首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 15 毫秒
1.
2.
Neutrophils die rapidly via apoptosis and their survival is contingent upon rescue from constitutive programmed cell death by signals from the microenvironment. In these experiments, we investigated whether prevention of K+ efflux could affect the apoptotic machinery in human neutrophils. Disruption of the natural K+ electrochemical gradient suppressed neutrophil apoptosis (assessed by annexin V binding, nuclear DNA content and nucleosomal DNA fragmentation) and prolonged cell survival within 24–48 h of culture. High extracellular K+ (10–100 mM) did not activate extracellular signal-regulated kinase (ERK) and Akt, nor affected phosphorylation of p38 MAPK associated with constitutive apoptosis. Consistently, pharmacological blockade of ERK kinase or phosphatidylinositol 3-kinase (PI 3-kinase) did not affect the anti-apoptotic action of KCl. Inhibition of K+ efflux effectively reduced, though never completely inhibited, decreases in mitochondrial transmembrane potential (ΔΨm) that preceded development of apoptotic morphology. Changes in ΔΨm resulted in attenuation of cytochrome c release from mitochondria into the cytosol and decreases in caspase-3 activity. Culture of neutrophils in medium containing 80 mM KCl with the pan-caspase inhibitor Z-VAD-FMK resulted in slightly greater suppression of apoptosis than KCl alone. High extracellular KCl also attenuated translocation of apoptosis-inducing factor (AIF) and endonuclease G (EndoG) from mitochondria to nuclei. The DNase inhibitor, aurintricarboxylic acid (ATA) partially inhibited nucleosomal DNA fragmentation, and the effects of ATA and 80 mM KCl were not additive. These results show that prevention of K+ efflux promotes neutrophil survival by suppressing apoptosis through preventing mitochondrial dysfunction and release of the pro-apoptotic proteins cytochrome c, AIF and EndoG independent of ERK, PI 3-kinase and p38 MAPK. Thus, K+ released locally from damaged cells may function as a survival signal for neutrophils.  相似文献   

3.
Liver cirrhosis is often preceded by overt signs of hepatitis, including parenchymal cell inflammation and infiltration of polymorphonuclear (PMN) leukocytes. Activated PMNs release both reactive oxygen species and reactive halogen species, including hypochlorous acid (HOCl), which are known to be significantly cytotoxic due to their oxidizing potential. Because the role of mitochondria in the hepatotoxicity attributed to HOCl has not been elucidated, we investigated the effects of HOCl on mitochondrial function in the human hepatoma HepG2 cell line, human fetal liver cells, and isolated rat liver mitochondria. We show here that HOCl induced mitochondrial dysfunction, and apoptosis was dependent on the induction of the mitochondrial permeability transition (MPT), because HOCl induced mitochondrial swelling and collapse of the mitochondrial membrane potential with the concomitant release of cytochrome c. These biochemical events were inhibited by the classical MPT inhibitor cyclosporin A (CSA). Cell death induced by HOCl exhibited several classical hallmarks of apoptosis, including annexin V labeling, caspase activation, chromatin condensation, and cell body shrinkage. The induction of apoptosis by HOCl was further supported by the finding that CSA and caspase inhibitors prevented cell death. For the first time, these results show that HOCl activates the MPT, which leads to the induction of apoptosis and provides a novel insight into the mechanisms of HOCl-mediated cell death at sites of chronic inflammation.  相似文献   

4.
Previous research showed that increasing membrane sphingomyelin (SPH) levels in rat pheochromocytoma (PC12) cells to the same extent as that seen in some brain regions with aging dramatically increases the vulnerability to oxidative stress (OS). These increases in vulnerability were determined by assessing deficits in the ability of these cells to extrude and/or sequester Ca2+ following 30 mM KCl-induced depolarization (recovery). The purpose of the present experiments was to discern whether increasing the levels of particular SPH metabolite(s), i.e., ceramide (Cer), sphingosine (Ssine), or sphingosine-1-phosphate (SPP), or indirectly increasing the concentrations of these metabolites with sphingomylinase (Sase), would interact with the cell’s sensitivity to OS induced by low (5 μM) or high (nonlethal, 300 μM) H2O2. In addition, the OS vulnerability was examined as above under decreased SPH levels by exposing the cells to L-cycloserine (Lcc), which prevents SPH synthesis. Both Sase and SPP significantly decreased Ca2+ recovery of PC12 cells after H2O2 exposure. Conversely, Lcc-treated cells showed no further OS-induced decrements in recovery below those seen in controls. SPP significantly decreased glutathione levels (GSH) in the absence of OS. Repletion of GSH with 20 mM N-acetylcysteine significantly attenuated the effect of 5 μM H2O2 on recovery in SPP-treated cells and decreased sensitivity of SPP-treated cells to low doses of OS. Overall, our results suggest a critical role for GSH and SPP in the regulation of OS vulnerability, especially as it relates to Ca2+ homeostasis.  相似文献   

5.
6.
7.
Cd induces oxidative stress and apoptosis in various cells by activating mitogen-activated protein kinases (MAPKs), but the precise signaling components of the MAPK cascade and their role in neuronal apoptosis are still unclear. Here, we report that Cd treatment of SH-SY5Y cells caused apoptosis through sequential phosphorylation of the apoptosis signal regulating kinase 1, MAPK kinase 4, c-Jun N-terminal kinase (JNK), and c-Jun as determined by overexpression of dominant negative (DN) constructs of these genes or using a specific JNK inhibitor SP600125. Both Cd-induced JNK and c-Jun phosphorylation and apoptosis were inhibited dramatically by N-acetyl-L-cysteine, a free radical scavenger. In addition, caspase inhibitors, zDEVD and zVAD, reduced apoptosis but not JNK and c-Jun phosphorylation induced by Cd, while overexpression of DN JNK1 inhibited caspase-3 activity. Taken together, our data suggested that the JNK/c-Jun signaling cascade plays a crucial role in Cd-induced neuronal cell apoptosis and provides a molecular linkage between oxidative stress and neuronal apoptosis.  相似文献   

8.
YCT is a semipurified extract from Cratoxylum cochinchinense that has antioxidant properties and contains mostly mangiferin. We show here that YCT is selectively toxic to certain cell types and investigate the mechanisms of this toxicity in Jurkat T cells. By flow cytometric analyses, we show that YCT causes intense oxidative stress and a rise in cytosolic Ca2+. This is followed by a rise in mitochondrial Ca2+, release of cytochrome c, collapse of Δψm, a fall in ATP levels, and eventually cell death. The mechanism(s) of intense oxidative stress may involve a plasma membrane redox system, as cell death is inhibited by potassium ferricyanide. Cell death has some features of apoptosis (propidium iodide staining, externalization of phosphatidylserine, limited caspase-3 and -9 activities), but there was no internucleosomal DNA fragmentation.  相似文献   

9.
10.
11.
Although AKT activation leads to the activation of various pathways related to cell survival, the roles of AKT in modulating cellular responses induced by ionizing radiation in normal human cells remain unclear. Here we show that low-dose radiation of 0.05 Gy did not affect cell death, but high-dose radiation (> 0.2 Gy) induced apoptosis through the activation of caspases and acinus cleavage. Ionizing radiation induced acinus phosphorylation via AKT activation. Thus, we examined the effect of AKT activation on radiation-induced cell death using CCD-18Lu cells transduced with a retroviral vector expressing constitutively active AKT (CA-AKT). The overexpression of CA-AKT rendered the cells resistant to ionizing radiation and prevented the proteolytic cleavage of acinus via phosphorylation. In addition, overexpression of CA-AKT resulted in the upregulation of acinus expression by activation of the NF-κB pathway. On the other hand, suppression of endogenous AKT expression by siRNA resulted in the reduction of acinus expression and enhanced the radiation-induced apoptosis in both CCD-18Lu and IM-9 cells. Our results suggest that AKT activation inhibits cell death during radiation-induced apoptosis through the regulation of phosphorylation and expression of acinus. The AKT/NF-κB/acinus pathway functions as one of the important regulatory mechanisms required for modulating ionizing radiation sensitivity.  相似文献   

12.
Elevated levels of saturated fatty acids show a strong cytotoxic effect in liver cells. Sirtuin 3 (SIRT3), a mitochondrially localized member of NAD+‐dependent deacetylase has been shown to protect hepatocytes against the oxidative stress. The role of SIRT3 on the cytotoxicity caused by fatty acids in liver cells is not fully understood. The aim of this study was to evaluate the expression level of SIRT3, oxidative stress, and mitochondrial impairments in human hepatoma HepG2 cells exposed to palmitic acid (PA). Our results showed that PA treatment caused the deposition of lipid droplets and resulted in an increased expression of tumor necrosis factor‐α in a dose‐dependent manner. Excessive accumulation of PA induces the reactive oxygen species formation and apoptosis while dissipating the mitochondrial transmembrane potential. The level of SIRT3 expression in both nuclear and mitochondrial fractions in HepG2 cells was decreased with the increase in PA concentrations. However, in the cytosolic fraction, the SIRT3 was undetectable. In conclusion, our results showed that PA caused an increase in inflammation and oxidative stress in HepG2 cells. The exposure of PA also resulted in the decline in transmembrane potential and an increase in apoptosis. The underexpression of nuclear and mitochondrial SIRT3 by PA suggests that the PA target the process that regulates the stress‐related gene expression and mitochondrial functions.  相似文献   

13.
We investigated the effect of the novel phospholipase C activator, m-3M3FBS, on the apoptosis of human renal Caki cancer cells. Treatment with m-3M3FBS induced apoptosis of Caki cells, which was accompanied by accumulation of sub-G1 phase and DNA fragmentation. We found that induction of apoptosis is a common response of several cancer cell types to m-3M3FBS treatment. Overexpression of Bcl-2 and c-FLIPs fails to block m-3M3FBS-induced apoptosis. However, ectopic expression of XIAP partly inhibits m-3M3FBS-induced apoptosis in Caki cells. m-3M3FBS-induced apoptosis appeared to involve the XIAP down-regulation and caspase activation. m-3M3FBS also induced the expression of a potential proapoptotic gene, C/EBP homologous protein (CHOP), however, suppression of CHOP expression by small interfering RNA did not abrogate the m-3M3FBS-induced apoptosis. In addition, inhibition of phospholipase C (PLC) or chelation of intracellular calcium prevented m-3M3FBS-induced apoptosis in Caki cells, suggesting that the involvement of PLC pathway and intracellular calcium signaling on the apoptosis in m-3M3FBS-treated Caki cells. Collectively, our present results suggest that m-3M3FBS-induced apoptosis in Caki cells may result from the activation of caspase, down-regulation of XIAP and intracellular Ca2+ release pathway and that m-3M3FBS treatment might overcome the anti-apoptotic effect of Bcl-2 or c-FLIPs in cancer cells. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Eun Mi Jung and Tae-Jin Lee contributed equally to this work.  相似文献   

14.
Fractalkine (FKN, CX3CL1) is highly expressed in a majority of malignant solid tumours. Fractalkine is the only known ligand for CX3CR1. In this study, we performed an analysis to determine the effects of fractalkine/CX3CR1 on modulating apoptosis and explored the related mechanisms. The expression of fractalkine/CX3CR1 was detected by immunohistochemistry and western blotting. The levels of AKT/p‐AKT, BCL‐xl, and BCL‐2 were detected by western blotting. Then, the effects of exogenous and endogenous fractalkine on the regulation of tumour apoptosis and proliferation were investigated. The mechanism of fractalkine/CX3CR1 on modulating apoptosis in cancer cells through the activation of AKT/NF‐κB/p65 signals was evaluated. The effect of fractalkine on regulating cell cycle distribution was also tested. Fractalkine, AKT/p‐AKT, and apoptotic regulatory proteins BCL‐xl and BCL‐2 were highly expressed in human pancreatic cancer tissues. In vitro, fractalkine/CX3CR1 promoted proliferation and mediated resistance to apoptosis in pancreatic cancer cells. The antiapoptotic effect of fractalkine was induced by the activation of AKT/NF‐κB/p65 signalling in pancreatic cancer cells. The NF‐κB/p65 contributes to promote the expressions of BCL‐xl and BCL‐2 and reduce caspase activity, thereby inhibiting apoptotic processes. Treatment with fractalkine resulted in the enrichment of pancreatic cancer cells in S phase with a concomitant decrease in the number of cells in G1 phase. The present study demonstrated the function of fractalkine in the activation of the AKT/NF‐κB/p65 signalling cascade and mediation of apoptosis resistance in pancreatic cancer cells. Fractalkine/CX3CR1 could serve as a diagnostic marker and as a potential target for chemotherapy in early stage pancreatic cancer. Pancreatic cancer is characterized by local recurrence, neural invasion, or distant metastasis. The present study demonstrated the overexpression of fractalkine/CX3CR1 in pancreatic cancer tissues, indicating its important role in the tumourigenesis of pancreatic cancer, and suggested that the overexpression of fractalkine/CX3CR1 could serve as a diagnostic marker for pancreatic cancer. Moreover, we reveal the mechanism that fractalkine functions on the activation of the AKT/NF‐κB/p65 signalling cascade and regulation of the antiapoptosis process in pancreatic cancer cells. Fractalkine/CX3CR1 could serve as an effective therapeutic target of chemotherapeutic and biologic agents in early stage pancreatic cancer.  相似文献   

15.
16.
The prostate‐apoptosis‐response‐gene‐4 (Par‐4) is up‐regulated in prostate cells undergoing programmed cell death. Furthermore, Par‐4 protein has been shown to function as an effector of cell death in response to various apoptotic stimuli that trigger mitochondria and membrane receptor‐mediated cell death pathways. In this study, we investigated how Par‐4 modulates TRAIL‐mediated apoptosis in TRAIL‐resistant Caki cells. Par‐4 overexpressing cells were strikingly sensitive to apoptosis induced by TRAIL compared with control cells. Par‐4 overexpressing Caki cells treated with TRAIL showed an increased activation of the initiator caspase‐8 and the effector caspase‐3, together with an enforced cleavage of XIAP and c‐FLIP. TRAIL‐induced reduction of XIAP and c‐FLIP protein levels in Par‐4 overexpressing cells was prevented by z‐VAD pretreatment. In addition, the surface DR5 protein level was increased in TRAIL‐treated Par‐4 overexpressing cells. Interestingly, even though a deletion of leucine zipper domain in Par‐4 recovered Bcl‐2 level to basal level induced by wild type Par‐4, it partly decreased sensitivity to TRAIL in Caki cells. In addition, exposure of Caki/Par‐4 cells to TRAIL led to reduction of phosphorylated Akt levels, but deletion of leucine zipper domain of Par‐4 did not affect these phosphorylated Akt levels. In conclusion, we here provide evidence that ectopic expression of Par‐4 sensitizes Caki cells to TRAIL via modulation of multiple targets, including DR5, Bcl‐2, Akt, and NF‐κB. J. Cell. Biochem. 109: 885–895, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
Fumonisin B1 (FB1), the most potent of the fumonisin mycotoxins, is a carcinogen and causes a wide range of species-specific toxicoses. FB1 modulates the activity of protein kinase C (PKC), a family of phospholipid-dependent serine/threonine kinases that play important role in modulating a variety of biologic responses ranging from regulation of cell growth to cell death. Although it has been demonstrated that FB1 induces apoptosis in many cell lines, the precise mechanism of apoptosis is not fully understood. In this study, we investigated the membrane localization of various PKC isoforms, PKC enzyme activity, and its downstream targets, namely nuclear factor-kappa B (NF-kappaB), tumor necrosis factor alpha (TNFalpha), and caspase 3, in porcine renal epithelial (LLC-PK1) cells. FB1 repressed cytosol to membrane translocation of PKC-alpha, -delta, -epsilon, and -zeta isoforms over 24-72 h. The FB1-induced membrane PKC repression was corroborated by a concentration-dependent decrease in total PKC activity. Exposure of cells to phorbol 12-myristate 13-acetate (PMA) for this duration also resulted in repressed PKC membrane localization and activity comparable to FB1. Exposure of cells to FB1 (10 microM) was associated with inhibition of cytosol to nuclear translocation of NF-kappaB and NF-kappaB-DNA binding at 72 h. The expression of TNFalpha was significantly inhibited at 24 and 48 h in response to 1 and 10 microM FB1. Increased caspase 3 activity was observed in LLC-PK1 cells exposed to > or =1 microM FB1 at 48 h. PMA also increased the caspase 3 activity at 24 and 48 h. Results suggest that FB1-induced apoptosis involves the activation of caspase 3, which is associated with the repression of PKC and possibly its down-stream effectors, NF-kappaB and TNFalpha.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号