首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Resistance to disease is frequently suggested to be important in mate choice, but information about how immune status can be conveyed is lacking. During the breeding season, male red jungle fowl with large combs, a sexually selected trait, have lower levels of lymphocytes, but greater cell-mediated immunity, indicated by a cutaneous hypersensitivity response. Before the breeding season, however, both cell-mediated immunity and proportion of lymphocytes are positively correlated with comb length. Cell-mediated immunity is particularly important to jungle fowl during the breeding season, because the likelihood of injury during sexual competition is high and cell-mediated immunity is essential for healing wounds and resisting infection. This seasonal change in one aspect of immunity but not another suggests that the birds adaptively maintain certain immune system abilities, and that it can be misleading to use a single aspect of immune response in evaluating immunocompetence.  相似文献   

2.
Relative numbers of males and females in breeding groups may vary from expected values owing to a variety of factors. To determine how sex ratio might influence individual phenotypes in a captive population of dark-eyed juncos Junco hyemalis during the breeding season, we established three treatment groups: a male-biased (2:1), equal (1:1), and female-biased group (1:2). Within-group density (birds/m2) was constant across groups. We assessed the frequency of flight chases (a proxy for social instability), measured changes in body mass and pectoral muscle condition, assayed plasma levels of testosterone (T) and compared cell-mediated immunity of individuals. We found significantly more chases in the male-biased group than in the female-biased group. Birds in the male-biased group lost more mass and displayed poorer pectoral-muscle condition than birds in the equal group. Cell-mediated immune responses were reduced in individuals in the male-biased group in comparison to the female-biased group. Plasma T levels in both sexes did not vary with sex ratio. Collectively, these results suggest that during the breeding season, social instability is greater in male-biased populations, and instability may lead to decreased general health and vigour.  相似文献   

3.
Monogamous and polygynous male songbirds generally differ in their breeding season profiles of circulating testosterone. Testosterone level spikes early in the breeding season of monogamists and then declines, but it remains high in polygynists. Male dark-eyed juncos (Junco hyemalis) are socially monogamous and exhibit the usual pattern, but experimental maintenance of high testosterone throughout the breeding season alters normal behavior and physiology and affects various components of annual reproductive success but not overall annual success. Because stabilizing selection predicts that alteration of naturally existing phenotypes should reduce lifetime reproductive success, we asked whether prolonged testosterone exposure might impair immune function and perhaps thereby reduce life span. We assessed immune function in captive and wild male juncos that we treated with either testosterone-filled or empty Silastic implants. Results indicate that prolonged elevation of testosterone suppresses antibody production in captive males and cell-mediated immunity in wild males. Together these results suggest that testosterone-treated males may be more susceptible to disease or parasitic infection. As earlier studies have shown, levels of corticosterone as well as testosterone are higher in testosterone-treated males, so it is unclear whether the immune suppression we observed is due to testosterone's direct effects on immunity or testosterone's influence on glucocorticoid production. We discuss results in the context of recent hypotheses regarding life-history theory and potential endocrine-immune interactions.  相似文献   

4.
Avian eggs contain considerable amounts of maternal yolk androgens, which have been shown to beneficially influence the physiology and behaviour of the chick. As androgens may suppress immune functions, they may also entail costs for the chick. This is particularly relevant for colonial species, such as the black-headed gull (Larus ridibundus), in which the aggregation of large numbers of birds during the breeding season enhances the risk of infectious diseases for the hatching chick.To test the effect of maternal yolk androgens on the chick's immune function, we experimentally manipulated, in a field study, yolk androgen levels within the physiological range by in ovo injection of either androgens (testosterone and androstenedione) or sesame oil (control) into freshly laid eggs. We determined cell-mediated immunity (CMI) and humoral immunity of the chicks at the beginning of the nestling period to evaluate early modulatory effects of yolk androgens on immune function.Embryonic exposure to elevated levels of androgens negatively affected both CMI and humoral immunity in nestling gull chicks. Consequently, maternal yolk androgens not only entail benefits of enhanced competitiveness and growth as previously shown, but also costs in terms of immunosuppression. The outcome of embryonic yolk androgen exposure thus likely depends on the post-hatching circumstances for the developing offspring such as parasite exposure and degree of sibling competition.  相似文献   

5.
Seasonal changes in the impact of parasites on hosts should result in seasonal changes in immune function. Since both ectoparasites and endoparasites time their reproduction to that of their hosts, we can predict that hosts have been selected to show an annual peak in their ability to raise an immune response during the reproductive season. We found large seasonal changes in immune function between the breeding and the nonbreeding season for a sample of temperate bird species. These changes amounted to a decrease in spleen mass from the breeding to the nonbreeding season by on average 18% across 71 species and a seasonal decrease in T-cell-mediated immunity by on average 33% across 13 species. These seasonal changes in immune function differed significantly among species. The condition dependence of immune function also differed between the breeding and the nonbreeding season, with individuals in prime condition particularly having greater immune responses during breeding. Analyses of ecological factors associated with interspecific differences in seasonal change of immune function revealed that hole-nesting species had a larger increase in immune function during the breeding season than did open nesters. Since hole nesters suffer greater reduction in breeding success because of virulent parasites than do open nesters, this seasonal change in immune function is suggested to have arisen as a response to the increased virulence of parasites attacking hole-nesting birds.  相似文献   

6.
1. Sex differences in testosterone levels and sex-biased sensitivity to testosterone are the basis of some ideas postulated to account for sex-linked environmental vulnerability during early life. However, sex variation in circulating testosterone levels has been scarcely explored and never manipulated at post-natal stages of birds in the wild. 2. We measured and experimentally increased circulating testosterone levels in nestling Eurasian kestrels Falco tinnunculus. We investigated, possible sexual differences in testosterone levels and the effect of this hormone on growth (body mass and tarsus length) and cell-mediated immunity in males and females. We also explored testosterone effects on rump coloration, a highly variable melanin-based trait in male nestlings. We analysed data on circulating testosterone levels of nestlings in 15 additional bird species. 3. Increased levels of testosterone tended to negatively affect body condition, reduced cell-mediated immune responses in male and female nestlings and also diminished the expression of grey rump coloration in male nestlings. No sex differences were observed in testosterone levels in either control or increased testosterone group nestlings, and no interactions were found between sex and treatment. However, male nestlings showed a lower cell-mediated immune response than females in both groups. 4. Our results indicate first, that a high level of testosterone in all nestlings in a brood entails costs, at least in terms of immunity, coloration and probably growth. Secondly, sex differences in post-natal cell-mediated immunity, and consequently in the capacity to prevent diseases, cannot be explained by sex differences in circulating testosterone levels. Finally, by comparing published data at an interspecific level, contradictory sex patterns in circulating testosterone levels have been found, supporting the idea that circulating testosterone might not be a proximate factor causing sex-dependent vulnerability in bird species.  相似文献   

7.
Testosterone is important in mediating investment in competing activities such as territoriality, parental care, and maintenance behavior. Most studies of testosterone function have focused on temperate species and less is known about the role of testosterone in territoriality or variation in mating systems of tropical species. Results of studies of tropical species with year‐round territoriality indicate that territorial aggression during the non‐breeding season is maintained with low levels of testosterone, and increased levels of testosterone in males during the breeding season may increase mating opportunities or aid in competition for mates. We studied seasonal variation in testosterone levels of male Red‐throated Ant‐tanagers (Habia fuscicauda), a socially monogamous species with year‐round territoriality and with high levels of extra‐pair matings (41% of young), to determine if testosterone levels increased during the breeding season. We captured males during the non‐breeding and breeding seasons and collected blood samples for hormone analysis. We found that mean testosterone concentrations were low during the non‐breeding season (0.18 ± 0.05 [SD] ng/ml, range = 0.11–0.31 ng/ml), and significantly higher during the breeding season (2.37 ± 2.47 ng/ml, range = 0.14–6.28 ng/ml). Testosterone levels of breeding males were not related to aggression levels as measured by attack rates toward a stuffed decoy or singing rates during simulated territorial intrusions. These results suggest that the higher testosterone levels of breeding male Red‐throated Ant‐tanagers may be important in an extra‐pair mating context, possibly in display behavior or mate attraction, but additional study is needed to clarify the role of testosterone during the breeding season.  相似文献   

8.
The energetic resources in an organism's environment are essential for executing a wide range of life-history functions, including immunity and reproduction. Most energetic budgets, however, are limited, which can lead to trade-offs among competing functions. Increasing reproductive effort tends to decrease immunity in many cases, and increasing total energy via supplemental feedings can eliminate this effect. Testosterone (T), an important regulator of reproduction, and food availability are thus both potential factors regulating life-history processes, yet they are often tested in isolation of each other. In this study, we considered the effect of both food availability and elevated T on immune function and reproductive behavior in sagebrush lizards, Sceloporus graciosus, to assess how T and energy availability affect these trade-offs. We experimentally manipulated diet (via supplemental feedings) and T (via dermal patches) in males from a natural population. We determined innate immune response by calculating the bacterial killing capability of collected plasma exposed to Escherichia coli ex vivo. We measured reproductive behavior by counting the number of courtship displays produced in a 20-min sampling period. We observed an interactive effect of food availability and T-patch on immune function, with food supplementation increasing immunity in T-patch lizards. Additionally, T increased courtship displays in control food lizards. Lizards with supplemental food had higher circulating T than controls. Collectively, this study shows that the energetic state of the animal plays a critical role in modulating the interactions among T, behavior and immunity in sagebrush lizards and likely other species.  相似文献   

9.
In primate species exhibiting seasonal reproduction, patterns of testosterone excretion in adult males are variable: in some species, peaks correlate with female receptivity periods and heightened male-male aggression over access to estrous females, in others, neither heightened aggression nor marked elevations in testosterone have been noted. In this study, we examined mean fecal testosterone ( f T) levels and intermale aggression in wild adult male ring-tailed lemurs residing in three groups at Beza Mahafaly Reserve, Madagascar. Results obtained from mating and post-mating season 2003 were compared to test Wingfield et al. [1990. Am Nat 136:829-846] "challenge hypothesis", which predicts a strong positive relationship between male testosterone levels and male-male competition for access to receptive females during breeding season. f T levels and rates of intermale aggression were significantly higher during mating season compared to the post-mating period. Mean f T levels and aggression rates were also higher in the first half of the mating season compared with the second half. Number of males in a group affected rates of intermale agonism, but not mean f T levels. The highest-ranking males in two of the groups exhibited higher mean f T levels than did lower-ranking males, and young males exhibited lower f T levels compared to prime-aged and old males. In the post-mating period, mean male f T levels did not differ between groups, nor were there rank or age effects. Thus, although male testosterone levels rose in relation to mating and heightened male-male aggression, f T levels fell to baseline breeding levels shortly after the early mating period, and to baseline non-breeding levels immediately after mating season had ended, offsetting the high cost of maintaining both high testosterone and high levels of male-male aggression in the early breeding period.  相似文献   

10.
Individuals of many nontropical rodent species display reproductive, immunological, and somatic responses to day length. In general, short day (SD) lengths inhibit reproduction and enhance immune function in the laboratory when all other conditions are held constant. Most studies to date have focused on seasonal variation in immune function in adulthood. However, perinatal photoperiods also communicate critical day length information and serve to establish a developmental trajectory appropriate for the time of year. Nontropical rodents born early in the breeding season undergo rapid reproductive development, presumably to promote mating success during their first reproductive season. Rodents born late in the breeding season suspend somatic growth and puberty until the following vernal breeding season. We tested the hypothesis that perinatal day lengths have similar enduring effects on the immune system of rodents. Siberian hamsters (Phodopus sungorus) were maintained prenatally and until weaning (21 days) in either SDs (8 h light:16 h dark) or long days (LD) (16 h light:8 h dark), then they were weaned into either the opposite photoperiod or maintained in their natal photoperiod, forming four groups (LD-LD, LD-SD, SD-LD, and SD-SD). After 8-wk in these conditions, cell-mediated immune activity was compared among groups. SD-SD hamsters of both sexes enhanced immune function relative to all other groups. The reproductive effects of perinatal photoperiod were not evident by the end of the experiment; circulating testosterone and cortisol sampled at the end of the experiment reflected the postweaning, but not the perinatal photoperiod. This experiment demonstrates long-lasting organizational effects of perinatal photoperiod on the rodent immune system and indicates that photoperiod-induced changes in the immune system are dissociable from changes in the reproductive system.  相似文献   

11.
Summary This study was conducted to determine changes in thyroid-gonadal interaction in the edible dormouse during the phase of the annual cycle that corresponds to the end of the breeding season (from June to September). We evaluated intra-hypothalamic luteinizing hormone-releasing hormone (LHRH) content, and plasma concentrations of luteinizing hormone (LH), testosterone, thyroid-stimulating hormone (TSH) and thyroxine (T4) in three groups of dormice: (1) controls; (2) dormice receiving sufficient T4 supplementation to maintain June levels in control animals until September, thus counteracting the seasonal reduction of T4 that normally begins in July; and (3) thyroidectomized dormice. The effect of thyroidectomy was only detectable in June, when plasma T4 concentration in the control group was maximal, and consisted of a significant decrease in plasma testosterone levels. This provides strong support for the hypothesis that thyroid function positively influences gonadal function during the breeding season. The T4 supplementation resulted in a decrease in hypothalamic LHRH concentration, suggesting that an increased LHRH release led to the observed stimulated hypophyseal secretion of LH in June and September and the increased circulating testosterone levels in September. There was no detectable effect in July and August. These results show that thyroid axis activation of the hypothalamic-pituitary-gonadal system is only possible during certain phases of the annual cycle, particularly evidenced here during the breeding season. They also reinforce our conclusions drawn from the thyroidectomy results. Conversely, the summer testicular regression which normally occurs after the breeding season is no longer controlled by plasma T4 levels. Even though the sensitivity of the gonadal axis to the thyroid axis appears to reappear at the end of the summer, results of previous studies indicate that this resumption is only temporary.Abbreviations LH luteinizing hormone - LHRH luteinizing hormone-releasing hormone - RIA radioimmunoassay - T4 thyroxine - TSH thyroid-stimulating hormone  相似文献   

12.
The level of expression of secondary sexual characters has been suggested to signal male ability to resist parasitic infestations. To test this idea, several studies have examined the link between sexual signals and immunocompetence in birds. However, most of them have used only a single aspect of immune response to evaluate immunocompetence. We investigated the relation between bill colour and immunocompetence in captive male European blackbirds, Turdus merula, during the breeding season by assessing both cell-mediated and humoral components of the immune system. The blackbird is a sexually dimorphic species with bill colour varying from yellow to orange in males. Humoral immunity was assessed by measuring both primary and secondary responses to sheep red blood cell inoculation. Cell-mediated immunity was estimated with a delayed cutaneous hypersensitivity response to an injection of a mitogen (phytohaemagglutinin). No relation was found between male bill colour and the primary humoral response. However, males with orange bills showed a lower secondary humoral response but a higher cell-mediated immune response than males with yellow bills. Thus, the relation between immunocompetence and a secondary sexual trait may differ markedly depending on which component of the immune system is under consideration. We discuss our results in relation to mechanisms involved in sexual selection. Copyright 2003 Published by Elsevier Science Ltd on behalf of The Association for the Study of Animal Behaviour   相似文献   

13.
This study reports the gender and seasonal specificity of hormonal, behavioral, and coloration responses displayed by "resident" male lizards (Sceloporus undulatus) exposed to male or female "intruders" during staged encounters in outdoor enclosures. Resident males were engaged in staged encounters with males or females for 1 h per day on 9 consecutive days during the breeding and postbreeding seasons. Male-specific responses occurred during the breeding but not the postbreeding season. These included (1) a transient increase in plasma testosterone (T) that was evident on Day 4 and had subsided by Day 10, (2) behavioral displays of aggression (full shows and chases), and (3) a lightening of dorsal integumental color. Female-specific behavioral responses (nod sets) were displayed in both seasons. Season-specific responses consisted only of a transient increase in plasma corticosterone (B) during the breeding season that was evident on Day 4 and had subsided by Day 10. Pushups were displayed in response to both genders during both seasons, although the frequency of pushups was significantly higher in response to females than to males during the postbreeding season. The coloration of residents did not change in response to male intruders during the postbreeding season or to females during either season. These results define the gender and seasonal specificity of hormonal, behavioral, and coloration responses of resident male S. undulatus in social interactions with conspecifics. Thus, our results clarify the biological significance of these responses in terms of potentially aggressive versus courtship interactions and breeding versus postbreeding contexts.  相似文献   

14.
In many birds and mammals, male territorial aggression is modulated by elevated circulating concentrations of the steroid hormone testosterone (T) during the breeding season. However, many species are territorial also during the non-breeding season, when plasma T levels are basal. The endocrine control of non-breeding territorial aggression differs considerably between species, and previous studies on wintering birds suggest differences between migratory and resident species. We investigated the endocrine modulation of territorial aggression during the breeding and non-breeding season in a resident population of European stonechats (Saxicola torquata rubicola). We recorded the aggressive response to a simulated territorial intrusion in spring and winter. Then, we compared the territorial aggression between seasons and in an experiment in which we blocked the androgenic and estrogenic action of T. We found no difference in the aggressive response between the breeding and the non-breeding season. However, similarly to what is found in migratory stonechats, the hormonal treatment decreased aggressive behaviors in resident males in the breeding season, whereas no effects were recorded in the non-breeding season. When we compared the aggressive responses of untreated birds with those obtained from migratory populations in a previous study, we found that territorial aggression of resident males was lower than that of migratory males during the breeding season. Our results show that in a resident population of stonechats T and/or its metabolites control territorial aggression in the breeding but not in the non-breeding season. In addition, our study supports the hypothesis that migratory status does modulate the intensity of aggressive behavior.  相似文献   

15.
Northern-temperate male birds show seasonal changes in testosterone concentrations with a peak during the breeding season. Many tropical birds express much lower concentrations of testosterone with slight elevations during breeding. Here we describe testosterone and corticosterone concentrations of male stonechats from equatorial Kenya during different substages of breeding and molt. This tropical species has a short breeding season of approximately 3 months. We compare their hormone concentrations to previously published data of males of a northern-temperate relative, the European stonechat, also a seasonal breeder but with a breeding season of approximately 5 months. Equatorial stonechats show a pronounced peak of testosterone during the nest-building and laying stage. During all other stages, testosterone concentrations are low, similar to other year-round territorial tropical bird species. Corticosterone concentrations peak also during the nest-building and laying stage suggesting that this period of maximum female fecundity is a demanding period for the male. Equatorial stonechats have significantly lower concentrations of testosterone than European stonechats during all stages, except during the nest-building and laying stage. During this stage of maximum female fertility, testosterone levels tend to be higher in equatorial than in European stonechats. Our results suggest that equatorial stonechats belong to a group of tropical bird species that are characterized by a short breeding season and a brief high peak of testosterone during the female's fertile period. Such brief, but substantial peaks of testosterone may be common in tropical birds, but they may easily be missed if the exact breeding stage of individual birds is not known.  相似文献   

16.
We studied a population of rufous whistlers, Pachycephala rufiventris, throughout a single breeding season in central New South Wales, Australia. We evaluated the relation between plasma testosterone (T) and reproductive behaviors using both simulated territorial intrusions (STIs) and subcutaneous T implants. We compared circulating T values to aggression levels of males (using STI) during pair bond and territory establishment and again during incubation. Although plasma T levels were significantly lower in the latter period, male responsiveness to STI, in terms of proximity to decoy, call rate, and number of attacks on the decoy, was indistinguishable between the two breeding stages. T levels of males exposed to STI were not different from the levels of unexposed free-living males at the same breeding stage. The effect of exogenous T on parental behavior was examined by comparing duration of incubation bouts of males and their mates prior to and after T treatment. T males significantly reduced the amount of time they incubated following implantation, whereas Control males maintained their incubation effort. After cessation of breeding activities, T males displayed significantly higher call rates due to increased use of the primary intersexual advertisement call in this species. The reduction of incubation behavior following T implantation emphasises the functional significance of the rapid decline in T in free-living males during incubation. The results from both experiments suggest that intersexual advertisement, rather than territorial aggression, may be dependent on high T levels in this species.  相似文献   

17.
In anticipation of the breeding season male songbirds of the temperate zones undergo gonadal recrudescence in early spring that lead to elevated circulating testosterone (T) levels, positively correlated with an increase in aggressive and song behaviour. However, besides seasonal changes there are also marked fluctuations of T levels and song production within the breeding season. In many species, T levels and singing activity drop after pairing or after the first clutch is laid. Domesticated canaries (Serinus canaria) are multiple‐brooded with an extended breeding season, and males continue to sing after egg‐laying. So far, studies have mainly focused on the seasonality of T levels and song behaviour whereas the pattern of change throughout the breeding period is unknown. Here, we focused on the first and on the last brood of the breeding season. We measured plasma T levels in males at the different breeding stages and assessed song characteristics of males at both times. T levels fluctuated significantly throughout brood 1, being highest during the nest building stage compared with egg‐laying and feeding of young. No such changes occurred during the last brood. Temporal song characteristics changed between brood 1 and brood 3 with song length being the main contributor to explain these changes. Our data suggest that T mainly plays a role in mate attraction and initial nesting site selection but that elevated levels are not necessary for subsequent breeding attempts. Furthermore, temporal song characteristics are maintained independently of T levels, suggesting a threshold effect. Our results demonstrate behavioural and physiological plasticity of domesticated canaries during the breeding season and are consistent with previous findings in wild songbirds.  相似文献   

18.
Dominance hierarchies play an important role in access to mates or resources in many species. Rank is sometimes correlated with circulating testosterone levels or morphological traits such as body weight. The relationship of glucocorticoid secretion and rank, however, is less clear. In this study, we investigated the relationship of male rank to body weight, circulating testosterone and cortisol concentrations in captive possum triads (Trichosurus vulpecula). We carried out two experiments to examine hierarchy formation and the effects of castration of the dominant male during the non‐breeding season. A third experiment measured the effects of removal of the dominant male from a stable hierarchy during the breeding season. We found that dominant male rank was significantly correlated with higher circulating testosterone levels during periods of hierarchy formation and during the breeding season but not during periods of hierarchy stability in the non‐breeding season. Lack of correlation between plasma testosterone concentration and rank after male castration suggests that stable social rank is not dependent on hormone level and may be more dependent on behavioural traits. Any biocontrol measures that rely on manipulation of hormone levels may be unreliable when applied to unstable hierarchical situations, including the establishment of territories by subadult males, and the pre‐breeding season when circulating testosterone concentrations peak in males and a period of hierarchy establishment may occur.  相似文献   

19.
Competition elevates plasma testosterone in a wide variety of vertebrates, including humans. The ‘challenge hypothesis’ proposes that seasonal peaks in testosterone during breeding are caused by social challenges from other males. However, during experimentally induced male–male conflicts, testosterone increases only in a minority of songbird species tested so far. Why is this so? Comparative evidence suggests that species with a short breeding season may not elevate testosterone levels during territory defence. These species may even be limited in their physiological capability to increase testosterone levels, which can be tested by injecting birds with gonadotropin-releasing hormone (GnRH). We studied two populations of black redstarts that differ in breeding altitude, morphology and the length of their breeding season. Unexpectedly, males of neither population increased testosterone in response to a simulated territorial intrusion, but injections with GnRH resulted in a major elevation of testosterone. Thus, black redstarts would have been capable of mounting a testosterone response during the male–male challenge. Our data show, for the first time, that the absence of an androgen response to male–male challenges is not owing to physiological limitations to increase testosterone. Furthermore, in contrast to comparative evidence between species, populations of black redstarts with a long breeding season do not show the expected elevation in testosterone during male–male challenges.  相似文献   

20.
Male golden-collared manakins gather on leks and perform an acrobatic display to attract females. In temperate breeding species, testosterone (T) activation of courtship displays has been well studied. Few studies have examined T activation of displays in tropical species; even fewer have explored the activational role of T in elaborate courtship displays such as in the manakin. In some tropical species, including manakins, territorial aggression or song behavior are uncoupled from T. We have previously shown that T activates display behavior in manakin males when endogenous T levels are low in the non-courtship season. To understand how T functions in breeding birds, we examined T levels in a large group of manakins sampled during the courtship and non-courtship season. In addition, during the courtship season, we gave T implants to adult males, juvenile males, and females. We found that T levels were low during the non-courtship season and comparatively higher on average during the courtship season. However, T levels were low in many adult males during the courtship season, especially when compared to temperate breeding species. Regardless of initial endogenous T levels during the courtship season, T implants did not increase the display frequency of adult males. T-treated females and juvenile males did display under similar conditions. Our data suggest that the effects of T on manakin display vary with season, sex, and age and that high T is not necessary for display.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号