共查询到20条相似文献,搜索用时 0 毫秒
1.
Shin HJ Park YH Kim SU Moon HB Park do S Han YH Lee CH Lee DS Song IS Lee DH Kim M Kim NS Kim DG Kim JM Kim SK Kim YN Kim SS Choi CS Kim YB Yu DY 《The Journal of biological chemistry》2011,286(34):29872-29881
Dysregulation of liver functions leads to insulin resistance causing type 2 diabetes mellitus and is often found in chronic liver diseases. However, the mechanisms of hepatic dysfunction leading to hepatic metabolic disorder are still poorly understood in chronic liver diseases. The current work investigated the role of hepatitis B virus X protein (HBx) in regulating glucose metabolism. We studied HBx-overexpressing (HBxTg) mice and HBxTg mice lacking inducible nitric oxide synthase (iNOS). Here we show that gene expressions of the key gluconeogenic enzymes were significantly increased in HepG2 cells expressing HBx (HepG2-HBx) and in non-tumor liver tissues of hepatitis B virus patients with high levels of HBx expression. In the liver of HBxTg mice, the expressions of gluconeogenic genes were also elevated, leading to hyperglycemia by increasing hepatic glucose production. However, this effect was insufficient to cause systemic insulin resistance. Importantly, the actions of HBx on hepatic glucose metabolism are thought to be mediated via iNOS signaling, as evidenced by the fact that deficiency of iNOS restored HBx-induced hyperglycemia by suppressing the gene expression of gluconeogenic enzymes. Treatment of HepG2-HBx cells with nitric oxide (NO) caused a significant increase in the expression of gluconeogenic genes, but JNK1 inhibition was completely normalized. Furthermore, hyperactivation of JNK1 in the liver of HBxTg mice was also suppressed in the absence of iNOS, indicating the critical role for JNK in the mutual regulation of HBx- and iNOS-mediated glucose metabolism. These findings establish a novel mechanism of HBx-driven hepatic metabolic disorder that is modulated by iNOS-mediated activation of JNK. 相似文献
2.
Irace C Esposito G Maffettone C Rossi A Festa M Iuvone T Santamaria R Sautebin L Carnuccio R Colonna A 《Life sciences》2007,80(14):1282-1291
Inducible nitric oxide synthase (iNOS) is an homodimeric enzyme which produces large amounts of nitric oxide (NO) in response to inflammatory stimuli. Several factors affect the synthesis and catalytic activity of iNOS. Particularly, dimerization of NOS monomers is promoted by heme, whereas an intracellular depletion of heme and/or L-arginine considerably decreases NOS resistance to proteolysis. In this study, we found that oxalomalate (OMA, oxalomalic acid, alpha-hydroxy-beta-oxalosuccinic acid), an inhibitor of both aconitase and NADP-dependent isocitrate dehydrogenase, inhibited nitrite production and iNOS protein expression in lipopolysaccharide (LPS)-activated J774 macrophages, without affecting iNOS mRNA content. Furthermore, injection of OMA precursors to LPS-stimulated rats also decreased nitrite production and iNOS expression in isolated peritoneal macrophages. Interestingly, alpha-ketoglutarate or succinyl-CoA administration reversed OMA effect on NO production, thus correlating NO biosynthesis with the anabolic capacity of Krebs cycle. When protein synthesis was blocked by cycloheximide in LPS-activated J774 cells treated with OMA, iNOS protein levels, evaluated by Western blot analysis and (35)S-metabolic labelling, were decreased, suggesting that OMA reduces iNOS biosynthesis and induces an increase in the degradation rate of iNOS protein. Moreover, we showed that OMA inhibits the activity of the iNOS from lung of LPS-treated rats by enzymatic assay. Our results, demonstrating that OMA acts regulating synthesis, catalytic activity and degradation of iNOS, suggest that this compound might have a potential role in reducing the NO overproduction occurring in some pathological conditions. 相似文献
3.
4.
Tanioka T Tamura Y Fukaya M Shinozaki S Mao J Kim M Shimizu N Kitamura T Kaneki M 《The Journal of biological chemistry》2011,286(33):29388-29396
Insulin receptor substrate-2 (IRS-2) plays a critical role in the survival and function of pancreatic β-cells. Gene disruption of IRS-2 results in failure of the β-cell compensatory mechanism and diabetes. Nonetheless, the regulation of IRS-2 protein expression in β-cells remains largely unknown. Inducible nitric-oxide synthase (iNOS), a major mediator of inflammation, has been implicated in β-cell damage in type 1 and type 2 diabetes. The effects of iNOS on IRS-2 expression have not yet been investigated in β-cells. Here, we show that iNOS and NO donor decreased IRS-2 protein expression in INS-1/832 insulinoma cells and mouse islets, whereas IRS-2 mRNA levels were not altered. Interleukin-1β (IL-1β), alone or in combination with interferon-γ (IFN-γ), reduced IRS-2 protein expression in an iNOS-dependent manner without altering IRS-2 mRNA levels. Proteasome inhibitors, MG132 and lactacystin, blocked the NO donor-induced reduction in IRS-2 protein expression. Treatment with NO donor led to activation of glycogen synthase kinase-3β (GSK-3β) and c-Jun N-terminal kinase (JNK/SAPK) in β-cells. Inhibition of GSK-3β by pharmacological inhibitors or siRNA-mediated knockdown significantly prevented NO donor-induced reduction in IRS-2 expression in β-cells. In contrast, a JNK inhibitor, SP600125, did not effectively block reduced IRS-2 expression in NO donor-treated β-cells. These data indicate that iNOS-derived NO reduces IRS-2 expression by promoting protein degradation, at least in part, through a GSK-3β-dependent mechanism. Our findings suggest that iNOS-mediated decreased IRS-2 expression may contribute to the progression and/or exacerbation of β-cell failure in diabetes. 相似文献
5.
Cohen RI Hassell AM Ye X Marzouk K Liu SF 《Biochemical and biophysical research communications》2003,307(3):451-458
Studies of the regulation of iNOS expression have provided many contradictory results. Comparing iNOS expression profile between cell types or organs of the same animal under the same experimental conditions may provide an explanation for these conflicting results. We have examined iNOS mRNA and protein expression in heart and liver of the same group of pigs. We found that there is a sharp difference in iNOS expression between heart and liver. The iNOS mRNA and protein was constitutively expressed in the heart at high level, but was not detectable in the liver of the same control animal. Lipopolysaccharide (LPS, 100 microg/kg, i.v.) caused a marked iNOS induction in the liver, but significantly down-regulated iNOS expression in the heart. This differential iNOS expression appears to be physiologically relevant, since LPS and the iNOS inhibitor, S-methylisothiourea, exerted different effects on hepatic and myocardial blood flow. Our data demonstrate a fundamental difference in iNOS regulation in the heart and liver of swine, and may explain the contradictory data on the regulation of iNOS expression. 相似文献
6.
Chronic stress induces the expression of inducible nitric oxide synthase in rat brain cortex 总被引:13,自引:0,他引:13
Olivenza R Moro MA Lizasoain I Lorenzo P Fernández AP Rodrigo J Boscá L Leza JC 《Journal of neurochemistry》2000,74(2):785-791
Long-term exposure to stress has detrimental effects on several brain functions in many species, including humans, and leads to neurodegenerative changes. However, the underlying neural mechanisms by which stress causes neurodegeneration are still unknown. We have investigated the role of endogenously released nitric oxide (NO) in this phenomenon and the possible induction of the inducible NO synthase (iNOS) isoform. In adult male rats, stress (immobilization for 6 h during 21 days) increases the activity of a calcium-independent NO synthase and induces the expression of iNOS in cortical neurons as seen by immunohistochemical and western blot analysis. Three weeks of repeated immobilization increases immunoreactivity for nitrotyrosine, a nitration product of peroxynitrite. Repeated stress causes accumulation of the NO metabolites NO2+ NO3- (NOx-) accumulation in cortex, and these changes occur in parallel with lactate dehydrogenase (LDH) release and impairment of glutamate uptake in synaptosomes. Administration of the selective iNOS inhibitor aminoguanidine (400 mg/kg i.p. daily from days 7 to 21 of stress) prevents NOx- accumulation in cortex, LDH release, and impairment of glutamate uptake in synaptosomes. Taken together, these findings indicate that a sustained overproduction of NO via iNOS expression may be responsible, at least in part, for some of the neurodegenerative changes caused by stress and support a possible neuroprotective role for specific iNOS inhibitors in this situation. 相似文献
7.
8.
Luo CX Zhu XJ Zhou QG Wang B Wang W Cai HH Sun YJ Hu M Jiang J Hua Y Han X Zhu DY 《Journal of neurochemistry》2007,103(5):1872-1882
Nitric oxide (NO), a free radical with signaling functions in the CNS, is implicated in some developmental processes, including neuronal survival, precursor proliferation, and differentiation. However, neuronal nitric oxide synthase (nNOS) -derived NO and inducible nitric oxide synthase (iNOS) -derived NO play opposite role in regulating neurogenesis in the dentate gyrus after cerebral ischemia. In this study, we show that focal cerebral ischemia reduced nNOS expression and enzymatic activity in the hippocampus. Ischemia-induced cell proliferation in the dentate gyrus was augmented in the null mutant mice lacking nNOS gene (nNOS−/−) and in the rats receiving 7-nitroindazole, a selective nNOS inhibitor, after stroke. Inhibition of nNOS ameliorated ischemic injury, up-regulated iNOS expression, and enzymatic activity in the ischemic hippocampus. Inhibition of nNOS increased and iNOS inhibitor decreased cAMP response element-binding protein phosphorylation in the ipsilateral hippocampus in the late stage of stroke. Moreover, the effects of 7-nitroindazole on neurogenesis after ischemia disappeared in the null mutant mice lacking iNOS gene (iNOS−/−). These results suggest that reduced nNOS is involved in ischemia-induced hippocampal neurogenesis by up-regulating iNOS expression and cAMP response element-binding protein phosphorylation. 相似文献
9.
Effects of moderate hypothermia on constitutive and inducible nitric oxide synthase activities after traumatic brain injury in the rat 总被引:6,自引:0,他引:6
We investigated the effects of therapeutic hypothermia (30 degrees C) on alterations in constitutive (cNOS) and inducible (iNOS) nitric oxide synthase activities following traumatic brain injury (TBI). Male Sprague-Dawley rats were anesthetized with 0.5% halothane and underwent moderate (1.8-2.2 atm) parasagittal fluid-percussion (F-P) brain injury. In normothermic rats (37 degrees C) the enzymatic activity of cNOS was significantly increased at 5 min within the injured cerebral cortex compared with contralateral values (286.5+/-68.9% of contralateral value; mean+/-SEM). This rise in nitric oxide synthase activity was significantly reduced with pretraumatic hypothermia (138.8+/-17% of contralateral value; p < 0.05). At 3 and 7 days after normothermic TBI the enzymatic activity of cNOS was decreased significantly (30+/-8.4 and 28.6+/-20.9% of contralateral value, respectively; p < 0.05). However, immediate posttraumatic hypothermia (3 h at 30 degrees C) preserved cNOS activity at 3 and 7 days (69.5+/-23.3 and 78.6+/-7.6% of contralateral value, respectively; mean+/-SEM; p < 0.05). Posttraumatic hypothermia also significantly reduced iNOS activity at 7 days compared with normothermic rats (0.021+/-0.06 and 0.23+/-0.06 pmol/mg of protein/min, respectively; p < 0.05). The present results indicate that hypothermia (a) decreases early cNOS activation after TBI, (b) preserves cNOS activity at later periods, and (c) prevents the delayed induction of iNOS. Temperature-dependent alterations in cNOS and iNOS enzymatic activities may participate in the neuroprotective effect of hypothermia in this TBI model. 相似文献
10.
11.
12.
13.
Hwang SY Jung JS Lim SJ Kim JY Kim TH Cho KH Han IO 《Biochemical and biophysical research communications》2004,318(3):691-697
The current study examined the potential involvement of phosphatidylinositol 3 phosphate kinase (PI3K) in interferon-gamma (IFN-gamma)-stimulated nitric oxide (NO) generation in BV2 murine microglial cells. We found that LY294002, a PI3K inhibitor, markedly reduced IFN-gamma-induced morphological changes, NO production, and cell death. The inhibitory effect of LY294002 on NO generation may be mediated through specific inhibition of signal transducer and activator-1 (STAT1) and NF-kappaB, which are activated by IFN-gamma. Induction of the mRNA for IFN-gamma-mediated interferon response factor (IRF-1) and inducible protein-10 (IP-10) was not significantly affected by LY294002, indicating that suppression of PI3K may not be sufficient for downregulation of these genes. Although it remains unclear how PI3K signaling is involved in IFN-gamma-mediated inflammatory reactions in the brain, our findings provide some insight into the inflammatory mechanisms of IFN-gamma in the brain and suggest that regulators of the PI3K pathway may act as anti-inflammatory agents in microglia. 相似文献
14.
15.
David Wang Jeng Wei Kang Hsu Jin-Chi Jau Mei-Wen Lieu Tai-Jong Chao Hsing I. Chen 《Journal of biomedical science》1999,6(1):28-35
Endotoxin shock is characterized by systemic hypotension, hyporeactiveness to vasoconstrictors and acute lung edema. A nitric oxide synthase (NOS) inhibitor, NG-monomethyl-L-arginine (L-NMMA) has been shown to be effective in reversing acute lung injury. In the present study, we evaluated the effects of NOS blockade by different mechanisms on the endotoxin-induced changes. In anesthetized rats, lipopolysaccharide (LPS,Klebsiella pneumoniae) was administered intravenously in a dose of 10 mg/kg. LPS caused sustained systemic hypotension accompanied by an eightfold increase of exhaled NO during an observation period of 4 h. After the experiment, the lung weight was obtained and lung tissues were taken for the determination of mRNA expressions of inducible NOS (iNOS), interleukin-1 (IL-1) and tumor necrosis factor--(TNF-). Histological examination of the lungs was also performed. In the control group injected with saline solution, mRNA expressions of iNOS, IL-1 and TNF- were absent. Four hours after LPS, the mRNA expressions of iNOS and IL-1 were still significantly enhanced, but TNF- was not discernibly expressed. LPS also caused a twofold increase in lung weight. Pathological examination revealed endothelial damage and interstitial edema. Various NOS inhibitors were given 1 h after LPS administration. These agents included N-nitro-L-arginine methyl ester (L-NAME, 10 mg/kg), a constitutive NOS and iNOS inhibitor; S,S-1,4-phenylene-bis-(1,2-ethanedinyl) bis-isothiourea dihydrobromide (1,4-PBIT, 10 mg/kg), a relatively specific iNOS inhibitor, and dexamethasone (3 mg/kg), an inhibitor of iNOS expression. These NOS inhibitors all effectively reversed the systemic hypotension, reduced the exhaled NO concentration and prevented acute lung injury. The LPS-induced mRNA expressions of iNOS and IL-1 were also significantly depressed by these NOS inhibitors. Our results suggest that NO production through the iNOS pathway is responsible for endotoxin-induced lung injury. Certain cytokines such as IL-1 are possibly involved. These changes are minimized by NOS inhibitors through different mechanisms. 相似文献
16.
Ishimura Y Gao YT Panda SP Roman LJ Masters BS Weintraub ST 《Biochemical and biophysical research communications》2005,338(1):543-549
Using headspace gas chromatography-mass spectrometry, we detected significant amounts of nitrous oxide in the reaction products of the monooxygenase reaction catalyzed by neuronal nitric oxide synthase. Nitrous oxide is a dimerization product of nitroxyl anion; its presence in the reaction products indicates that the nitroxyl anion is a product of the neuronal nitric oxide synthase-catalyzed reaction. 相似文献
17.
18.
19.
Effects of spontaneous or induced brain ischemia on vessel reactivity: the role of inducible nitric oxide synthase 总被引:3,自引:0,他引:3
Short episodes of ischemia and reperfusion in various organs may protect the organ itself, and the heart both as an immediate and a delayed effect. The present study investigates whether a systemic protection of vascular function occurs during adaption to ischemia. Brain ischemia was induced by bilateral ligation of the internal carotid arteries in C57BL6 mice, and 24-36 hours later rings of the thoracic aorta were mounted to study in vitro relaxation and contraction, or proteins were extracted for immunoblotting for endothelial nitric oxide synthase (eNOS) or inducible NOS (iNOS). eNOS decreased, while iNOS increased in the aortic wall after carotid artery ligation. In vitro contraction to increasing concentrations of prostaglandin F(2alpha) (PGF(2alpha)) was attenuated, while relaxation to acetylcholine (ACh) was enhanced. The latter was abolished by the iNOS-inhibitor aminoguanidine. When brain ischemia was induced in iNOS deficient mice, an increase of aortic eNOS was found 24 hours later. The ischemia-induced attenuated relaxation to PGF(2alpha) and enhanced relaxation to ACh were abolished. Aortic rings from mice with severe atherosclerosis (apolipoprotein E and low density lipoprotein receptor double knockout (ApoE/LDLr KO) mice) and spontaneous ischemic events in the heart or brain in vivo were also studied. Spontaneous ischemic events in ApoE/LDLr KO animals did not influence iNOS and eNOS in the vessel wall. A reduced contraction to PGF(2alpha) was observed, but relaxation to ACh was unchanged. These findings suggest that induced brain ischemia as a model of delayed, remote preconditioning protects vessel reactivity, and this protection is mediated by iNOS. 相似文献
20.
Koji Osuka Yasuo Watanabe Nobuteru Usuda Kimie Atsuzawa Masakazu Takayasu 《Neurochemistry international》2013
We previously demonstrated that calmodulin-dependent protein kinase IIα (CaM-KIIα) phosphorylates nNOS at Ser847 in the hippocampus after forebrain ischemia; this phosphorylation attenuates NOS activity and might contribute to resistance to post-ischemic damage. We also revealed that cyclic AMP-dependent protein kinase (PKA) could phosphorylate nNOS at Ser1412in vitro. In this study, we focused on chronological and topographical changes in the phosphorylation of nNOS at Ser1412 after rat forebrain ischemia. The hippocampus and adjacent cortex were collected at different times, up to 24 h, after 15 min of forebrain ischemia. NOS was partially purified from crude samples using ADP agarose gel. Neuronal NOS, phosphorylated (p)-nNOS at Ser1412, PKA, and p-PKA at Thr197 were studied in the rat hippocampus and cortex using Western blot analysis and immunohistochemistry. Western blot analysis revealed that p-nNOS at Ser1412 significantly increased between 1 and 6 h after reperfusion in the hippocampus, but not in the cortex. PKA was cosedimented with nNOS by ADP agarose gel. Immunohistochemistry revealed that phosphorylation of nNOS at Ser1412 and PKA at Thr197 occurred in the subgranular layer of the dentate gyrus. Forebrain ischemia might thereby induce temporary activation of PKA at Thr197, which then phosphorylates nNOS at Ser1412 in the subgranular layer of the dentate gyrus. 相似文献