首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It has been reported that the expression of the yeast poly(A) binding protein gene (PAB1) in plants leads to an induction of disease resistance responses, accompanied by alterations in the growth habit of the plant (Li et al. Plant Mol. Biol. (2000) 42 335). To capitalize on this observation, a feedback-regulated PAB1 gene was assembled and introduced into tobacco and Arabidopsis. The regulation entailed the linking of the expression of the PAB1 gene to control by the lac repressor, and by linking lac repressor expression to the disease resistance state of the plant, such that the induction of systemic defense responses by accumulation of the yeast poly(A) binding protein would turn off the expression of the PAB1 gene. Plants containing this system showed elevated and/or constitutive expression of disease-associated genes and significant resistance to otherwise pathogenic organisms. As well, they displayed a nearly normal growth habit under laboratory and greenhouse settings. These studies indicate that the expression of cytotoxic genes (such as the PAB1 gene) in plants can be controlled so that enhanced disease resistance can be achieved without significantly affecting plant growth and development. Balasubrahmanyam Addepalli, Ruqiang Xu :These authors contributed equally to this work  相似文献   

2.
The eukaryotic mRNA 3′ poly(A) tail and its associated poly(A)-binding protein (Pab1p) are important regulators of gene expression. One role for this complex in the yeast Saccharomyces cerevisiae is in translation initiation through an interaction with a 115-amino-acid region of the translation initiation factor eIF4G. The eIF4G-interacting domain of Pab1p was mapped to its second RNA recognition motif (RRM2) in an in vitro binding assay. Moreover, RRM2 of Pab1p was required for poly(A) tail-dependent translation in yeast extracts. An analysis of a site-directed Pab1p mutation which bound to eIF4G but did not stimulate translation of uncapped, polyadenylated mRNA suggested additional Pab1p-dependent events during translation initiation. These results support the model that the association of RRM2 of yeast Pab1p with eIF4G is a prerequisite for the poly(A) tail to stimulate the translation of mRNA in vitro.  相似文献   

3.
The poly(A) tail of an mRNA is believed to influence the initiation of translation, and the rate at which the poly(A) tail is removed is thought to determine how fast an mRNA is degraded. One key factor associated with this 3′-end structure is the poly(A)-binding protein (Pab1p) encoded by the PAB1 gene in Saccharomyces cerevisiae. In an effort to learn more about the functional role of this protein, we used a two-hybrid screen to determine the factor(s) with which it interacts. We identified five genes encoding factors that specifically interact with the carboxy terminus of Pab1p. Of a total of 44 specific clones identified, PBP1 (for Pab1p-binding protein) was isolated 38 times. Of the putative interacting genes examined, PBP1 promoted the highest level of resistance to 3-aminotriazole (>100 mM) in constructs in which HIS3 was used as a reporter. We determined that a fraction of Pbp1p cosediments with polysomes in sucrose gradients and that its distribution is very similar to that of Pab1p. Disruption of PBP1 showed that it is not essential for viability but can suppress the lethality associated with a PAB1 deletion. The suppression of pab1Δ by pbp1Δ appears to be different from that mediated by other pab1 suppressors, since disruption of PBP1 does not alter translation rates, affect accumulation of ribosomal subunits, change mRNA poly(A) tail lengths, or result in a defect in mRNA decay. Rather, Pbp1p appears to function in the nucleus to promote proper polyadenylation. In the absence of Pbp1p, 3′ termini of pre-mRNAs are properly cleaved but lack full-length poly(A) tails. These effects suggest that Pbp1p may act to repress the ability of Pab1p to negatively regulate polyadenylation.  相似文献   

4.
The yeast poly(A) binding protein Pab1p mediates the interactions between the 5' cap structure and the 3' poly(A) tail of mRNA, whose structures synergistically activate translation in vivo and in vitro. We found that deletion of the PAT1 (YCR077c) gene suppresses a PAB1 gene deletion and that Pat1p is required for the normal initiation of translation. A fraction of Pat1p cosediments with free 40S ribosomal subunits on sucrose gradients. The PAT1 gene is not essential for viability, although disruption of the gene severely impairs translation initiation in vivo, resulting in the accumulation of 80S ribosomes and in a large decrease in the amounts of heavier polysomes. Pat1p contributes to the efficiency of translation in a yeast cell-free system. However, the synergy between the cap structure and the poly(A) tail is maintained in vitro in the absence of Pat1p. Analysis of translation initiation intermediates on gradients indicates that Pat1p acts at a step before or during the recruitment of the 40S ribosomal subunit by the mRNA, a step which may be independent of that involving Pab1p. We conclude that Pat1p is a new factor involved in protein synthesis and that Pat1p might be required for promoting the formation or the stabilization of the preinitiation translation complexes.  相似文献   

5.
Vector engineering and gene disruption in host cells were attempted for the enhancement of α-agglutinin-based display of proteins on the cell surface in yeast. To evaluate the display efficiency by flow cytometric analysis, DsRed-monomer fused with FLAG-tag was displayed and immunostained as a model protein. The use of leu2-d in the expression vector resulted in the enhanced efficiency and ratio of the accessible display of proteins. Moreover, the amount of displayed proteins in SED1-disrupted cells increased particularly during the stationary growth phase. The combination of these improvements resulted in the quantitatively enhanced accessible display of DsRed-monomer on the yeast cell surface. The improved yeast display system would be useful in a wider range of its applications in biotechnology.  相似文献   

6.
The decay of eukaryotic mRNA is triggered mainly by deadenylation, which leads to decapping and degradation from the 5′ end of an mRNA. Poly(A)-binding protein has been proposed to inhibit the decapping process and to stabilize mRNA by blocking the recruitment of mRNA to the P-bodies where mRNA degradation takes place after stimulation of translation initiation. In contrast, several lines of evidence show that poly(A)-binding protein (Pab1p) has distinct functions in mRNA decay and translation in yeast. To address the translation-independent function of Pab1p in inhibition of decapping, we examined the contribution of Pab1p to the stability of non-translated mRNAs, an AUG codon-less mRNA or an mRNA containing a stable stem-loop structure at the 5′-UTR. Tethering of Pab1p stabilized non-translated mRNAs, and this stabilization did not require either the eIF4G-interacting domain of Pab1p or the Pab1p-interacting domain of eIF4G. In a ski2Δ mutant in which 3′ to 5′ mRNA degradation activity is defective, stabilization of non-translated mRNAs by the tethering of Pab1p lacking an eIF4G-interacting domain (Pab1–34Cp) requires a cap structure but not a poly(A) tail. In wild type cells, stabilization of non-translated mRNA by tethered Pab1–34Cp results in the accumulation of deadenylated mRNA. These results strongly suggest that tethering of Pab1p may inhibit the decapping reaction after deadenylation, independent of translation. We propose that Pab1p inhibits the decapping reaction in a translation-independent manner in vivo.  相似文献   

7.
Eukaryotic poly(A) binding protein (PABP) is a ubiquitous, essential cellular factor with well-characterized roles in translational initiation and mRNA turnover. In addition, there exists genetic and biochemical evidence that PABP has an important nuclear function. Expression of PABP from Arabidopsis thaliana, PAB3, rescues an otherwise lethal phenotype of the yeast pab1Delta mutant, but it neither restores the poly(A) dependent stimulation of translation, nor protects the mRNA 5' cap from premature removal. In contrast, the plant PABP partially corrects the temporal lag that occurs prior to the entry of mRNA into the decay pathway in the yeast strains lacking Pab1p. Here, we examine the nature of this lag-correction function. We show that PABP (both PAB3 and the endogenous yeast Pab1p) act on the target mRNA via physically binding to it, to effect the lag correction. Furthermore, substituting PAB3 for the yeast Pab1p caused synthetic lethality with rna15-2 and gle2-1, alleles of the genes that encode a component of the nuclear pre-mRNA cleavage factor I, and a factor associated with the nuclear pore complex, respectively. PAB3 was present physically in the nucleus in the complemented yeast strain and was able to partially restore the poly(A) tail length control during polyadenylation in vitro, in a poly(A) nuclease (PAN)-dependent manner. Importantly, PAB3 in yeast also promoted the rate of entry of mRNA into the translated pool, rescued the conditional lethality, and alleviated the mRNA export defect of the nab2-1 mutant when overexpressed. We propose that eukaryotic PABPs have an evolutionarily conserved function in facilitating mRNA biogenesis and export.  相似文献   

8.
9.
To define sequences in the cruciferin gene cru1 promoter of importance for expression, tobacco (Nicotina tabacum L.) plants were transformed with constructs in which the cru1 promoter, in front of the intact cru1 structural gene, was truncated at –1216, –974, –736, –515, –306, –46 and –17 bp relative to the cap-site. Cru1 expression in tobacco seeds was studied by Northern analysis, Western analysis and in-situ hybridizations. Comparisons of the Northern analysis of RNA from tobacco seeds harvested at 18 d after pollination with the Western analysis of protein from mature seeds showed that the regions between –974 to –736 and –306 to –46 were important for the expression of cru1 at an early developmental stage, whereas the regions –736 to –515 and –515 to –306 were important for expression throughout embryogenesis. By investigating the mRNA levels in transgenic seeds at different stages of development, indications were obtained that the two latter regions exerted their effects during the later stages. The in-situ hybridization showed that cru1 mRNA was distributed in parenchyma cells throughout the embryo in seeds expressing constructs –974 and –736. Constructs –515 and –306 showed an expression restricted to the axis or axis and parts of the cotyledons. Sequence comparisons of the cru1 promoter with other storage-protein gene promoters, identified several motifs implicated in gene regulation. Gel retardation assays with synthetic oligonucleotides showed that a region present in both cru1 and BnC1 promoters, a CANNTG motif, an SEF3 motif, an abscisic-acid-responsive element and an RY-like motif interacted specifically in vitro with DNA-binding proteins present in nuclear extracts from seeds of Brassica napus L. harvested 40 d after pollination.Abbreviations ABA abscisic acid - DAP days after pollination This work was supported by grants from the Swedish Research Council for Forestry and Agriculture and from the Swedish Natural Science Research Council. Ms Ulla Pihlgren, Elisabeth Westergren and Elfi Öhren are acknowledged for expert technical assistance.  相似文献   

10.
Tolerance to chilling was compared under in vitro conditions in potato plants (Solanum tuberosum L., cv. Désirée) transformed with a yeast-derived invertase gene under the control of the B33 class 1 tuber-specific promoter (the B33-inv plants) and potato plants transformed only with a reporter gene (the control plants). The expression of the inserted yeast invertase gene was proved by following the acid and alkaline invertase activities and sugar contents in the leaves under the optimum temperature (22°C). The total activities of acid and alkaline invertases in the B33-inv plants exceeded those in the control plants by the factors of 2–3 and 1.3, respectively. In the B33-inv plants, the activity of acid invertase twice exceeded that of the alkaline invertase, whereas the difference equaled 12% in the control plants. The contents of sucrose and glucose increased in the B33-inv plants by 21 and 13%, respectively, as compared to the control. Chilling at +3 and –1°C for 1, 3, and 6 h did not affect the rate of lipid peroxidation, as measured by the content of malonic dialdehyde (MDA) in the leaves of the genotypes under study. Only the longer exposures (24 h at +3 and –1°C and 7 days at +5°C) produced a significant decline in the MDA content in the B33-invplants, as compared to the control. Following short freezing (20 min at –9°C), the content of MDA increased by 50% in the leaves of the control plants, while in the B33-inv plants, cold-treated and control plants did not differ in the MDA content. The authors presume that the potato plants transformed with the yeast invertase gene acquire a higher tolerance to low temperatures as compared to the control plants, apparently due to the changes in sugar ratio produced by the foreign invertase.  相似文献   

11.
Five constructions containing deletions of the promoter from an auxin-inducible gene of Arabidopsis thaliana, AtAux2-11, were fused to the coding region of the reporter gene LacZ, which encodes -galactosidase, and a polyadenylation 3-untranslated nopaline synthase sequence from Agrobacterium. These chimeric genes were introduced into Arabidopsis by Agrobacterium tumefaciens-mediated transformation, and expression of the gene was examined by spectrophotometric and histochemical analyses. A 600 bp fragment from the AtAux2-11 promoter conferred histochemical patterns of staining similar to the longest 5 promoter tested, a 3.0 kb fragment. Localization of AtAux2-11/LacZ activity in the transgenic plants revealed spatial and temporal expression patterns that correlated with tissues and cells undergoing physiological processes modulated by auxin. LacZ activity was expressed in the elongating region of roots, etiolated hypocotyls, and anther filaments. Expression was detected in the vascular cylinder of the root and the vascular tissue, epidermis, and cortex of the hypocotyl, and filament. The AtAux2-11/LacZ gene was preferentially expressed in cells on the elongating side of hypocotyls undergoing gravitropic curvature. Expression of the chimeric gene in the hypocotyls of light-grown seedlings was less than that in etiolated seedling hypcotyls. The AtAux2-11/LacZ gene was active in the root cap, and expression in the root stele increased at sites of lateral root initiation. Staining was evident in cell types that develop lignified cell walls, e.g. trichomes, anther endothecial cells, and especially developing xylem. The chimeric gene was not expressed in primary meristems. While the magnitude of expression increased after application of exogenous auxin (2,4-D), the histochemical localization of AtAux2-11/LacZ remained unchanged.Transgenic plants with a 600 bp promoter construct (–0.6 kb AtAux2-11/LacZ) had higher levels of basal and auxin-inducible expression than plants with a 3.0 kb promoter construct. Transgenic plants with a –500 bp promoter had levels of expression similar to the –3.0 kb construct. The –0.6 kb AtAux2-11/LacZ gene responded maximally to a concentration of 5 × 10–6 to 5 × 10–5 M 2,4-D and was responsive to as little as 5 × 10–8 M. The evidence presented here suggests that this gene may play a role in several auxin-mediated developmental and physiological processes.co-first authors  相似文献   

12.
The maizerab17 gene is expressed in different plant parts in response to ABA and osmotic stress (J. Vilardellet al., Plant Mol Biol 14 (1990) 423–432). Here we demonstrate that 5 upstream sequences of therab17 gene confer the appropriate patterns of expression on the chloramphenicol acetyl transferase (CAT) reporter gene in transgenic tobacco plants, as well as in protoplasts derived from cultured rice cells. Specifically, a CAT construct containing a large 5 upstream fragment ofrab17 (–1330/+29) results in high levels of CAT activity in embryos, leaves and roots of transgenic plants subjected to water stress or ABA treatment. Transient expression assays in rice protoplasts transfected with CAT genes fused torab17 promoter deletions indicate that a 300 bp DNA fragment (–351/–102) is sufficient to confer ABA responsiveness upon the reporter gene. Furthermore, a 100 bp sequence (–219/–102) is capable of conferring ABA responsiveness upon a minimal promoter derived from the 35S CaMV promoter. Gel retardation experiments indicate that maize nuclear proteins bind to this fragment. This region of 100 bp contains a sequence (ACGTGGC) which has been identified as an abscisic acid response element in studies of other ABA-responsive plant genes.  相似文献   

13.
Many endoplasmic reticulum (ER) proteins are known to be localized to the ER by a mechanism called retrieval, which returns the molecules that are exported from the ER to the Golgi apparatus back to the ER. Signals are required to be recognized by this retrieval system. In the work on yeast Saccharomyces cerevisiae, we have demonstrated that transmembrane domains of a subset of ER membrane proteins including Sec12p, Sec71p and Sec63p contain novel ER retrieval signals. For the retrieval of these proteins, a Golgi membrane protein, Rer1p, is essential (Sato et al., Mol. Biol. Cell 6 (1995) 1459–1477; Proc. Natl. Acad. Sci. USA 94 (1997) 9693–9698). To address the role of Rer1p in higher eukaryotes, we searched for homologues of yeast RER1 from Arabidopsis thaliana. We identified three cDNAs encoding Arabidopsis counterparts of Rer1p with an amino acid sequence identity of 39–46% to yeast Rer1p and named AtRER1A, AtRER1B, and AtRER1C1. AtRer1Ap and AtRer1Bp are homologous to each other (85% identity), whereas AtRer1C1p is less similar to AtRer1Ap and AtRer1Bp (about 50%). Genomic DNA gel blot analysis indicates that there are several other AtRER1-related genes, implying that Arabidopsis RER1 constitutes a large gene family. The expression of these three AtRER1 genes is ubiquitous in various tissues but is significantly higher in roots, floral buds and a suspension culture in which secretory activity is probably high. All the three AtRER1 cDNAs complement the yeast rer1 mutant and remedy the defect of Sec12p mislocalization. However, the degree of complementation differs among the three with that of AtRER1C1 being the lowest, again suggesting a divergent role of AtRer1C1p.  相似文献   

14.
We have investigated the use of the tetracycline-dependent gene expression system to regenerate and propagate tobacco plants transformed with a gene whose product — when highly expressed — interferes with regeneration and/or further reproduction. Plants transformed with the Agrobacterium rhizogenes rolB gene under the control of the tetracycline-dependent expression system were phenotypically indistinguishable from wild type owing to efficient repression of the promoter. Induction of the rolB gene with tetracycline led to high-level expression of the rolB mRNA, which resulted in extremely stunted plants with necrotic and wrinkled leaves that did not develop a floral meristem. Upon cessation of tetracycline treatment healthy shoots developed even from severely affected meristems. Data on the dose response of the rolB phenotype as a function of tetracycline concentration demonstrate that the tetracycline-dependent gene expression system can be used to modulate the manifestation of a particular phenotype.  相似文献   

15.
Expression of the rolB gene of A. rhizogenes T-DNA triggers root differentiation in transformed plant cells. In order to study the regulation of this morphogenetic gene, the GUS reporter gene was placed under the control of several deleted fragments of the rolB 5 non-coding region: carrot disc transformations and the analysis of transgenic tobacco plants containing these constructions identified the presence of distinct regulatory domains in the rolB promoter. Two regions (located from positions –623 to –471 and from –471 to –341, from the translation start codon) control the level but not the tissue specificity of rolB expression: progressive deletions of the rolB promoter starting from position –1185 to –341, although at different levels, maintained the same pattern of GUS expression — maximal in root meristems and less pronounced in the vascular tissue of aerial organs. Further deletion of 35 bp, from –341 to –306, drastically affected tissue specificity: GUS activity was still clearly detectable in the vascular tissue of the aerial organs while expression in the root meristem was totally suppressed. Analysis of transgenic embryos and seedlings confirmed that distinct promoter domains are responsible for meristematic (root) and differentiated (vascular) expression of rolB. Finally, we present data concerning the effects of plant hormones on the expression of rolB-GUS constructions.  相似文献   

16.
To develop an efficient protocol for the transformation of the legume Astragalus sinicus (Chinese milk vetch), cotyledon segments were infected with Agrobacterium tumefaciens strain EHA105 harboring the binary vector pBINm-gfp5-ER which carries the gfp5 gene encoding green fluorescent protein and the kanamycin (Km) resistance gene nptII. The infected explants were cultured on shoot regeneration (SR) medium containing 1.0 mg l–1 -naphthaleneacetic acid (NAA) and 1.0 mg l–1 thidiazuron (TDZ). Putative transformed shoots were selected on SR medium containing 75 g ml–1 Km, 200 g ml–1 Timentin, and transformation was monitored by observation of GFP expression under a dissecting fluorescence microscope with appropriate filters. The identification of GFP-expressing shoots or callus in combination with Km selection allowed the visual selection of growing transgenic cells and shoots with no escapes. Plants were regenerated from seven independent transgenic events and five plants have set seed. GFP expression segregated in the T1 seedlings of the two lines tested in a 3 – 1 ratio. In addition to the GFP expression of the transgenic plants, the transgenic nature of individual plants was confirmed by Southern and Western blot analyses.  相似文献   

17.
PUF proteins regulate translation and mRNA stability throughout eukaryotes. Using a cell-free translation assay, we examined the mechanisms of translational repression of PUF proteins in the budding yeast Saccharomyces cerevisiae. We demonstrate that the poly(A)-binding protein Pab1p is required for PUF-mediated translational repression for two distantly related PUF proteins: S. cerevisiae Puf5p and Caenorhabditis elegans FBF-2. Pab1p interacts with oligo(A) tracts in the HO 3′-UTR, a target of Puf5p, to dramatically enhance the efficiency of Puf5p repression. Both the Pab1p ability to activate translation and interact with eukaryotic initiation factor 4G (eIF4G) were required to observe maximal repression by Puf5p. Repression was also more efficient when Pab1p was bound in close proximity to Puf5p. Puf5p may disrupt translation initiation by interfering with the interaction between Pab1p and eIF4G. Finally, we demonstrate two separable mechanisms of translational repression employed by Puf5p: a Pab1p-dependent mechanism and a Pab1p-independent mechanism.  相似文献   

18.
19.
The potentials and limitations of negative-selection systems based on the human herpes simplex virus thymidine kinase type-1 (HSVtk) gene, which causes sensitivity to the nucleoside analog ganciclovir, were examined in tobacco as a model system. There were great differences between individual HSVtk+ transgenic plants in ganciclovir sensitivity. Inhibition of growth while under selection correlated with HSVtk-tianscnpt levels. Negative selection against HSVtk+ transformants at the level of Agrobacterium-mediated transformation using a ganciclo-vir/kanamycin double-selection medium (the positive selection marker neomycin phosphotransferase-II gene was in the transformation vector) resulted in a three- to six-fold reduction in the frequency of kanamycin-resistant shoots. The efficiency of negative selection in this case was limited due to the great variation in HSVtk expression, i.e., the frequently occurring transformants with low, or no, ganciclovir sensitivity escaping negative selection. Two independently constructed HSVtk genes showed the same variability of the phenotype in Nicotiana tabacum transformants. Distinct phenotypes, ranging from no regeneration through abnormal or delayed regeneration, were observed when leaf segments were placed on shoot-inducing medium supplemented with 10–6–10–3 M ganciclovir. The highest HSVtk mRNA and ganciclovir sensitivity levels were observed in plants which were transformed with the pSLJ882 chimeric construct. The pSLJ882 plant expression vector carried the coding sequence of HSVtk, whereas plasmid pCX305.1 carried an HSVtk construct retaining the untranslated 5 leader and viral 3 regions. The pCX305.1 transformants showed, at most, a delayed formation of shoots with thin stems and very narrow leaves. Ganciclovir sensitivity showed typical Mendelian segregation. A gene-dosage effect was also seen at the seedling level in the progeny of two transgenic lines.  相似文献   

20.
mRNA poly(A) tails affect translation, mRNA export and mRNA stability, with translation initiation involving a direct interaction between eIF4G and the poly(A)-binding protein Pab1. The latter factor contains four RNA recognition motifs followed by a C-terminal region composed of a linker and a PABC domain. We show here that yeast mutants lacking the C-terminal domains of Pab1 display specific synthetic interactions with mutants in the 5′-3′ mRNA decay pathway. Moreover, these mutations impair mRNA decay in vivo without significantly affecting mRNA export or translation. Inhibition of mRNA decay occurs through slowed deadenylation. In vitro analyses demonstrate that removal of the Pab1 linker domain directly interferes with the ability of the Pop2–Ccr4 complex to deadenylate the Pab1-bound poly(A). Binding assays demonstrate that this results from a modulation of poly(A) packaging by the Pab1 linker region. Overall, our results demonstrate a direct involvement of Pab1 in mRNA decay and reveal the modular nature of this factor, with different domains affecting various cellular processes. These data suggest new models involving the modulation of poly(A) packaging by Pab1 to control mRNA decay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号