首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Streams are physically perturbed habitats with high demands on the dispersal and recruitment to maintain plant populations. Yet, little is known about these important demographic processes for stream plants. Therefore, we studied the monospecific vegetation of Callitriche cophocarpa in a small Danish lowland stream to determine: 1) the importance of drifting shoots and seeds for recruitment of plants, and 2) the influence of water flow, light availability and patch size on recruitment, growth and mortality processes. We found that the majority (about 90%) of new colonising patches of plant stands derived from drifting shoots being caught around protruding stones, while few developed from seeds. Many new patches were lost in the flowing water before roots became well established. Flow exposure of the patches resulted in the main growth taking place in the downstream direction. Combined areal cover of Callitriche patches on the stream bottom reached an upper limit of about 70%, probably because areal expansion above this threshold was constrained by strong shear forces and coarse substrata developing in the flow channels between the patches. We discuss why efficient shoot dispersal and vegetative growth documented here for Callitriche is an optimal plant strategy in flow-perturbed streams in contrast to the production of numerous small seeds but limited vegetative spread among ruderal plants in perturbed habitats on land.  相似文献   

2.
  1. The dispersal of aquatic plant propagules is highly facilitated in streams due to flow. As many aquatic plants predominantly spread through vegetative propagules, the specific retention and thus drift distance of dispersed plant fragments largely contribute to the rapid spread along the course of a stream.
  2. We determined fragment retention for four aquatic plant species (Elodea canadensis, Myriophyllum spicatum, Ceratophyllum demersum, Salvinia natans; representing four different common morpho-structural groups) in sections of small to medium-sized German streams with different levels of stream sinuosity.
  3. The number of fragments showed a logistic decline over drift distance. In two small streams, 90% of drifting fragments were retained at distances (D90) of only 5–9 m and 19–70 m, while higher D90 values of 116–903 m and 153–2,367 m were determined for sections of a medium-sized stream. The likelihood of retention thereby decreased significantly with increasing stream size and was reduced in straightened stream sections.
  4. Differences in retention were more strongly related to fragment buoyancy rather than fragment size and morphology. Increasing buoyancy significantly lowered the likelihood of fragment retention over drift distance by a factor of 3–8, whereas contrasting effects were documented for size and morphology of fragments.
  5. The relevance of different obstacles was highly stream section-specific and depended on obstacle abundance, distribution, and the degree of submergence/emergence.
  6. Our findings elucidate the dynamic retention patterns of plant fragments and highlight the strong interplay between extrinsic (stream) and intrinsic (fragment) properties. We conclude that straightened lowland streams of intermediate size promote the rapid dispersal of invasive aquatic plants and are particularly prone to invaders producing large amounts of small and highly buoyant plant fragments. Information on the species-specific fragment colonisation dynamics in the field is further required to improve our understanding of the vegetative dispersal capacity of invasive aquatic plants in stream ecosystems.
  相似文献   

3.
Dispersal of plant fragments in small streams   总被引:7,自引:1,他引:6  
1. Streams are subject to frequent natural and anthropogenic disturbances that cause sediment erosion and loss of submerged vegetation. This loss makes downstream transport and retention of vegetative propagules on the streambed very important for re‐establishing vegetation cover. We measured dispersal and retention of macrophyte stem fragments (15–20 cm long) along 300 m long reaches of four small to medium sized Danish lowland streams. 2. The number of drifting stem fragments declined exponentially with distance below the point of release. This finding makes the retention coefficient (k, m−1) in the exponential equation a suitable measure for comparisons among different macrophyte species, and between stream reaches of different hydrology and vegetation cover. 3. Buoyancy of macrophyte tissue influenced retention. Elodea canadensis stems drifted below the water surface, and were more inclined to be retained in deeper water associated with submerged plants and obstacles in the streambed. Ranunculus peltatus stems were more buoyant, drifted at the water surface, and were more inclined to be trapped in shallow water and in riparian vegetation. 4. The retention coefficient of drifting stems increased with the relative contact between the flowing water and streambed, bank and vegetation. Thus, the retention coefficients were highest (0.02–0.12 m−1) in shallow reaches with a narrow, vegetation‐free flow channel. Here there were no significant differences between E. canadensis and R. peltatus. Retention coefficients were lowest (0.0005–0.0135 m−1) in deeper reaches with wider vegetation‐free flow channels. Retention of E. canadensis was up to 16 times more likely than retention of R. peltatus. 5. Overall, the longitudinal position in the stream system of source populations of species capable of producing numerous stems, the species‐specific retention coefficients of stems, and the retention capacity of stream reaches should be important for species distribution in perturbed stream systems. Retention of stems is probably constrained in headwaters by the small downstream flux of stem fragments because of the restricted source area, and constrained in downstream reaches by small retention coefficients. Macrophyte retention may, consequently, peak in medium‐sized streams.  相似文献   

4.
Velocity gradients and turbulence around macrophyte stands in streams   总被引:5,自引:0,他引:5  
1. Submerged macrophytes strongly modify water flow in small lowland streams. The present study investigated turbulence and vertical velocity gradients using small hot-wire anemometers in the vicinity and within the canopies of four macrophyte species with the objective of evaluating: (a) how plant canopies influence velocity gradients and shear force on the surfaces of the plants and the stream bed; and (b) how the presence and morphology of plants influence the intensity of turbulence. 2. Water velocity was often relatively constant with water depth both outside and inside the plant canopies, but the velocity declined steeply immediately above the unvegetated stream bed. Steep vertical velocity profiles were also observed in the transition to the surface of the macrophyte canopy of three of the plant species forming a dense shielding structure of high biomass. Less steep vertical profiles were observed at the open canopy surface of the fourth plant species, growing from a basal meristem and having the biomass more homogeneously distributed with depth. The complex distribution of hydraulic roughness between the stream bed, the banks and the plants resulted in velocity profiles which often fitted better to a linear than to a logarithmic function of distance above the sediment and canopy surfaces. 3. Turbulence increased in proportion to the mean flow velocity, but the slope of the relationships differed in a predictable manner among positions outside and inside the canopies of the different species, suggesting that their morphology and movements influenced the intensity of turbulence. Turbulence was maintained in the attenuated flow inside the plant canopies, despite estimates of low Reynolds numbers, demonstrating that reliable evaluation of flow patterns requires direct measurements. The mean velocity inside plant canopies mostly exceeded 2 cm s??1 and turbulence intensity remained above 0.2 cm s??1, which should be sufficient to prevent carbon limitation of photosynthesis in CO2-rich streams, while plant growth may benefit from the reduced physical disturbance and the retention of nutrient-rich sediment particles. 4. Flow patterns were highly reproducible within canopies of the individual species despite differences in stand size and location among streams. We propose that individual plant stands are suitable functional units for analysing the influence of submerged macrophytes on flow patterns, retention of particles and biological communities in lowland streams.  相似文献   

5.
1. Plant physical ecosystem engineers can influence vegetation population and community dynamics by modifying, maintaining or creating habitats. They may also have the potential to act upon biotic processes, such as seed dispersal. 2. Examples exist of reduction in seed dispersal distances in vegetated compared to unvegetated terrestrial environments, and concentration of seed deposits associated with plant patches. Such effects in aquatic environments have been little studied, but the engineering effect of plant patches on patterns of flow velocity and sediment deposition in streams suggests that they may play a similar role. 3. In this study, we assess the potential of an emergent aquatic species, Sparganium erectum, to play a role in physically modifying river habitats and trapping seeds by examining patterns of seed deposition and substrate type in 47 river reaches across England and southern Scotland, U.K. 4. Areas of the river channel within or adjacent to S. erectum patches harboured more plant seeds and more species than unvegetated areas and had finer, sandier substrates with higher organic matter, total nitrogen and total phosphorus content. Most seed species were competitive, indicating that they were well suited to colonise the competitive environment of an S. erectum patch, and could potentially further stabilise accumulated sediments and contribute to landform development. 5. We demonstrate that S. erectum patches influence both the physical environment and the retention of seeds, in consistent patterns across the channel bed, for a range of lowland rivers that vary in stream power and geology and which can be expected to vary in levels of supply of fine sediment and seeds. 6. Our findings support the hypothesis that the fundamental influence of a riverine ecosystem‐engineering species on slowing fluid flow links the habitat creation process of sediment sorting and retention to seed trapping. We suggest the process is applicable to a wide range of aquatic and riparian vegetation. We also suggest that the mono‐specific and competitive growth, which is typical of these engineering species, will strongly influence the recruitment of trapped seeds.  相似文献   

6.
Macrophytes influence the physical, chemical, and biological characteristics of lowland streams, so may be critically important in stream management. We investigated the role of macrophytes in regulating metabolism and nutrient cycling in three lowland, agricultural streams. We measured stream metabolism over the growing season and following experimental macrophyte removal, and used short-term nutrient additions of phosphate (P) and ammonium to assess macrophyte influences on nutrient uptake. Primary production was closely correlated with macrophyte cover across all streams and dates, and decreased greatly with macrophyte removal, whereas ecosystem respiration was not correlated with macrophyte cover and was not altered by macrophyte removal. Phosphate uptake velocity was negatively related to primary production, suggesting that macrophyte activity actually slowed P uptake. Ammonium uptake was not correlated with macrophyte cover or metabolism metrics. Stream nitrate concentrations typically exceeded concentrations of incoming groundwater, suggesting little net nitrate retention in these macrophyte-dominated streams. Phosphorous demand by macrophytes was 10-fold lower than observed uptake rates, indicating that macrophyte P demand was much lower than that of other stream biota. Nitrogen demand by macrophytes was nearly equal to ammonium uptake and was not sufficient to affect the high nitrate flux. These results indicate that macrophytes drive ecosystem metabolism but have limited influence on water column nutrient concentrations because macrophyte demand is much lower than the supply available from the water column. Thus macrophytes in our streams had a large impact on stream trophic state, but offered little potential to influence nutrient removal via management.  相似文献   

7.
植物的繁殖体总是面临来自各类生物(如昆虫、脊椎动物、真菌)的捕食风险。因动物捕食引起的种子死亡率影响植物的适合度、种群动态、群落结构和物种多样性的保持。种子被捕食的时间和强度成为植物生活史中发芽速度、地下种子库等特征的主要选择压力,而种子大小、生境类型等因素也影响动物对植物种子的捕食。捕食者饱和现象被认为是植物和种子捕食者之间的高度协同进化作用的结果,是限制动物破坏种子、提高被扩散种子存活率的一种选择压力。大部分群落中的大多数植物种子被动物扩散。种子扩散影响种子密度、种子被捕食率、病原体攻击率、种子与母树的距离、种子到达的生境类型以及建成的植株将与何种植物竞争,从而影响种子和幼苗的存活,最终影响母树及后代植物的适合度。种子被动物扩散后的分布一般遵循负指数分布曲线,大多数种子并没有扩散到离母树很远的地方。捕食风险、生境类型、植被盖度均影响动物对种子的扩散。植物结实的季节和果实损耗的过程也体现了其对扩散机会的适应。许多动物有贮藏植物种子的行为。动物贮藏植物繁殖体的行为,一方面调节食物的时空分布,提高了贮食动物在食物缺乏期的生存概率;另一方面也为种子萌发提供了适宜条件,促进了植物的扩散。于是,植物与贮食动物形成了一种协同进化关系,这种关系可能是自然界互惠关系(mutualism)的一种。影响幼苗存活和建成的因子包括种子贮蒇点的微生境、湿度、坡向、坡度、林冠盖度等。许多果食性动物吃掉果肉后,再将完好的种子反刍或排泄出来。种子经动物消化道处理后,发芽率常有所提高。  相似文献   

8.
Long-distance dispersal is a key process in biological invasions. Previous research has emphasized the role of nonstandard dispersal vectors, but consequences of a change in dispersal vector for the establishment of invasive plant species have received less attention. We analyzed how water-mediated dispersal rather than the more expected wind-mediated dispersal can affect the establishment of the invasive tree Ailanthus altissima in riparian corridors by changing the germination rate and velocity and by providing the option of a new pathway of vegetative propagation. We analyzed the potential of different types of propagules (fruits that have floated or been submerged, current- and second-year stem fragments) to establish new individuals after contact with water for 0, 3, 10, and 20 days. Length and type of seed contact with water led to divergent germination responses. Seeds that had floated for 3 days had an increased level of seed germination (87%), while a 20-day stay in water water-curbed germination to 32% compared to 53% in control. After floatation, the maximum number of emerged seedlings was achieved more than 3 weeks earlier than in all other treatments. In general, the germination was enhanced in floating compared to submerged fruits. Experiments with stem fragments revealed the option of a novel pathway for long-distance dispersal in river corridors: Except for stem fragments that floated for 20 days, 33–75% of buried stem fragments produced adventitious shoots, 10% also set roots. The results suggest that both generative and vegetative propagules of A. altissima can be dispersed at regional scales in river corridors. Hence, water as an additional dispersal vector is expected to enhance invasions by species with wind-dispersed seeds. Our findings suggest the importance of control of initial colonizations in riparian habitats and emphasize the need to include consequences of secondary dispersal when modeling the spread of invasive species.  相似文献   

9.
Establishing whether herb seed endozoochory is accidental or has evolved independently or in combination with other dispersal mechanisms may be valuable in the study of plant–animal interactions, but it remains unexplored for birds. We tested whether an Australian cockatoo, the galah (Eolophus roseicapilla), swallows entire seeds when feeding on other tissues without subsequent seed digestion, thus enhancing seed dispersal (the ‘foliage is the fruit’ hypothesis). Our preliminary sampling provides strong evidence supporting that this seed predator also acts as a legitimate endozoochorous disperser. A large proportion of droppings contained numerous seeds of six herb species of three plant families, surviving gut passage to be dispersed as viable propagules. The wide range in the number of seeds found in combinations with up to five species in particular droppings suggests both simultaneous and sequential passive ingestion without seed digestion and/or focused seed predation and digestion. As expected for inadvertent ingestion and inefficient digestion, our findings suggest that seed number and richness of dispersed plants are associated traits in this particular mutualistic interaction. This relationship can have important implications in community‐wide processes, favouring herbs whose seeds are disseminated in a viable state over those predated or negatively affected by gut transit.  相似文献   

10.
In the tropical forests of SE Asia, only a few studies have dealt with the role animal dispersal plays in early forest succession and rehabilitation, and a comparison of bird and bat dispersal is even rarer. We investigated seed dispersal by birds and bats in a successional area in the lowland dipterocarp forest of the Subic Watershed Forest Reserve (SWFR) in Luzon Island, Philippines. Using pairs of day and night traps, we collected seeds during 3 mo of wet season and 3 mo of dry season in a 1.2-ha study site. Bird-dispersed seeds predominated over those dispersed by bats in terms of both seed abundance and number of seed species. The most abundant endozoochorous seed species were significantly biased toward either bird or bat dispersal. Birds and bats appeared to compete more strongly for fruit resources during the dry season than during the wet season, and bats responded more to changes in the seasons than birds did. GLM analyses showed that the factor that had the strongest influence on overall seed distribution was the number of fleshy-fruited trees surrounding the traps, and that the distribution pattern of day-dispersed seeds was affected by more physical factors (number of trees, size of trees, presence of fleshy-fruited and conspecific trees) in the study site than the pattern of night-dispersed seeds were. Given that birds are the more important dispersers in the study site, restoration efforts in SWFR might benefit by focusing on attracting these dispersers into its degraded habitats.  相似文献   

11.
In this paper we quantify the seed pools in four locations down through a small stream in Denmark. The objectives of the study were (1) to test if the number of plant taxa in the seed pool increases downstream in the stream system; (2) to test if the seed density in the pool is highest in autumn; and (3) to analyze to what extent the seed pool contributes to re-establishment of vegetation in spring. Counting method showed no increase in species taxa in the seed pool down through the stream system. Neither did we find clear seasonal patterns in seed abundance in the seed pool. By concurrent field and laboratory observations in spring we found that seed pools can function as a source for re-establishing the vegetation in spring. However, the actual germination rate in the field was <100 and <10 times the germination rate in the laboratory for aquatic and terrestrial plants, respectively. The results suggest that small lowland streams contain large seed pools in deposition areas throughout the year, and that seed pools are much more important for the re-establishment of riparian stream vegetation in spring than submerged vegetation.  相似文献   

12.
13.
Agriophyllum squarrosum Moq. is a dominant annual on sand dunes in the arid regions of central Asia. A high percentage of seeds is retained on dead plants which become covered by moving sand, but little is known about the ecological significance of burial of canopy-stored seeds. We investigated the size and dynamics of the buried canopy-stored seed bank and effects of burial on seed germination. In March (during the windy season), May (beginning of the germination season), and July (middle of the growing season), the number of seeds per square meter in sample plots in the dunes was 623, 223 and 22, respectively, with 54.6, 30.6 and 12.9% of the total seeds retained on buried plant canopies. In a controlled experiment, more seedlings emerged from released (dispersed) than from canopy-stored seeds when burial depth was the same. No viable ungerminated released seeds were found, but 45–80% of the ungerminated canopy-stored seeds were viable. In general, with an increase in applied water germination of released seeds buried at a depth of 1 or 2 cm and of canopy-stored seeds buried at 1 cm increased, but regardless of watering regime few or no released seeds at 4 cm or canopy-stored seeds at 2 or 4 cm germinated. Significantly more seedlings emerged from plants buried in a horizontal than in a vertical position. Seedlings originating from buried canopy-stored seeds on an active dune accounted for only 5.4% of the total seedlings emerging, and most of them emerged later than those from released seeds. Thus, seed release is more effectively postponed in buried than in exposed canopies, and burial of canopy-stored seeds is a mechanism that helps regulate seed germination and seedling emergence of A. squarrosum on active dunes.  相似文献   

14.
1. Structure and diversity of the macroinvertebrate fauna were studied in relation to altitude and latitude among three groups of streams from Ecuador (lowland: 100–600 m, Central Valley: 2600–3100 m, páramo: 3500–4000 m), and one group from the temperate lowland region of Denmark. The streams in the four regions were comparable with regard to physical characteristics such as size, current and substratum.
2. In terms of faunal composition the Ecuadorian highland streams bore more resemblance to the Danish lowland streams than the Ecuadorian lowland streams. The greater similarity between the Ecuadorian highland and the Danish streams, however, was due to the large number of insect families in the Ecuadorian lowlands, many of which were not found in the other regions. Of ten physico-chemical parameters measured, maximum stream temperature explained by far the most variability in faunal composition.
3. The number of insect orders and families increased linearly with maximum stream temperature and therefore decreased with altitude and latitude. A compilation of literature data on insect richness and maximum water temperature from streams around the world confirmed this pattern, yielding a common linear relation for both temperate and tropical streams. This pattern may arise due to a direct temperature effect on speciation but is probably also related to geological history and the influence of climatic changes on stream ecosystems. We estimate that small, tropical, lowland streams have, on average, a two- to fourfold higher species richness than temperate lowland streams.  相似文献   

15.
Swift flow in streams may physically influence the morphology and distribution of plants. I quantified drag as a function of velocity, biomass and their interaction on the trailing canopy of seven European stream species in an experimental flume and evaluated its importance for species distribution. Drag increased at a power of 1.3–1.9 with velocity and 0.59–0.77 with biomass in 75% of the measurements. Velocity and biomass interacted because higher velocity causes reconfiguration and greater internal shelter to unimpeded flow and higher biomass enhances shelter among neighbouring shoots. Increase of drag with velocity did not differ systematically among inherently streamlined or non-streamlined species while increase of drag with biomass was smallest among non-streamlined shoots which provide greater mutual shelter. At low shoot density, inherently streamlined species usually experienced the lowest drag conducive to colonisation and growth in swift flow. At high shoot density, no systematic differences in drag existed between the two morphologies. No clear relationship existed between drag forces, morphology and field distribution of species as a function of current velocity probably because a variety of environmental conditions and plant traits influences distribution. Drag on the trailing canopy usually increased 15- to 35-fold for a 100-fold increase of biomass suggesting that an even distribution of plants at low density across the stream bed offers greater resistance to downstream flow than an uneven distribution with the same biomass confined to dense patches surrounded by open flow channels. Thus, management strategies to ensure a patchy plants distribution should be suitable for combining agricultural drainage and ecological stream quality. Handling editor: S. M. Thomaz  相似文献   

16.
Macrophytes play a key role in stream ecology and therefore efforts should be made to enable colonisation of plants to rehabilitate degraded streams. Our overall objectives in this study were first to add to the sparse published studies on the sustainability of transplanting macrophytes in-stream rehabilitation, and secondly to propose general recommendations for this purpose. We assessed the survival and growth of macrophytes after propagating and transplanting them into two streams, one of which was physically degraded and the other was a newly established stream part. We determined differences in colonisation success of different macrophyte species and of different bed sizes. Survival during propagation and after transplanting was 100% for four of the six species used in the experiment. Both survival and colonisation after transplanting six different plant species into a newly created headwater stream were high for Ranunculus baudotii × pseudofluitans, Callitriche cophocarpa, Potamogeton crispus and Myriophyllum spicatum but low for P. perfoliatus and P. pectinatus. After two years, the transplanted macrophyte species were all present and had spread along the stream. Ranunculus baudotii × pseudofluitans beds was more sustainable than C. cophocarpa at places where extensive sand transport occurred. After the second growing season, the smaller patches (0.12 m2) had both similar survival rate and size as the large patches (0.24 m2) for both R. baudotii × pseudofluitans and C. cophocarpa. Our study together with two previous ones from New Zealand enabled us to make general recommendations for transplanting macrophytes into streams. These include: (1) selecting suitable streams, (2) selecting and obtaining suitable plant species, (3) propagation technique and (4) transplanting technique.  相似文献   

17.
Quantity,quality and the effectiveness of seed dispersal by animals   总被引:9,自引:0,他引:9  
Disperser effectiveness is the contribution a disperser makes to the future reproduction of a plant. Although it is a key notion in studies of seed dispersal by animals, we know little about what determines the effectiveness of a disperser. The role of the present paper is to review the available information and construct a hierarchical framework for viewing the components of disperser effectiveness.Effectiveness has both quantitative and qualitative components. The quantity of seed dispersal depends on (A) the number of visits made to the plant by a disperser and (B) the number of seeds dispersed per visit. The quality of seed dispersal depends on (A) the quality of treatment given a seed in the mouth and in the gut and (B) the quality of seed deposition as determined by the probability that a deposited seed will survive and become an adult. In this paper I review the ways disperser behavior, morphology and physiology can influence these major components of disperser effectiveness, and when data permit present preliminary analyses of relationships among components.  相似文献   

18.
Question: Do large herbivores contribute to the dispersal of plant seeds between isolated habitats by epizoochory? Location: Nature reserves in Flanders, Belgium. Methods: Epizoochory was studied by brushing plant seeds from the fur of 201 domesticated large herbivores (Galloway cattle, donkeys and horses), grazing in 27 Flemish nature reserves. Several herbivores were examined after transport between different nature reserves as part of the seasonal grazing system in Flanders, allowing detection of seed dispersal both within and between reserves. The seedling emergence method was used to identify the dispersed plant species. Results: In total, 6385 epizoochorous seeds from 75 species germinated, yet the real seed quantity was underestimated by the seedling emergence method. A wide variety of seed morphology, seed weights and plant heights was represented among the dispersed species, many of which had a transient seed bank. There was a gradual turnover in epizoochorous species composition in the course of the vegetation season, and seed dispersal occurred both within and between different nature reserves. Conclusions: Domesticated large herbivores, as models for wild mammals in the present and the past, are important dispersers of many plant species. Through seasonal grazing, the herbivores function as ‘mobile link organisms’, connecting isolated nature reserves through seed dispersal, possibly influencing vegetation development and long‐term survival of plant populations. As such, large herbivores are important instruments in ecological restoration, especially in fragmented ecosystems.  相似文献   

19.
Many aquatic and riparian plant species are characterized by the ability to reproduce both sexually and asexually. Yet, little is known about how spatial variation in sexual and asexual reproduction affects the genotypic diversity within populations of aquatic and riparian plants. We used six polymorphic microsatellites to examine the genetic diversity within and differentiation among 17 populations (606 individuals) of Sparganium emersum, in two Dutch-German rivers. Our study revealed a striking difference between rivers in the mode of reproduction (sexual vs. asexual) within S. emersum populations. The mode of reproduction was strongly related to locally reigning hydrodynamic conditions. Sexually reproducing populations exhibited a greater number of multilocus genotypes compared to asexual populations. The regional population structure suggested higher levels of gene flow among sexually reproducing populations compared to clonal populations. Gene flow was mainly mediated via hydrochoric dispersal of generative propagules (seeds), impeding genetic differentiation among populations even over river distances up to 50 km. Although evidence for hydrochoric dispersal of vegetative propagules (clonal plant fragments) was found, this mechanism appeared to be relatively less important. Bayesian-based assignment procedures revealed a number of immigrants, originating from outside our study area, suggesting intercatchment plant dispersal, possibly the result of waterfowl-mediated seed dispersal. This study demonstrates how variation in local environmental conditions in river systems, resulting in shifting balances of sexual vs. asexual reproduction within populations, will affect the genotypic diversity within populations. This study furthermore cautions against generalizations about dispersal of riparian plant species in river systems.  相似文献   

20.
In this paper, we present results on germination patterns of the seed dispersal system of an endemic Macaronesian plant (Rubia fruticosa). Seeds from this plant are mainly dispersed by endemic lizards and native warblers; therefore, we included three different treatments: control seeds, seeds extracted from lizards and seeds found in warbler droppings. Seeds from the same pool of every treatment were germinated in two different seasons, one in autumn, coinciding with the arrival of the first rains, and another in spring, coinciding with the arrival of the dry season. A clear differential pattern of germination success was observed between the two seasons. Seeds planted in autumn achieved a higher percentage of germination than those sown in spring in all treatments. The great robustness of these results seems to indicate that germination timing is strongly selected in R. fruticosa and this evolutionary trend probably extends to other vascular plants growing in xeric coastal environments of the Macaronesian islands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号