首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
F-actin gels of increasing concentrations (25-300 microM) display in vitro a progressive onset of birefringence due to orientational ordering of actin filaments. At F-actin concentrations <100 microM, this birefringence can be erased and restored at will by sonication and gentle flow, respectively. Hence, the orientational ordering does not result from a thermodynamic transition to a nematic phase but instead is due to mechanical stresses stored in the gels. In contrast, at F-actin concentrations > or =100 microM, gels display spontaneous birefringence recovery, at rest, which is the sign of true nematic ordering, in good agreement with statistical physics models of the isotropic/nematic transition. Well-aligned samples of F-actin gels could be produced and their small-angle x-ray scattering patterns are quite anisotropic. These patterns show no sign of filament positional short-range order and could be modeled by averaging the form factor with the Maier-Saupe nematic distribution function. The derived nematic order parameter S of the gels ranged from S = 0.7 at 300 microM to S = 0.4 at 25 microM. Both birefringence and small-angle x-ray scattering data indicate that, even in absence of cross-linking proteins, spontaneous cooperative alignment of actin filaments may arise in motile regions of living cells where F-actin concentrations can reach values of a few 100 microM.  相似文献   

2.
Bacterial class I release factors (RFs) are seen by cryo-electron microscopy (cryo-EM) to span the distance between the ribosomal decoding and peptidyl transferase centers during translation termination. The compact conformation of bacterial RF1 and RF2 observed in crystal structures will not span this distance, and large structural rearrangements of RFs have been suggested to play an important role in termination. We have collected small-angle X-ray scattering (SAXS) data from E. coli RF1 and from a functionally active truncated RF1 derivative. Theoretical scattering curves, calculated from crystal and cryo-EM structures, were compared with the experimental data, and extensive analyses of alternative conformations were made. Low-resolution models were constructed ab initio, and by rigid-body refinement using RF1 domains. The SAXS data were compatible with the open cryo-EM conformation of ribosome bound RFs and incompatible with the crystal conformation. These conclusions obviate the need for assuming large conformational changes in RFs during termination.  相似文献   

3.
Apo- and holo-forms of horse liver alcohol dehydrogenase (LADH) in solution were studied by diffuse x-ray scattering. Experimental scattering curves for apo- and holo-forms coincide both with the curves calculated from the crystal structures of apo- and holo-enzymes, and with each other. Thus the “sliding” of catalytical domains in LADH upon substrate binding, which has been shown by x-ray analysis, cannot be detected by diffuse x-ray scattering. Sensitivity of the scattering curves to the domain displacements of sliding and “locking” types has been investigated. It has been shown that the scattering curves of LADH are rather sensitive to the domain “unlocking.” However, these curves change only slightly upon sliding of domains, including the sliding of domains observed in LADH by x-ray analysis.  相似文献   

4.
The diffuse wide angle x-ray scattering (WAXS) of polyglutamic acid (PGA) in solution was studied using an x-ray diffractometer with small aperture of the primary beam. The scattering curve was recorded at an angular interval from (article: see text). The experimental scattering intensity of PGA with alpha-helical CD spectrum showed a maximum at 14.4 nm-1. Unordered PGA in solution yielded no maximum at this scattering angle. The studies have proved that the scattering theory can be applied to globular proteins in solution as well as to chain molecules in solution in this angular interval. The differences between the calculated scattering curves and the experimental curves indicate minor movements of the side chains of PGA in solutions and slight structuring of the solvent at the surface of the polypeptide chain.  相似文献   

5.
X-ray diffraction method has been applied for investigating ocular lens native tissue of the frog. X-ray diffraction patterns of intact lenses, their nuclei and cortices are similar and contain a set of concentric diffuse diffraction maxima. The most intensive of these maxima corresponding to the Bragg-spacings of 14.6, 9.1 and 4.6 A are presumably associated with intramolecular structure of lens proteins--crystallins. Intensive small-angle X-ray scattering and diffraction patterns isotropy indicates unavailability of crystallin molecule ordering or orientation in the lens. The shift of 14.6 A maximum up to 12.8 A being the result of nuclei drying shows the necessity of aqueous surrounding for these protein native structure maintenance.  相似文献   

6.
The distribution of divalent ions in semidilute solutions of high-molecular-mass DNA containing both sodium chloride and strontium chloride in near-physiological conditions is studied by small-angle x-ray scattering and by small-angle neutron scattering. Both small-angle neutron scattering and small-angle x-ray scattering reveal a continuous increase in the scattering intensity at low q with increasing divalent ion concentration, while at high q the scattering curves converge. The best fit to the data is found for a configuration in which DNA strands of cross-sectional radius 10 angstroms are surrounded by a counterion sheath of outer radius approximately 13.8 angstroms, independent of the strontium chloride concentration. When the strontium chloride is replaced by calcium chloride, similar results are obtained, but the thickness of the sheath increases when the divalent salt concentration decreases. These results correspond in both cases to partial localization of the counterions within a layer that is thinner than the effective Debye screening length.  相似文献   

7.
Chromatin model calculations: Arrays of spherical nu bodies.   总被引:7,自引:7,他引:0  
Chromatin fibers consists of globular nucleohistone particles (designated nu bodies) along the length of the chromatin DNA with approximately 6-to7-fold compaction of the DNA within the nu bodies. We have calculated theoretical small-angle x-ray scattering curves and have compared these with experimental data in the literature. Several models predict maxima at the correct angles. The first maximum (approximately 110 degrees A) results from interparticle interference, while both the spatial arrangement and the structure factor the nu bodies can contribute to the additional small-angle maxima. These calculations suggest models which can account for the electron microscopic observation that chromatin is seen as either approximately 100-or approximately 200-to 250 degrees A-diameter fibers, depending on the solvent conditions. They also account for the limited orientability of the x-ray pattern from pulled chromatin fibers.  相似文献   

8.
Differential scanning calorimetry (DSC) and light scattering were used to analyze the interaction of duck gizzard tropomyosin (tropomyosin) with rabbit skeletal-muscle F-actin. In the absence of F-actin, tropomyosin, represented mainly by heterodimers, unfolds at 41 degrees C with a sharp thermal transition. Interaction of tropomyosin heterodimers with F-actin causes a 2-6 degrees C shift in the tropomyosin thermal transition to higher temperature, depending on the tropomyosin/actin molar ratio and protein concentration. A pronounced shift of the tropomyosin thermal transition was observed only for tropomyosin heterodimers, and not for homodimers. The most pronounced effect was observed after complete saturation of F-actin with tropomyosin molecules, at tropomyosin/actin molar ratios > 1 : 7. Under these conditions, two well-separated peaks of tropomyosin were observed on the thermogram besides the peak of F-actin, the peak characteristic of free tropomyosin heterodimer, and the peak with a maximum at 45-47 degrees C corresponding to tropomyosin bound to F-actin. By measuring the temperature-dependence of light scattering, we found that thermal unfolding of tropomyosin is accompanied by its dissociation from F-actin. Thermal unfolding of tropomyosin is almost completely reversible, whereas F-actin denatures irreversibly. The addition of tropomyosin has no effect on thermal unfolding of F-actin, which denatures with a maximum at 64 degrees C in the absence and at 78 degrees C in the presence of a twofold molar excess of phalloidin. After the F-actin-tropomyosin complex had been heated to 90 degrees C and then cooled (i.e. after complete irreversible denaturation of F-actin), only the peak characteristic of free tropomyosin was observed on the thermogram during reheating, whereas the thermal transitions of F-actin and actin-bound tropomyosin completely disappeared. Therefore, the DSC method allows changes in thermal unfolding of tropomyosin resulting from its interaction with F-actin to be probed very precisely.  相似文献   

9.
Kononenko  A. V.  Dembo  K. A.  Kisselev  L. L.  Volkov  V. V. 《Molecular Biology》2004,38(2):253-260
The integral structural parameters and the shape of the molecule of human translation termination factor eRF1 were determined from the small-angle X-ray scattering in solution. The molecular shapes were found by bead modeling with nonlinear minimization of the root-mean-square deviation of the calculated from the experimental scattering curve. Comparisons of the small-angle scattering curves computed for atomic-resolution structures of eRF1 with the experimental data on scattering from solution testified that the crystal and the solution conformations are close. In the ribosome, the distance between the eRF1 motifs GGQ and NIKS must be shorter than in crystal or solution (75 versus 100–107 Å). Therefore, like its bacterial counterpart RF2, the eukaryotic eRF1 must change its conformation as it binds to the ribosome. The conformational mobility of eukaryotic and prokaryotic class-1 release factors is another feature making them functionally akin to tRNA.  相似文献   

10.
Summary Malate synthase was investigated by the small-angle X-ray scattering technique in aqueous solution. Measurements extending for several hours revealed a continuous increase of the intensity in the innermost portion of the scattering curve. There is clear evidence that this increase was caused by an X-ray induced aggregation of enzyme particles during the performance of the small-angle X-ray scattering experiment. The monitoring of the aggregation process in situ by means of small-angle X-ray scattering led to a model of the way how the aggregation might proceed. The analysis of the scattering curves of malate synthase taken at various stages of aggregation established the retention of the thickness factor of the native enzyme and the occurrence of one and later on of two cross-section factors. The process of aggregation was also reflected by the increase of extension of the distance distribution function. According to these results, the first step of aggregation might be a linear side-by-side association of the oblate enzyme particles, a process which is followed by a twodimensional aggregation. An aggregation in the third dimension was not observed during the time covered by our experiment. The predominance of aggregation in only one or two dimensions was corroborated by comparison of appropriate theoretical scattering curves with the experimental curves. The theoretical scattering curves for this comparison were obtained by averaging over the properly weighted scattering curves calculated for various species of hypothetical aggregates. The time dependence of the apparent mean radius of gyration was used to compare the aggregation of enzyme samples that were irradiated under different experimental conditions. It turned out that by addition of dithiothreitol to the enzyme solutions as well as in the presence of the substrates (acetyl-CoA, glyoxylate) or of a substrate analogue (pyruvate) or of ethanol the rate of aggregation is reduced. Enzymic activity was found to decrease about exponentially with increasing X-ray dose. The presence of dithiothreitol or of the substrate glyoxylate or of the substrate analogue pyruvate protects the enzyme against X-ray induced inactivation. The substrate acetyl-CoA does not exhibit a comparable protective effect against inactivation. Measurements of enzymic activity and small-angle X-ray scattering on samples, which had been X-irradiated with a defined dose prior to the measurements, established two different series of efficiency for the protection of the enzyme against aggregation (pyruvate > glyoxylate > acetyl-CoA) and inactivation (glyoxylate > pyruvate > $$ " align="middle" border="0"> acetyl-CoA). The results showed that there is no direct relation between the extent of aggregation and the loss of enzymic activity.  相似文献   

11.
The integral structural parameters and the shape of the molecule of human translation termination factor eRF1 were determined from the small-angle X-ray scattering in solution. The molecular shapes were found by bead modeling with nonlinear minimization of the root-mean-square deviation of the calculated from the experimental scattering curve. Comparisons of the small-angle scattering curves computed for atomic-resolution structures of eRF1 with the experimental data on scattering from solution testified that the crystal and the solution conformations are close. In the ribosome, the distance between the eRF1 motifs GGQ and NIKS must be shorter than in crystal or solution (75 versus 107-112 A). Therefore, like its bacterial counterpart RF2, the eukaryotic eRF1 must change its conformation as it binds to the ribosome. The conformational mobility of eukaryotic and prokaryotic class-1 release factors is another feature making them functionally akin to tRNA.  相似文献   

12.
The gyration radius (R0) of native streptokinase (SK) was found to be R0 = (40 +/- ) A by small-angle X-ray scattering. Experimental hydrodynamic characteristics of SK were S0(20),W = (2.8 +/- 0.1)S; D0(20),W = (6.0 +/- 0.5) x 10(-7) cm2/s; [n] = 0.12 dl/g. The molecular weight of the enzyme was found to be 44,000. The values of the form factor R0/Rsphere = 2.1 and the frictional ratio f/f0 = 1.5 indicate considerable anisometry of the SK molecule. Basing on the curves of small-angle X-ray scattering of SK modified with a synthetic linear copolymer of N-vinylpyrrolidone (P) at a molar ratio SK less than P, a structural model of the conjugate was proposed. The modified form consisted of a dense nucleus covered with a diffuse polymeric membrane. In accordance with the model, R0 of modified SK and of the whole conjugate were found to be R0nucleus = (34 +/- 2) A and R0conjugate = (114 +/- 5)A.  相似文献   

13.
The N-terminal domains of cardiac myosin binding protein C (MyBP-C) play a regulatory role in modulating interactions between myosin and actin during heart muscle contraction. Using NMR spectroscopy and small-angle neutron scattering, we have determined specific details of the interaction between the two-module human C0C1 cMyBP-C fragment and F-actin. The small-angle neutron scattering data show that C0C1 spontaneously polymerizes monomeric actin (G-actin) to form regular assemblies composed of filamentous actin (F-actin) cores decorated by C0C1, similar to what was reported in our earlier four-module mouse cMyBP-C actin study. In addition, NMR titration analyses show large intensity changes for a subset of C0C1 peaks upon addition of G-actin, indicating that human C0C1 interacts specifically with actin and promotes its assembly into filaments. During the NMR titration, peaks corresponding to cardiac-specific C0 domain are the first to be affected, followed by those from the C1 domain. No peak intensity or position changes were detected for peaks arising from the disordered proline/alanine-rich (P/A) linker connecting C0 with C1, despite previous suggestions of its involvement in binding actin. Of considerable interest is the observation that the actin-interaction “hot-spots” within the C0 and C1 domains, revealed in our NMR study, overlap with regions previously identified as binding to the regulatory light chain of myosin and to myosin ΔS2. Our results suggest that C0 and C1 interact with myosin and actin using a common set of binding determinants and therefore support a cMyBP-C switching mechanism between myosin and actin.  相似文献   

14.
The structure of tumour necrosis factor has been investigated by X-ray small-angle scattering and X-ray diffraction using synchrotron radiation. The overall radius of gyration is 25.5 A. A plausible model accounting for the scattering curves consists of an elongated trimer with an axial ratio of 3 to 4 and a maximal chord with a lower limit of 80 A. Tumour necrosis factor has been crystallized in a trigonal space group. Our results are in favour of a single trimer in the asymmetric unit. The diffraction extends to 3.5 A.  相似文献   

15.
The glucagon-like peptide 1 (GLP-1) analog, liraglutide, is a GLP-1 agonist and is used in the treatment of type-2 diabetes mellitus and obesity. From a pharmaceutical perspective, it is important to know the oligomerization state of liraglutide with respect to stability. Compared to GLP-1, liraglutide has an added fatty acid (FA) moiety that causes oligomerization of liraglutide as suggested by small-angle x-ray scattering (SAXS) and multiangle static light scattering (MALS) results. SAXS data suggested a global shape of a hollow elliptical cylinder of size hexa-, hepta-, or octamer, whereas MALS data indicate a hexamer. To elaborate further on the stability of these oligomers and the role of the FA chains, a series of molecular-dynamics simulations were carried out on 11 different hexa-, hepta-, and octameric systems. Our results indicate that interactions of the fatty acid chains contribute noticeably to the stabilization. The simulation results indicate that the heptamer with paired FA chains is the most stable oligomer when compared to the 10 other investigated structures. Theoretical SAXS curves extracted from the simulations qualitatively agree with the experimentally determined SAXS curves supporting the view that liraglutide forms heptamers in solution. In agreement with the SAXS data, the heptamer forms a water-filled oligomer of elliptical cylindrical shape.  相似文献   

16.
Sarcomeres, the basic contractile units of striated muscle cells, contain arrays of thin (actin) and thick (myosin) filaments that slide past each other during contraction. The Ig-like domain-containing protein myotilin provides structural integrity to Z-discs—the boundaries between adjacent sarcomeres. Myotilin binds to Z-disc components, including F-actin and α-actinin-2, but the molecular mechanism of binding and implications of these interactions on Z-disc integrity are still elusive. To illuminate them, we used a combination of small-angle X-ray scattering, cross-linking mass spectrometry, and biochemical and molecular biophysics approaches. We discovered that myotilin displays conformational ensembles in solution. We generated a structural model of the F-actin:myotilin complex that revealed how myotilin interacts with and stabilizes F-actin via its Ig-like domains and flanking regions. Mutant myotilin designed with impaired F-actin binding showed increased dynamics in cells. Structural analyses and competition assays uncovered that myotilin displaces tropomyosin from F-actin. Our findings suggest a novel role of myotilin as a co-organizer of Z-disc assembly and advance our mechanistic understanding of myotilin’s structural role in Z-discs.

Myotilin is a scaffold protein in the Z-disc, the boundary between adjacent sarcomeres, aiding structural integrity via multiple interactions, including F-actin and α-actinin-2. An integrative structural model of the complex between myotilin and F-actin reveals that myotilin displaces tropomyosin from F-actin, implying a novel role of myotilin in sarcomere biogenesis beyond a mere interaction hub.  相似文献   

17.
The scattered X-ray intensities from dilute solutions of tRNASer (yeast) in 0.1 M Soerensen buffer at pH 7.0 were measured at 25 degrees C. The radius of gyration, molecular weight and volume were determined. A model equivalent in scattering is given. The change of the conformation of tRNASer by heating was followed by small-angle X-ray measurements and ultraviolet absorption in a temperature range 20-70 degrees C. The molecule begins to unfold at about 40 degrees C and 70 degrees C has a random coil conformation. Addition of magnesium stabilizes the tRNASer molecule. The reversibility of the melting process was also studied by both methods. An interesting effect was found by ultraviolet absorption: by heating the tRNASer solutions to 55 degrees C and 60 degrees C and subsequently slowly cooling, the melting curves lie at higher absorption values than the corresponding cooling curves. The small-angle data and optical properties of tRNASer are compared with those of tRNAPhe which has already been thoroughly investigated.  相似文献   

18.
The structural properties of the linker peptide connecting the cellulose-binding module to the catalytic module in bimodular cellulases have been investigated by small-angle x-ray scattering. Since the linker and the cellulose-binding module are relatively small and cannot be readily detected separately, the conformation of the linker was studied by means of an artificial fusion protein, Cel6BA, in which an 88-residue linker connects the large catalytic modules of the cellulases Cel6A and Cel6B from Humicola insolens. Our data showed that Cel6BA is very elongated with a maximum dimension of 178 A, but could not be described by a single conformation. Modeling of a series of Cel6BA conformers with interdomain separations ranging between 10 A and 130 A showed that good Guinier and P(r) profile fits were obtained by a weighted average of the scattering curves of all the models where the linker follows a nonrandom distribution, with a preference for the more compact conformers. These structural properties are likely to be essential for the function of the linker as a molecular spring between the two functional modules. Small-angle x-ray scattering therefore provides a unique tool to quantitatively analyze the conformational disorder typical of proteins described as natively unfolded.  相似文献   

19.
The phase structure of isolated bacterial lipid A, the lipid anchor of the lipopolysaccharides of the outer membrane of Gram-negative bacteria, has been investigated by neutron small-angle scattering. The shape of the scattering curves obtained at different H2O/2H2O ratios revealed a lamellar organisation of the lipid A at neutral pH both above and below its main phase temperature (approximately 40-45 degrees C). Analysis of the scattering curves and interpretation of the corresponding thickness distance distribution functions of the lamellar aggregates led to a model in which the lipid A molecules form a bilayer of about 5 nm in thickness. This value for the thickness of the bilayer, as well as the neutron-scattering density profile across the bilayer, can be explained by a molecular model which shows interdigitation of the fatty acid chains of the lipid A.  相似文献   

20.
The thermotropic phase behavior of monosialoganglioside in a dilute aqueous dispersion at pH 6.8 was measured by using synchrotron radiation small-angle x-ray scattering and was analyzed by a shell-modeling method. Previous calorimetric studies on ganglioside systems have shown quite different thermotropic behaviors from other biological lipid systems, however, the details have still been ambiguous. Because of high statistical data and a shell-modeling analysis, we could elucidate the internal structural change of monosialoganglioside micelle induced by the elevation of temperature from 6 to 60 degrees C, that is, the shrinkage of the hydrophilic region and the slight expansion of the hydrophobic region occurring simultaneously, accompanying the elongation of the axial ratios of the ellipsoidal micelles. The model structures obtained explain the changes in the experimental scattering curves, the distance distribution functions, and the gyration radii. In addition we have also found an evident thermal hysteresis in the scattering curves and in the structural parameters. The present result suggests that the thickness of the hydrophilic region, namely, the conformation of oligosaccharide chains, is sensitive to a change of temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号