between 0.05 and 3.35%. Three of these lines were then deployed to trans-activate the internal dSpm element which led to the selection of 29 dSpm insertions. The study conclusively shows the feasibility of deploying Ds and the dSpm elements in a single construct for insertional mutagenesis.  相似文献   

14.
A miniature inverted-repeat transposable element (MITE), designated as Hikkoshi, was previously identified in the null Wx-A1 allele of Turkish bread wheat lines. This MITE is 165 bp in size and has 12-bp terminal inverted repeats (TIRs) flanked by 8-bp target site duplications (TSDs). Southern and PCR analyses demonstrated the presence of multiple copies of Hikkoshi in the wheat genome. Database searches indicated that Hikkoshi MITEs are also present in barley, rice and maize. A 3.4-kb element that has Hikkoshi-like TIRs flanked by 8-bp TSDs has now been identified in the rice genome. This element shows high similarity to the 5 subterminal region of the wheat Hikkoshi MITE and contains a transposase (TPase) coding region. The TPase has two conserved domains, ZnF_TTF and hATC, and its amino acid sequence shows a high degree of homology to TPases encoded by Tip100 transposable elements belonging to the hAT superfamily. We designated the 3.4-kb element as OsHikkoshi. Several wheat clones deposited in EST databases showed sequence similarity to the TPase ORF of OsHikkoshi. The sequence information from the TPase of OsHikkoshi will thus be useful in isolating the autonomous element of the Hikkoshi system from wheat.  相似文献   

15.
Summary A mouse dihydrofolate reductase gene (DHFR), encoding an enzyme conferring methotrexate (MTX) resistance, under the control of the cauliflower mosaic virus (CaMV) 35 S promoter, was inserted within a maize nonautonomous Ds transposable element. The presence of at least one element (Ds-DHFR) can easily be monitored using methotrexate selection in plants. This chimeric element is able to transpose at a frequency similar to its unmodified progenitor in transgenic tobacco callus containing an autonomous Ac element. The orientation of the selectable marker cassette in the Ds element does not affect relative excision frequencies. Approximately two-thirds of these elements can be detected after excision while the remaining one-third cannot. The Ds-DHFR element is useful in elucidating the mechanism by which Ac/Ds transposition occurs, and allows for a rapid identification of mutants in which methotrexate resistance cosegregates with a mutant phenotype.  相似文献   

16.
The feasibility of using transient transposase expression to mobilize Ds elements for gene tagging in Hieracium aurantiacum was evaluated. A T-DNA construct carrying the Ac transposase gene and either a visible marker gene (uidA) or the conditionally-lethal marker gene (codA) was transferred to H. aurantiacum leaf discs (previously transformed with a Ds element) by co-cultivation with Agrobacterium tumefaciens. Shoots were regenerated directly from the co-cultivated leaf discs under selection for antibiotic resistance resulting from Ds excision. Most regenerants carried unique transposition events. Of 84 regenerated plants, twenty one (25%) did not express the marker gene and the DNA coding sequence of the transposase could not be detected in seven (8.3%). Potential advantages of this method over conventional gene-tagging methods are: rapid recovery of individual transposition events; regenerated plants are isogenic; and the transient nature of transposase expression should facilitate the stabilisation of the transposed element.  相似文献   

17.
Summary The occurrence of DNA sequences similar to the Ds-element of sh-m5933 maize (Ds-like sequences) was studied in other representatives of the Gramineae. The approximate number of copies of such sequences found under gentle and stringent conditions of washing was determined by dot-hybridization. It was shown that in the maize genome the number of copies of Ds-like sequences exceeds about ten-fold the content of such sequences found in wheat, rye and barley genomes. Quantitative differences in Ds-like sequences between wheat species with various genomes and ploidies (when estimated per genome) as well as between different H. vulgare varieties was not determined. The various melting points (Tm) of DNA-duplexes formed when the Ds-element is hybridized with wheat, rye and barley DNA respectively do not show significant differences and are essentially lower than the Tm of the Ds-element (by 8°–9°C). Thus, these duplexes have 9–11% of nucleotide substitutions in comparison to Ds sh-m5933. The data obtained permit one to suppose the presence of a series of Ds-like sequences heterogenous for the length and degree of homology to the Ds-element isolated from the shrunken locus (sh-m5933) of maize DNA.  相似文献   

18.
We report the cloning and characterisation of Pot2, a putative transposable element from Magnaporthe grisea. The element is 1857 by in size, has 43-bp perfect terminal inverted repeats (TIRs) and 16-bp direct repeats within the TIRs. A large open reading frame, potentially coding for a transposase-like protein, was identified. This putative protein coding region showed extensive identity to that of Fott, a transposable element from another phytopathogenic fungus, Fusarium oxysporum. Pot2, like the transposable elements Tc1 and Mariner of Caenorhabditis elegans and Drosophila, respectively, duplicates the dinucleotide TA at the target insertion site. Sequence analysis of DNA flanking 12 Pot2 elements revealed similarity to the consensus insertion sequence of Tct. Pot2 is present at a copy number of approximately 100 per haploid genome and represents one of the major repetitive DNAs shared by both rice and non-rice pathogens of M. grisea.  相似文献   

19.
We have characterised a new family of repetitive sequences that we have named Mrs (maize repetitive sequences). Mrs elements are associated with different maize genes and seem to be specific for the genome of Zea species. Mrs elements are short, AT-rich and contain terminal inverted repeats (TIRs). The sequence of their TIRs, as well as the fact that they are flanked by short repetitions that tend to be TAA, allows us to propose Mrs as a new subfamily of Tourist transposable elements.  相似文献   

20.
Boon Ng GH  Gong Z 《Biochimie》2011,93(10):1858-1864
As the medaka is a popular fish model in genetics, developmental biology and toxicology, the development of an efficient transgenic medaka technique is important for a variety of biological experiments. Here we demonstrated that the maize transposon system, Ac/Ds, greatly improved the transgenesis of microinjected DNA. Using the Ac/Ds system, two types of stable transgenic medaka lines, Tg(hsp70:gfp) and Tg(cyp1a1:gfp), were established with germline transmission rates of 83.3% (10/12) and 100.0% (4/4) from GFP-expressing founders, respectively. The percentages of transgenic progeny ranged between 3.1% and 100.0% in F1 from different transgenic founders. Interestingly, multiple insertions were found from transgenic founders and the cloned insertion sites confirmed the transposition mediated by Ac transposase. In addition, we demonstrated the inducible GFP expression in both GFP transgenic medaka lines. In Tg(hsp70:gfp) whose gfp gene was under the control of a heat shock inducible medaka hsp70 promoter, GFP expression was induced ubiquitously after heat shock. In Tg(cyp1a1:gfp), the gfp gene was driven by medaka cyp1a1 promoter that could be activated by various xenobiotic chemicals including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD); indeed, GFP expression was found to be induced in the liver, intestine and kidney by TCDD. Our data presented here demonstrated the highly efficient transgenesis with the aid of the maize Ac/Ds transposon system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号