首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study was to investigate the role of DNA and chromosome repair in determining the difference in radiosensitivity between a radiosensitive murine leukemic lymphoblastoid cell line, L5178Y-S, and its radioresistant counterpart, L5178Y-R. Populations of cells in the G1 or G2 phase of the cell cycle were obtained by centrifugal elutriation and irradiated with X-ray doses up to 10 Gy and allowed to repair at 37 degrees C for various periods. The kinetics of DNA double-strand break repair was estimated using the DNA neutral filter elution method, and the kinetics of chromosome repair was measured by premature chromosome condensation. L5178Y-S cells exhibited decreased repair rates and limited repair capacity at both the DNA and chromosome level in both G1 and G2 phases when compared to L5178Y-R cells. For the repair-competent L5178Y-R cells, the rate of DNA repair was similar in G1 and G2 cells and exhibited both fast and slow components. While the kinetics of chromosome break repair in G1 cells was similar to that of DNA repair, chromosome repair in G2 cells had a diminished fast component and lagged behind DNA repair in terms of fraction of damage repaired. Interestingly, concomitant with a diminished repair capacity in L5178Y-S cells, the number of chromatid exchanges in G2 cells increased with time, whereas it remained constant with repair time in L5178Y-R cells. These results suggest that the basis for the exceptional radiosensitivity of L5178Y-S cells is a defect in the repair of both DNA double-strand breaks and chromosome damage.  相似文献   

2.
3.
4.
5.
The effects of methylazoxymethanol (MAM) acetate on colony survival, cell proliferation and DNA synthesis of murine lymphoma L5178Y cells are studied. Decreased sensitivity and immediate depression of cell proliferation and DNA synthesis were found in L5178Y cells in contrast to the reports on HeLa cells. Pre-labelling with 5-bromodeoxyuridine (BUdR) did not enhance significantly the carcinogen-induced cell lethality. Post-treatment with caffeine greatly enhanced cell lethality and depression of cell proliferation. These effects of caffeine were diminished when the cells had passed through two generations following the MAM acetate treatment. Experiments with synchronized cells showed that the action of caffeine was located primarily in S phase following the MAM acetate-treatment. These results strongly suggest that in L5178Y cells, MAM acetate induces damage, which is repaired by a mechanism analogous to post-replication repair of UV light-induced damage.  相似文献   

6.
7.
Three mutagen-sensitive mutants, MS-1, M10 and Q31, have been isolated from mouse L5178Y cells. MS-1 cells are sensitive to methyl methanesulfonate (MMS), M10 cells are cross-sensitive to X-rays, MMS and 4-nitroquinoline 1-oxide (4NQO), and Q31 cells are cross-sensitive to UV and 4NQO. Lines resistant to 6-thioguanine (TGr) and 5-bromo-2'-deoxyuridine (BUr) were isolated from L5178Y and these three mutagen -sensitive mutants. All the TGr lines were sensitive to 5-bromo-2'-deoxyuridine and HAT medium and all the BUr lines were sensitive to 6-thioguanine and HAT medium. The hybrids homozygous for the mutagen-sensitive markers showed nearly the same sensitivity to UV, 4NQO, X-rays and MMS as their parental TGr and BUr lines. The hybrids constructed by fusing L5178Y BUr and TGr lines from each of MS-1, M10 and Q31 displayed the normal UV, X-ray and MMS resistancy of L5178Y cells. Thus the UV-, X-ray- and MMS-sensitive markers in MS-1, M10 and Q31 were recessive in somatic cell hybrids. The 4NQO-sensitive phenotype, however, behaved codominantly in somatic cell hybrids.  相似文献   

8.
9.
In the preceding paper we described the properties of nucleoids analyzed with the fluorescent halo assay at pH 6.9 and 9, as well as in the presence of reducing and chelating agents and after X-irradiation. We found analogies between the properties of type I and II nucleoids, as examined by Lebkowski and Laemmli (1982), and nucleoids analyzed with the fluorescent halo assay. We concluded that radiation-inflicted damage at two levels of DNA folding is measured at pH 6.9 and 9. In this paper we examined repair of damage to the nucleoid structure as assayed by the fluorescent halo method in X-irradiated L5178Y (LY) sublines; R (radiation resistant,D 0=1.4 Gy) and S (radiation sensitive,D 0=0.5 Gy). Halo diameters were measured after cell lysis in the presence of propidium iodide (PI; 0.5 to 50 µg/ml) at pH 6.9 and 9. The ability of DNA to be rewound at 10–50 µg/ml of PI was impaired by X-irradiation and partly restored during 90-min post-irradiation incubation, indicating damage to the superhelical structure and its partial restoration. The exponential time constants for repair were 10.1 min (LY-S, 6 Gy), 11.2 min (LY-R, 12 Gy), and 20.3 min (LY-s, 12 Gy) when measured at pH 9. In X-irradiated (12 Gy) LY-S cells, slower restoration of DNA supercoiling was observed at pH 9 than at pH 6.9. The presence of labile lesions at pH 9 did not prevent restoration of the higher-order DNA structure, as estimated from DNA rewinding at pH 6.9 in LY-S cells.Work performed at SUNY-Health Science Center at Brooklyn  相似文献   

10.
Glycation between reducing sugars and amino groups of long-lived macromolecules results in an array of chemical modifications that may account for several physiological complications. The consequences of the reaction are directly related to the reactivity of the sugars involved, whether aldoses or ketoses, phosphorylated or non-phosphorylated. So far, most studies have been focused on glucose, while fructose, a faster glycating agent, attracted minor attention. We have recently demonstrated that under in vitro conditions fructose and its phosphate derivatives can modify plasmid DNA faster than glucose and its phosphate metabolites. In the present study we provide further evidences suggesting that fructose and its phosphate metabolites, at the tested conditions, are cytotoxic and inflict deleterious DNA modifications to L5178Y cells in culture. Damage was verified by viable cell counts, MTT assay, colony forming ability, induction of mutation in the thymidine kinase gene, internucleosomal DNA cleavage, and single strand breaks. The intensity of the tested sugars to impose damage increased significantly in the following order: sucrose = glucose 1-phosphate < glucose < glucose 6-phosphate < fructose 1-phosphate = fructose < fructose 6-phosphate. Aminoguanidine, an inhibitor of the glycation reaction, inhibited internucleosomal DNA cleavage. Taken together, these results suggest that fructose triggers deleterious modification in cultured cells through the glycation process, and thus should deserve more attention as an agent that may induce physiological complications.  相似文献   

11.
Synthesis of four macromolecular classes found in membranes—glycoprotein, glycolipid, protein, and lipid—was measured as a function of time of the cell cycle in synchronized L5178Y cells. Incorporation of leucine, choline, fucose, glucosamine, or thymidine into the cells, protein, nucleic acid, or lipid was measured by pulse-labeling for ½ hr at ½ hr intervals after release from the mitotic block. The amount of protein, lipid, glycoprotein, or glycolipid released or secreted into the medium by the L5178Y cells was also measured as a function of time of the cell cycle. Cellular protein was found to be synthesized throughout the cell cycle, with the highest synthesis occurring in the S period; synthesis was depressed in the M period. Cellular glycoprotein was synthesized at approximately the same times as protein, except that the rates of glycoprotein synthesis in the S period relative to other periods were much greater than for protein. Secreted protein was synthesized throughout the cell cycle without any general pattern, except that secretion was elevated in the late S and G2 periods. Secreted glycoprotein was similar to secreted protein. Cellular lipid and cellular glycolipid were synthesized almost exclusively in the G2 and M periods; there was no synthesis in the G1 and S periods. Release or secretion of glycolipid and lipid also occurred in the G2 and M periods.  相似文献   

12.
In testing the hypothesis that the small-colony thymidine kinase-deficient mutants of L5178Y/TK+/- -3.7.2C mouse lymphoma cells represent an estimate of the clastogenicity of test chemicals, we have been performing gross aberration analysis. The present study was initiated to determine if the cytokinesis block method of micronucleus analysis could be performed in mouse lymphoma cells and to compare 3 different endpoints of clastogenicity: the number of metaphases with aberrations, number of binucleates with micronuclei, and small-colony TK mutant frequency. In this study, 12 compounds having varying clastogenic potencies were evaluated. As would be expected, the 3 endpoints vary in the relative magnitude of the quantitated response. This difference likely results from the types of clastogenic damage detected by each endpoint. Of the 3 endpoints tested, only the small-colony TK mutant frequency measures events compatible with long-term cell survival.  相似文献   

13.
The amino acid contents of tumor cells that are either sensitive or resistant to treatment with L-asparaginase were measured. These amino acid concentrations were measured as a function of incubation time with L-asparaginase or as a function of the L-asparaginase dose. The cell types compared were the mouse leukemia lines L5178Y (sensitive to L-asparaginase treatment) and L5178Y/L-ASE (resistant to L-asparaginase treatment). Upon L-asparaginase treatment both cell lines lost most of their cellular asparagine but, whereas the resistant cells exhibited the ability to rebound to about 50% of initial values, the sensitive cells did not. While previous work had suggested that asparagine-dependent glycine synthesis was essential for sensitive cells (but not in resistant cells), we found no difference in the glycine content of either of the two cell lines as a function of either time or dose that would support this hypothesis. Major differences between the two cell lines were seen in the content of the essential amino acids before treatment with L-asparaginase. After incubation without L-asparaginase the contents of the two cell lines became similar. These results are discussed in terms of possible mechanisms of L-asparaginase sensitivity and resistance.  相似文献   

14.
Radioresistant mutants of L5178Y cells   总被引:1,自引:0,他引:1  
  相似文献   

15.
16.
Two L5178Y (LY) murine lymphoma cell sublines, LY-R, resistant, and LY-S, sensitive, to X-irradiation display inverse cross-sensitivity to camptothecin (CPT): LY-R cells were more susceptible to this specific topoisomerase I inhibitor than LY-S cells. After 1 h incubation with CPT, the doses that inhibited growth by 50 per cent (ID50) after 48 h of incubation were 0·54μM for LY-R cells and 1·25 μM for LY-S cells. Initial numbers of DNA–protein crosslinks (DPCs) measured at this level of growth inhibition were two-fold higher in LY-R (5·6 Gray-equivalents) than in LY-S cells (3·1 Gray-equivalents), which corresponds well with the greater in vitro sensitivity of Topo I from LY-R cells to CPT.1,2 Conversely, the initial levels of single-strand DNA breaks (SSBs) and double-strand DNA breaks (DSBs) were lower in LY-R cells (4·2 Gray-equivalent SSBs and 5·8 Gray equivalent DSBs) than in LY-S cells (8·0 Gray-equivalent SSBs and 12·0 Gray-equivalent DSBs). Dissimilarity in the replication-dependent DNA damage observed after 1 h of treatment with CPT was not due to a difference in the rate of DNA synthesis between the two cell lines, but may have arisen from a substantially slower repair of DNA breaks in LY-S cells.3 Release from G2 block by caffeine co-treatment significantly increased cell killing in the LY-S subline, and only slightly inhibited growth of LY-R cells. These results show that after CPT treatment cells arrest in G2, allowing them time to repair the long-lived DSBs. As LY-S cells are slower in repairing the DSBs, they were more susceptible to CPT in the presence of caffeine.  相似文献   

17.
Microdeletions on the short arm of the Y chromosome have defined three non-overlapping regions (AZFa, b, c) recurrently deleted among infertile males. These regions contain several genes or gene families involved in male germ-cell development and maintenance. Even though a meiotic origin for these microdeletions is assumed, the mechanisms and causes leading to microdeletion formation are largely unknown. In order to assess whether some Y chromosome groups (or haplogroups) are predisposed to, or protected against, deletion formation during male meiosis, we have defined and compared Y chromosome haplogroup distribution in a group of infertile/subfertile males harbouring Yq deletions and in a relevant Northwestern European control population. Our analyses suggest that Y chromosome deletion formation is, at least in the study populations, a stochastic event independent of the Y chromosome background on which they arise and may be caused by other genetic and/or environmental factors.  相似文献   

18.
Cells derived from individuals with ataxia telangiectasia (AT) exhibit increased sensitivity to ionizing radiation and certain drugs (e.g., bleomycin, neocarzinostatin, and etoposide) as evidenced by decreased survival and increased chromosome aberrations at mitosis when compared with normal cell lines. To understand better the basis of this sensitivity, three AT and two normal lymphoblastoid cell lines were fractionated into cell cycle phase-enriched populations by centrifugal elutriation and then examined for their survival and their relative initial levels of DNA damage (neutral DNA filter elution) and chromosome damage (premature chromosome condensation). AT cells exhibited decreased levels of survival in all phases of the cell cycle; however, AT cells in early G1 phase were especially sensitive compared with normal cells in G1 phase. While AT and normal cells exhibited similar levels of initial DNA double-strand breaks in exponential populations as well as throughout the cell cycle, AT cells showed nearly twofold higher initial levels of chromosome damage than normal control cells in G1 and G2 phase. These results suggest that there is a higher rate of conversion of DNA double-strand breaks into chromosome breaks in AT cells, perhaps due to a difference in chromatin organization or stability. Thus one determining component of cellular radiosensitivity might include chromatin structure.  相似文献   

19.
The L5178Y (LY) murine lymphoma sublines LY-R and LY-S are differentially sensitive to ionizing radiation. The high radiation sensitivity of LY-S cells is related to impaired rejoining of DNA double strand breaks. We found previously that the gamma-ray-induced base damage is higher in the more radiosensitive LY-S subline. Here, we examine the role of the repair of ionizing radiation induced base damage in relation to the radiosensitivity difference of these sublines. We used the GS/MS technique to estimate the repair rates of six types of base damage in gamma-irradiated LY cells. All modified DNA bases identified in the course of this study were typical for irradiated chromatin. The total amount of initial base damage was higher in the radiation sensitive LY-S subline than in the radiation resistant LY-R subline. The repair rates of 5-OHMeUra, 5-OHCyt, 8-OHAde were similar in both cell lines, the repair rates of FapyAde and 8-OHGua were higher in the radiosensitive LY-S cell line, whereas the repair of 5-OHUra was faster in its radioresistant counter, the LY-R. Altogether, the repair rates of the y-ray-induced DNA base damage in LY sublines are related neither to the initial amounts of the damaged bases nor to the differential lethal or mutagenic effects of ionizing radiation in these sublines.  相似文献   

20.
The alkylating agent MMS was toxic to mouse lymphoma L5178Y cells and decreased their growth rate. A dose-dependent induction of thioguanine- and thymidine- but not ouabain-resistant variants was observed. The prolonged period for expression of thioguanine-resistant variants observed with other mutagens was also found in these studies. A comparison of MMS and EMS showed that MMS on a molar basis was approximately 10 times more toxic than EMS. With mutation, however, when evaluated at equal levels of cell killing MMS and EMS induced the same number of thymidine-resistant variants. For thioguanine-resistant variants MMS was approximately 10-fold less efficient than EMS, while for ouabain-resistance MMS, unlike EMBS, produced no variants at all. The ouabain results were further compared with positive results obtained using a modified Luria--Delbrück fluctuation test.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号