首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
NM23-H1 is a member of the NM23/NDP kinase gene family and a putative metastasis suppressor. Previously, a screen for NM23-H1-interacting proteins that could potentially modulate its activity identified serine-threonine kinase receptor-associated protein (STRAP), a transforming growth factor (TGF)-beta receptor-interacting protein. Through the use of cysteine to serine amino acid substitution mutants of NM23-H1 (C4S, C109S, and C145S) and STRAP (C152S, C270S, and C152S/C270S), we demonstrated that the association between these two proteins is dependent on Cys(145) of NM23-H1 and Cys(152) and Cys(270) of STRAP but did not appear to involve Cys(4) and Cys(109) of NM23-H1, suggesting that a disulfide linkage involving Cys(145) of NM23-H1 and Cys(152) or Cys(270) of STRAP mediates complex formation. The interaction was dependent on the presence of dithiothreitol or beta-mercaptoethanol but not H(2)O(2). Ectopic expression of wild-type NM23-H1, but not NM23-H1(C145S), negatively regulated TGF-beta signaling in a dose-dependent manner, enhanced stable association between the TGF-beta receptor and Smad7, and prevented nuclear translocation of Smad3. Similarly, wild-type NM23-H1 inhibited TGF-beta-induced apoptosis and growth inhibition, whereas NM23-H1(C145S) had no effect. Knockdown of NM23-H1 by small interfering RNA stimulated TGF-beta signaling. Coexpression of wild-type STRAP, but not STRAP(C152S/C270S), significantly stimulated NM23-H1-induced growth of HaCaT cells. These results suggest that the direct interaction of NM23-H1 and STRAP is important for the regulation of TGF-beta-dependent biological activity as well as NM23-H1 activity.  相似文献   

2.
3.
The metastasis suppressor NM23-H1 possesses 3'-5' exonuclease activity   总被引:11,自引:0,他引:11  
NM23-H1 belongs to a family of eight gene products in humans that have been implicated in cellular differentiation and development, as well as oncogenesis and tumor metastasis. We have defined NM23-H1 biochemically as a 3'-5' exonuclease by virtue of its ability in stoichiometric amounts to excise single nucleotides in a stepwise manner from the 3' terminus of DNA. The activity is dependent upon the presence of Mg(2+), is most pronounced with single-stranded substrates or mismatched bases at the 3' terminus of double-stranded substrates, and is inhibited by both ATP and the incorporation of cordycepin, a 2'-deoxyadenosine analogue, into the 3'-terminal position. The 3'-5' exonuclease activity was assigned to NM23-H1 by virtue of: 1) precise coelution of enzymatic activity with wild-type and mutant forms of NM23-H1 protein during purification by hydroxylapatite and gel filtration column high performance liquid chromatography and 2) significantly diminished activity exhibited by purified recombinant mutant forms of the proteins. Lysine 12 appears to play an important role in the catalytic mechanism, as evidenced by the significant reduction in 3'-5' exonuclease activity resulting from a Lys(12) to glutamine substitution within the protein. 3'-5' Exonucleases are believed to play an important role in DNA repair, a logical candidate function underlying the putative antimetastatic and oncogenic activities of NM23-H1.  相似文献   

4.
5.
The metastasis-suppressive activity of Nm23-H1 was previously correlated with its in vitro histidine protein kinase activity, but physiological substrates have not been identified. We hypothesized that proteins that interact with histidine kinases throughout evolution may represent partners for Nm23-H1 and focused on the interaction of Arabidopsis "two-component" histidine kinase ERS with CTR1. A mammalian homolog of CTR1 was previously reported to be c-Raf; we now report that CTR1 also exhibits homology to the kinase suppressor of Ras (KSR), a scaffold protein for the mitogen-activated protein kinase (MAPK) cascade. Nm23-H1 co-immunoprecipitated KSR from lysates of transiently transfected 293T cells and at endogenous protein expression levels in MDA-MB-435 breast carcinoma cells. Autophosphorylated recombinant Nm23-H1 phosphorylated KSR in vitro. Phosphoamino acid analysis identified serine as the major target, and two peaks of Nm23-H1 phosphorylation were identified upon high performance liquid chromatography analysis of KSR tryptic peptides. Using site-directed mutagenesis, we found that Nm23-H1 phosphorylated KSR serine 392, a 14-3-3-binding site, as well as serine 434 when serine 392 was mutated. Phosphorylated MAPK but not total MAPK levels were reduced in an nm23-H1 transfectant of MDA-MB-435 cells. The data identify a complex in vitro histidine-to-serine protein kinase pathway, which may contribute to signal transduction and metastasis.  相似文献   

6.
nm23-h1 is a well-documented metastasis suppressor gene whose mechanism(s) of action have yet to be fully elucidated. The purpose of this report is to discuss recent advances in investigating the potential role of a novel 3′–5′ exonuclease activity identified recently in our laboratory, a biochemical function associated, in general, with DNA repair and replication. We have employed a site-directed mutagenesis approach to demonstrate that the 3′–5′ exonuclease activity of NM23-H1 is required for its metastasis suppressor function. Consistent with a role in DNA repair, we also observe that the single yeast NM23 homolog (YNK1) is required for the maintenance of genomic integrity and normal kinetics of DNA repair in response to exposure to ultraviolet radiation. These results and their implications for understanding the molecular mechanisms underlying NM23-H1 functions in cancer are discussed.  相似文献   

7.
Coronaviruses encode an endoribonuclease, Nsp15, which has a poorly defined role in infection. Sequence analysis revealed a retinoblastoma protein-binding motif (LXCXE/D) in the majority of the Nsp15 of the severe acute respiratory syndrome coronavirus (SARS-CoV) and its orthologs in the alpha and beta coronaviruses. The endoribonuclease activity of the SARS-CoV Nsp15 (sNsp15) was stimulated by retinoblastoma protein (pRb) in vitro, and the two proteins can be coimmunoprecipitated from cellular extracts. Mutations in the pRb-binding motif rendered sNsp15 to be differentially modified by ubiquitin in cells, and cytotoxicity was observed upon its expression. Expression of the sNsp15 in cells resulted in an increased abundance of pRb in the cytoplasm, decreased overall levels of pRb, an increased proportion of cells in the S phase of the cell cycle, and an enhanced expression from a promoter normally repressed by pRb. The endoribonuclease activity of the mouse hepatitis virus (MHV) A59 Nsp15 was also increased by pRb in vitro, and an MHV with mutations in the LXCXE/D-motif, named vLC, exhibited a smaller plaque diameter and reduced the virus titer by ~1 log. Overexpression of pRb delayed the viral protein production by wild-type MHV but not by vLC. This study reveals that pRb and its interaction with Nsp15 can affect coronavirus infection and adds coronaviruses to a small but growing family of RNA viruses that encode a protein to interact with pRb.  相似文献   

8.
Although the gene responsible for multiple endocrine neoplasia type 1 (MEN1) has been identified, the function of its gene product, menin, is unknown. To examine the biological role of the MEN1 gene, we searched for associated proteins with a yeast two-hybrid system using the MEN1 cDNA fragment as bait. On screening a rat fetal brain embryonic day 17 library, in which a high level of MEN1 expression was detected, we identified a putative tumor metastasis suppressor nm23/nucleoside diphosphate (NDP) kinase as an associated protein. This finding was confirmed by in vitro interaction assays based on glutathione S-transferase pull down experiments. The association required almost the entire menin protein, and several missense MEN1 mutations reported in MEN1 patients caused a loss of the binding activity for nm23. This result suggests that this interaction may play important roles in the biological functions of the menin protein, including tumor suppressor activity.  相似文献   

9.
Processes like cell proliferation, differentiation, and tumor metastasis require a flexible adaptation of cell shape and cell plasticity. A regulator of cell structure and shape is the centrosome and its associated microtubules. Recently, oncogenes like p53, pRB, and the tumor suppressor BRCA1 have been characterized as members of the centrosome. In this communication, we identified rat Nm23-R1/NDPKbeta, a homologue of the human tumor metastasis suppressor Nm23-H1 and a regulator of cell proliferation and differentiation, as a component of the centrosomal complex. We used confocal laser scanning microscopy on different cell types and biochemical analysis of purified centrosomes to demonstrate that Nm23-R1 is located in the centrosome of dividing and nondividing cells. We also showed that the centrosomal enzyme is catalytically active and able to transfer the gamma-phosphate from a nucleoside triphosphate to a nucleoside diphosphate. In addition, Nm23-R1 coimmunoprecipitated with gamma-tubulin, a core centrosomal protein essential for microtubule nucleation. In addition, human Nm23-R1/-H1 was also shown to be present in the centrosome of different human and rat cell types, demonstrating that the presence of Nm23-H1 homologues in the latter organelle is a general event.  相似文献   

10.
STK15 is an Aurora/Ipl-1 related serine/threonine kinase that is associated with centrosomes and induces aneuploidy when overexpressed in mammalian cells. It is well known that phosphorylation and dephosphorylation of kinases are important for regulation of their activity. But mechanisms by which STK15 activity is regulated have not been elucidated. We report that STK15 contains two functional binding sites for protein phosphatase type 1 (PP1), and the binding of these proteins is cell cycle-regulated peaking at mitosis. Activated STK15 at mitosis phosphorylates PP1 and inhibits PP1 activity in vitro. In vivo, PP1 activity co-immunoprecipitated with STK15 is also reduced. These data indicate that STK15 inhibits PP1 activity during mitosis. Also, PP1 is shown to dephosphorylate active STK15 and abolish its activity in vitro. Furthermore, we show that non-binding mutants of STK15 for PP1 are superphosphorylated, but their kinase activities are markedly reduced. Cells transfected with these non-binding mutants manifest aberrant chromosome alignment during mitosis. Our results suggest that a feedback regulation through phosphorylation/dephosphorylation events between STK15 kinase and PP1 phosphatase operates through the cell cycle. Deregulation of this balance may contribute to anomalous segregation of chromosomes during mitotic progression of cancer cells.  相似文献   

11.
表达NM23-H1/NDPK-A工程菌的遗传稳定性研究   总被引:2,自引:1,他引:2  
目的:研究重组工程菌的遗传稳定性。方法:利用重组表达质粒pBVNM-H1转化宿主菌E.coli DH5α,筛选重组工程菌DH5α-pBVNM-H1。将新构建好的重组工程菌在无选择压力的条件下进行连续传代培养,比较菌落在LB(-)和LB(+)培养基上的生长状况,并对传代菌株目标蛋白的表达情况以及质粒数量和目的基因DNA进行电泳鉴定。结果:重组工程菌连续传代50次中,在LB(-)和LB(+)培养基上的生长状况相同,目标蛋白表达量无显著差异,质粒数量及目的基因DNA结构稳定。结论:重组工程菌DH5α-pBVNM-H1具有良好的遗传稳定性。  相似文献   

12.
The INK4a gene, one of the most often disrupted loci in human cancer, encodes two unrelated proteins, p16(INK4a) and p14(ARF) (ARF) both capable of inducing cell cycle arrest. Although it has been clearly demonstrated that ARF inhibits cell cycle via p53 stabilization, very little is known about the involvement of ARF in other cell cycle regulatory pathways, as well as on the mechanisms responsible for activating ARF following oncoproliferative stimuli. In search of factors that might associate with ARF to control its activity or its specificity, we performed a yeast two-hybrid screen. We report here that the human homologue of spinophilin/neurabin II, a regulatory subunit of protein phosphatase 1 catalytic subunit specifically interacts with ARF, both in yeast and in mammalian cells. We also show that ectopic expression of spinophilin/neurabin II inhibits the formation of G418-resistant colonies when transfected into human and mouse cell lines, regardless of p53 and ARF status. Moreover, spinophilin/ARF coexpression in Saos-2 cells, where ARF ectopic expression is ineffective, somehow results in a synergic effect. These data demonstrate a role for spinophilin in cell growth and suggest that ARF and spinophilin could act in partially overlapping pathways.  相似文献   

13.
14.
15.
The Nm23-H1/nucleoside diphosphate (NDP) kinase A is a metastasis suppressor, besides its enzymatic activity. The mutant S120G has been found in high-grade neuroblastomas. The mutant protein, once denatured in urea, is unable to refold in vitro. A size-exclusion chromatography analysis of the folding/association pathway showed that recombinant wild-type and S120G mutant human Nm23-H1/NDP kinase A unfold and refold passing through a molten globule state while typical hexameric NDP kinases unfold without dissociated species and refold through a native monomeric intermediate. A survey of the recent literature showed that several proteins involved in cancer, and their mutants, are marginally stable, like the wild-type Nm23-H1/NDP kinase A, or are misfolded, like its S120G mutant. We therefore suggest that the low thermodynamic stability and the folding intermediate of the Nm23-H1/NDP kinase A may be necessary for its regulatory properties.  相似文献   

16.
Epstein-Barr virus (EBV) is an oncogenic virus associated with a number of human malignancies including Burkitt lymphoma, nasopharyngeal carcinoma, lymphoproliferative disease and, though still debated, breast carcinoma. A subset of latent EBV antigens is required for mediating immortalization of primary B-lymphocytes. Here we demonstrate that the carboxy-terminal region of the essential latent antigen, EBNA-3C, interacts specifically with the human metastatic suppressor protein Nm23-H1. Moreover, EBNA-3C reverses the ability of Nm23-H1 to suppress the migration of Burkitt lymphoma cells and breast carcinoma cells. We propose that EBNA-3C contributes to EBV-associated human cancers by targeting and altering the role of the metastasis suppressor Nm23-H1.  相似文献   

17.
Fan Z  Beresford PJ  Oh DY  Zhang D  Lieberman J 《Cell》2003,112(5):659-672
Granzyme A (GzmA) induces a caspase-independent cell death pathway characterized by single-stranded DNA nicks and other features of apoptosis. A GzmA-activated DNase (GAAD) is in an ER associated complex containing pp32 and the GzmA substrates SET, HMG-2, and Ape1. We show that GAAD is NM23-H1, a nucleoside diphosphate kinase implicated in suppression of tumor metastasis, and its specific inhibitor (IGAAD) is SET. NM23-H1 binds to SET and is released from inhibition by GzmA cleavage of SET. After GzmA loading or CTL attack, SET and NM23-H1 translocate to the nucleus and SET is degraded, allowing NM23-H1 to nick chromosomal DNA. GzmA-treated cells with silenced NM23-H1 expression are resistant to GzmA-mediated DNA damage and cytolysis, while cells overexpressing NM23-H1 are more sensitive.  相似文献   

18.
The retinoblastoma tumor suppressor (RB) serves as a scaffold to coordinate binding of numerous proteins, including E2F and histone deacetylases, through its C-terminal domain. The amino-terminal half of RB has few known binding partners and its function is not well understood. We used the amino-terminal domain of the Drosophila retinoblastoma tumor suppressor Rbf (RbfN) to identify novel binding partners by immunoprecipitation coupled with mass spectrometry. Our experiment revealed that the RNA-binding protein Squid (Sqd) is a putative interacting partner of RbfN. Western blot confirmed that Sqd interacts with the amino-terminal domain of Rbf. We observed that Sqd colocalizes with RbfN in Drosophila salivary gland cells. We also show that double RNAi knockdown of Rbf and Sqd in the eye results in an extensive loss of eye bristles, suggesting that Rbf and Sqd function in a common pathway. We conclude from our studies that Rbf physically and genetically interacts with Sqd. We propose that the retinoblastoma tumor suppressor may play a novel role in RNA processing through interaction with RNA-binding proteins.  相似文献   

19.
The LKB1 tumor suppressor kinase in human disease   总被引:1,自引:0,他引:1  
Inactivating germline mutations in the LKB1 gene underlie Peutz-Jeghers syndrome characterized by hamartomatous polyps and an elevated risk for cancer. Recent studies suggest the involvement of LKB1 also in more common human disorders including diabetes and in a significant fraction of lung adenocarcinomas. These observations have increased the interest towards signaling pathways of this tumor suppressor kinase. The recent breakthroughs in understanding the molecular functions of the LKB1 indicate its contribution as a regulator of cell polarity, energy metabolism and cell proliferation. Here we review how the substrates and cellular functions of LKB1 may be linked to Peutz-Jeghers syndrome and other diseases, and discuss how some of the molecular changes associated with altered LKB1 signaling might be used in therapeutic approaches.  相似文献   

20.
Mutations of the neurofibromatosis 2 (NF2) tumor suppressor gene have frequently been detected not only in schwannomas and other central nervous system tumors of NF2 patients but also in their sporadic counterparts and malignant tumors unrelated to the NF2 syndrome such as malignant mesothelioma, indicating a broader role for the NF2 gene in human tumorigenesis. However, the mechanisms by which the NF2 product, merlin or schwannomin, is regulated and controls cell proliferation remain elusive. Here, we identify a novel GTP-binding protein, dubbed NGB (referring to NF2-associated GTP binding protein), which binds to merlin. NGB is highly conserved between Saccharomyces cerevisiae, Caenorhabditis elegans, and human cells, and its GTP-binding region is very similar to those found in R-ras and Rap2. However, ectopic expression of NGB inhibits cell growth, cell aggregation, and tumorigenicity in tumorigenic schwanomma cells. Down-regulation and infrequent mutation of NGB were detected in human glioma cell lines and primary tumors. The interaction of NGB with merlin impairs the turnover of merlin, yet merlin does not affect the GTPase nor GTP-binding activity of NGB. Finally, the tumor suppressor functions of NGB require merlin and are linked to its ability to suppress cyclin D1 expression. Collectively, these findings indicate that NGB is a tumor suppressor that regulates and requires merlin to suppress cell proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号