首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 991 毫秒
1.
The lectin pathway of complement is activated when a carbohydrate recognition complex and associated serine proteases binds to the surface of a pathogen. Three recognition subcomponents have been shown to form active initiation complexes: mannan-binding lectin (MBL), L-ficolin, and H-ficolin. The importance of MBL in antimicrobial host defense is well recognized, but the role of the ficolins remains largely undefined. This report shows that L-ficolin specifically binds to lipoteichoic acid (LTA), a cell wall component found in all Gram-positive bacteria. Immobilized LTA from Staphylococcus aureus binds L-ficolin complexes from sera, and these complexes initiate lectin pathway-dependent C4 turnover. C4 activation correlates with serum L-ficolin concentration, but not with serum MBL levels. L-ficolin binding and corresponding levels of C4 turnover were observed on LTA purified from other clinically important bacteria, including Streptococcus pyogenes and Streptococcus agalactiae. None of the LTA preparations bound MBL, H-ficolin, or the classical pathway recognition molecule, C1q.  相似文献   

2.
Ficolins are pattern recognition molecules of the innate immune system. H-ficolin is found in plasma associated with mannan-binding lectin-associated serine proteases (MASPs). When H-ficolin binds to microorganisms the MASPs are activated, which in turn activate the complement system. H-ficolin is the most abundant ficolin in humans, yet its ligand binding characteristics and biological role remain obscure. We examined the binding of H-ficolin to Aerococcus viridans as well as to a more defined artificial target, i.e. acetylated bovine serum albumin. A strict dependence for calcium ions and inhibition at high NaCl concentration was found. The binding to acetylated bovine serum albumin was inhibited by acetylsalicylic acid and sodium acetate as well as by N-acetylated glucosamine and galactosamine (GlcNAc and GalNAc) and glycine (GlyNAc). The binding to A. viridans was sensitive to the same compounds, but, importantly, higher concentrations were needed for inhibition. N-Acetylated cysteine was also inhibitory, but this inhibition was parallel with reduction in the oligomerization of H-ficolin and thus represents structural changes of the molecule. Based on our findings, we developed a procedure for the purification of H-ficolin from serum, involving PEG precipitation, affinity chromatography on Sepharose derivatized with acetylated serum albumin, ion exchange chromatography, and gel permeation chromatography. The purified H-ficolin was observed to elute at 700 kDa, similar to what we find for H-ficolin in whole serum. MASP-2 was co-purified with H-ficolin, and the purified H-ficolin·MASP-2 complex could activate complement as measured by cleavage of complement factor C4. This study extends our knowledge of the specificity of this pattern recognition molecule, and the purified product will enable further studies.  相似文献   

3.
Ficolin is a collagenous lectin which plays a crucial role in innate immunity. Three and two ficolins have been identified in human and mice, respectively. To identify the mouse homologue of human H-ficolin and to elucidate the orthology between mouse ficolins A/B and human L-/M-ficolins, the gene structures were explored. The mouse homologue of the H-ficolin gene was identified as a pseudogene on chromosome 4. The mouse ficolin A gene was located far from the ficolin B gene on chromosome 2, whereas the human L-ficolin and M-ficolin genes were close in the region homologous to the ficolin B locus. Together with the exon-intron structures and the phylogenetic tree, these results suggest that ficolin B is the mouse orthologue of M-ficolin and that the genes encoding serum-type ficolins, ficolin A and L-ficolin, were generated independently from the ficolin B/M-ficolin lineage each in mice and primates.  相似文献   

4.
Ficolins are proteins characterized by the presence of collagen- and fibrinogen-like domains. Two of three human ficolins, L-ficolin and H-ficolin, are serum lectins and are thought to play crucial roles in host defense through opsonization and complement activation. To elucidate the evolution of ficolins and the primordial complement lectin pathway, we cloned four ficolin cDNAs from Xenopus laevis, termed Xenopus ficolin (XeFCN) 1, 2, 3 and 4. The deduced amino acid sequences of the four ficolins revealed the conserved collagen- and fibrinogen-like domains. The full sequences of the four ficolins showed a 42-56% identity to human ficolins, and 60-83% between one another. Northern blots showed that XeFCN1 was expressed mainly in liver, spleen and heart, and XeFCN2 and XeFCN4 mainly in peripheral blood leukocytes, lung and spleen. We isolated ficolin proteins from Xenopus serum by affinity chromatography on N-acetylglucosamine-agarose, followed by ion-exchange chromatography. The final eluate showed polymeric bands composed of two components of 37 and 40 kDa. The N-terminal amino acid sequences and treatment with endoglycosidase F showed that the two bands are the same XeFCN1 protein with different masses of N-linked sugar. The polymeric form of the two types of XeFCN1 specifically recognized GlcNAc and GalNAc residues. These results suggest that like human L-ficolin, XeFCN1 functions in the circulation through its lectin activity.  相似文献   

5.
The collectins have been shown to have a role in host defense against influenza A virus (IAV) and other significant viral pathogens (e.g., HIV). The ficolins are a related group of innate immune proteins that are present at relatively high concentrations in serum, but also in respiratory secretions; however, there has been little study of the role of ficolins in viral infection. In this study, we demonstrate that purified recombinant human H-ficolin and H-ficolin in human serum and bronchoalveolar lavage fluid bind to IAV and inhibit viral infectivity and hemagglutination activity in vitro. Removal of ficolins from human serum or bronchoalveolar lavage fluid reduces their antiviral activity. Inhibition of IAV did not involve the calcium-dependent lectin activity of H-ficolin. We demonstrate that H-ficolin is sialylated and that removal of sialic acid abrogates IAV inhibition, while addition of the neuraminidase inhibitor oseltamivir potentiates neutralization, hemagglutinin inhibition, and viral aggregation caused by H-ficolin. Pandemic and mouse-adapted strains of IAV are generally not inhibited by the collectins surfactant protein D or mannose binding lectin because of a paucity of glycan attachments on the hemagglutinin of these strains. In contrast, H-ficolin inhibited both the mouse-adapted PR-8 H1N1 strain and a pandemic H1N1 strain from 2009. H-ficolin also fixed complement to a surface coated with IAV. These findings suggest that H-ficolin contributes to host defense against IAV.  相似文献   

6.
Three types of ficolins have been identified in humans: L-ficolin, M-ficolin, and H-ficolin. Similar to mannose-binding lectin, L-ficolin and H-ficolin are the recognition molecules in the lectin complement pathway. Another human ficolin, M-ficolin, is a nonserum ficolin that is expressed in leukocytes and lung; however, little is known about its physiologic roles. In this study, we report the characterization of M-ficolin in terms of its protein localization and lectin activity. M-ficolin was localized in secretory granules in the cytoplasm of neutrophils, monocytes, and type II alveolar epithelial cells in lung. M-ficolin precipitated with mannose-binding lectin-associated serine proteases (MASP)-1 and MASP-2 in a co-immunoprecipitation assay, indicating that M-ficolin forms complexes with MASP-1 and MASP-2. M-ficolin-MASP complexes activated complement on N-acetylglucosamine (GlcNAc)-coated microplates in a C4 deposition assay. M-ficolin bound to several neoglycoproteins bearing GlcNAc, N-acetylgalactosamine, and sialyl-N-acetyllactosamine, suggesting that M-ficolin can recognize the common carbohydrate residues found in microbes. Indeed, M-ficolin bound to Staphylococcus aureus through GlcNAc. These results indicate that M-ficolin, like its family members, functions as a recognition molecule of the lectin complement pathway and plays an important role in innate immunity.  相似文献   

7.
Activation of the lectin complement pathway by H-ficolin (Hakata antigen)   总被引:11,自引:0,他引:11  
Ficolins are a group of proteins which consist of a collagen-like domain and a fibrinogen-like domain. In human serum, there are two types of ficolins named L-ficolin/P35 and H-ficolin (Hakata Ag), both of which have lectin activity. We recently demonstrated that L-ficolin/P35 is associated with mannose-binding lectin (MBL)-associated serine proteases (MASP) 1 and 2 and small MBL-associated protein (sMAP), and that the complex activates the lectin pathway. In this study, we report the characterization of H-ficolin in terms of its ability to activate complement. Western blotting analysis showed the presence of MASP-1, MASP-2, MASP-3, and sMAP in H-ficolin preparations isolated from Cohn Fraction III. The MASPs in the preparations had proteolytic activities against C4, C2, and C3 in the fluid phase. When H-ficolin preparations were bound to anti-H-ficolin Ab which had been coated on ELISA plates, they activated C4, although no C4 activation was noted when anti-MBL and anti-L-ficolin/P35 were used. H-ficolin binds to PSA, a polysaccharide produced by Aerococcus viridans. C4 was activated by H-ficolin preparations bound to PSA which had been coated on ELISA plates. These results indicate that H-ficolin is a second ficolin which is associated with MASPs and sMAP, and which activates the lectin pathway.  相似文献   

8.
CD91 plays an important role in the scavenging of apoptotic material, possibly through binding to soluble pattern-recognition molecules. In this study, we investigated the interaction of CD91 with mannan-binding lectin (MBL), ficolins and lung surfactant proteins. Both MBL and L-ficolin were found to bind CD91. The MBL-CD91 interaction was time- and concentration-dependent and could be inhibited by known ligands of CD91. MBL-associated serine protease 3 (MASP-3) also inhibited binding between MBL and CD91, suggesting that the site of interaction is located at or near the MASP-MBL interaction site. This was confirmed by using MBL mutants deficient for MASP binding that were unable to interact with CD91. These findings demonstrate that MBL and L-ficolin interact with CD91, strongly suggesting that they have the potential to function as soluble recognition molecules for scavenging microbial and apoptotic material by CD91.  相似文献   

9.
Ficolins are oligomeric innate immune recognition proteins consisting of a collagen-like region and a fibrinogen-like recognition domain that bind to pathogen- and apoptotic cell-associated molecular patterns. To investigate their carbohydrate binding specificities, serum-derived L-ficolin and recombinant H- and M-ficolins were fluorescently labeled, and their carbohydrate binding ability was analyzed by glycan array screening. L-ficolin preferentially recognized disulfated N-acetyllactosamine and tri- and tetrasaccharides containing terminal galactose or N-acetylglucosamine. Binding was sensitive to the position and orientation of the bond between N-acetyllactosamine and the adjacent carbohydrate. No significant binding of H-ficolin to any of the 377 glycans probed could be detected, providing further evidence for its poor lectin activity. M-ficolin bound preferentially to 9-O-acetylated 2-6-linked sialic acid derivatives and to various glycans containing sialic acid engaged in a 2-3 linkage. To further investigate the structural basis of sialic acid recognition by M-ficolin, point mutants were produced in which three residues of the fibrinogen domain were replaced by their counterparts in L-ficolin. Mutations G221F and A256V inhibited binding to the 9-O-acetylated sialic acid derivatives, whereas Y271F abolished interaction with all sialic acid-containing glycans. The crystal structure of the Y271F mutant fibrinogen domain was solved, showing that the mutation does not alter the structure of the ligand binding pocket. These analyses reveal novel ficolin ligands such as sulfated N-acetyllactosamine (L-ficolin) and gangliosides (M-ficolin) and provide precise insights into the sialic acid binding specificity of M-ficolin, emphasizing the essential role of Tyr271 in this respect.  相似文献   

10.

Background

In HIV-infected patients, prediction of Cytomegalovirus (CMV) disease remains difficult. A protective role of mannan-binding lectin (MBL) and ficolins against CMV disease has been reported after transplantation, but the impact in HIV-infected patients is unclear.

Methods

In a case-control study nested within the Swiss HIV Cohort Study, we investigated associations between plasma levels of MBL/ficolins and CMV disease. We compared HIV-infected patients with CMV disease (cases) to CMV-seropositive patients without CMV disease (controls) matched for CD4 T-cells, sampling time, and use of combination antiretroviral therapy. MBL and M-ficolin, L-ficolin, and H-ficolin were quantified using ELISA.

Results

We analysed 105 cases and 105 matched controls. CMV disease was neither associated with MBL (odds ratio [OR] 1.03 per log10 ng/mL increase (95% CI 0.73–1.45)) nor with ficolins (OR per log10 ng/mL increase 0.66 (95% CI 0.28–1.52), 2.34 (95% CI 0.44–12.36), and 0.89 (95% CI 0.26–3.03) for M-ficolin, L-ficolin, and H-ficolin, respectively). We found no evidence of a greater association between MBL and CMV disease in patients with low CD4 counts; however in the multivariable analysis, CMV disease was more likely in patients with an increased HIV RNA (OR 1.53 per log10 copies/mL; 95% CI 1.08–2.16), or a shorter duration of HIV-infection (OR 0.91 per year; 95% CI 0.84–0.98).

Conclusions

CMV disease is not associated with low levels of MBL/ficolins, suggesting a lack of a protective role in HIV-infected patients.  相似文献   

11.
Innate immunity relies critically upon the ability of a few pattern recognition molecules to sense molecular markers on pathogens, but little is known about these interactions at the atomic level. Human L- and H-ficolins are soluble oligomeric defence proteins with lectin-like activity, assembled from collagen fibers prolonged by fibrinogen-like recognition domains. The X-ray structures of their trimeric recognition domains, alone and in complex with various ligands, have been solved to resolutions up to 1.95 and 1.7 A, respectively. Both domains have three-lobed structures with clefts separating the distal parts of the protomers. Ca(2+) ions are found at sites homologous to those described for tachylectin 5A (TL5A), an invertebrate lectin. Outer binding sites (S1) homologous to the GlcNAc-binding pocket of TL5A are present in the ficolins but show different structures and specificities. In L-ficolin, three additional binding sites (S2-S4) surround the cleft. Together, they define an unpredicted continuous recognition surface able to sense various acetylated and neutral carbohydrate markers in the context of extended polysaccharides such as 1,3-beta-D-glucan, as found on microbial or apoptotic surfaces.  相似文献   

12.
The recognition step in the phagocytotic process of the unicellular amoeba dictyostelium discoideum was examined by analysis of mutants defective in phagocytosis, Reliable and simple assays were developed to measure endocytotic uptake. For pinocytosis, FITC-dextran was found to be a suitable fluid-phase marker; FITC-bacteria, latex beads, and erythrocytes were used as phagocytotic substrates. Ingested material was isolated in one step by centrifuging through highly viscous poly(ethyleneglycol) solutions and was analyzed optically. A selection procedure for isolating mutants defective in phagocytosis was devised using tungsten beads as particulate prey. Nonphagocytosing cells were isolated on the basis of their lower density. Three mutant strains were found exhibiting a clear-cut phenotype directly related to the phagocytotic event. In contrast to the situation in wild-type cells, uptake of E. coli B/r by mutant cells is specifically and competitively inhibited by glucose. Mutant amoeba phagocytose latex beads normally but not protein-coated latex, nonglucosylated bacteria, or erythrocytes. Cohesive properties of mutant cells are altered: they do not form EDTA-sensitive aggregates, and adhesiveness to glass or plastic surfaces is greatly reduced. Based upon these findings, a model for recognition in phagocytosis is proposed: (a) A lectin-type receptor specifically mediates binding of particles containing terminal glucose (E. coli B/r). (b) A second class of "nonspecific" receptors mediate binding of a variety of particles by hydrophobic interaction. Nonspecific binding is affected by mutation in such a way that only strongly hydrophobic (latex) but not more hydrophilic particles (e.g., protein-coated latex, bacteria, erythrocytes) can be phagocytosed by mutant amoebae.  相似文献   

13.
Chitosan beads were modified with glutaraldehyde and modified chitosan was investigated as matrix for hydrophobic interaction chromatography. The influence of temperature, type of salt and its ionic strength on the adsorption of -galactosidase was studied. -Galactosidase was found to bind in presence of high concentration of ammonium sulphate (3 M, w/v) and 90% of the bound enzyme was eluted with decreasing salt concentration in presence of 10% ethylene glycol. Attempt was made to purify -galactosidase from modified chitosan, -galactosidase showed 1.7-fold purification with 43.96% recovery of enzyme activity. The SDS–PAGE analysis of enzyme showed considerable purification and its molecular weight was found to be 63–64 kDa. Unlike other chromatographic matrices, the prepared chitosan beads were used five times. The results showed that purification and recovery of the enzyme did not change even when column size was increased.  相似文献   

14.
Since the development of affinity chromatography, affinity purification technology has been applied to many aspects of biological research, becoming an indispensable tool. Efficient strategies for the identification of biologically active compounds based on biochemical specificity have not yet been established, despite widespread interest in identifying chemicals that directly alter biomolecular functions. Here, we report a novel method for purifying chemicals that specifically interact with a target biomolecule using reverse affinity beads, a receptor-immobilized high-performance solid-phase matrix. When FK506-binding protein 12 (FKBP12) immobilized beads were used in this process, FK506 was efficiently purified in one step either from a mixture of chemical compounds or from fermented broth extract. The reverse affinity beads facilitated identification of drug/receptor complex binding proteins by reconstitution of immobilized ligand/receptor complexes on the beads. When FKBP12/FK506 and FKBP12/rapamycin complexes were immobilized, calcineurin and FKBP/rapamycin-associated protein were purified from a crude cell extract, respectively. These data indicate that reverse affinity beads are powerful tools for identification of both specific ligands and proteins that interact with receptor/ligand complexes.  相似文献   

15.
Several affinity chromatography reagents have been proposed for purification of progesterone receptor (PgR), and significant results have been achieved with some of these. None, however, have approached the results achieved in affinity chromatography of estrogen receptor. We have therefore synthesized a number of new 19-nortestosterone derivatives capable of chemically stable linkage with Sepharose beads, and have identified one with very high PgR affinity for further study. We first synthesized the epoxides of 17α-allyl nortestosterone, by analogy with the estradiol derivatization of Greene and Jensen. The relative affinity of these epoxides for PgR from T47D human breast cancer cells, however, was only around 5% that of R5020, and affinity beads prepared from them bound very little PgR. We then reacted appropriately protected 17α-ethynyl-nortestosterone with a series of diiodo alkanes, and found that 17α-(6'-iodohex-1'-ynyl)nortestosterone had an affinity of 22% relative to R5020, equal to the affinity of progesterone itself. Reaction with Thiopropyl-Sepharose 6B yielded hexynyl-nortestosterone-Sepharose beads with a ligand density of about 7 micromoles/ml beads. One-hundred μl of these beads adsorbed 71% of the PgR present in 1 ml ofcytosol from T47D cells. This adsorption was inhibited by 10 μM progesterone but not Cortisol, indicating the specificity of the binding. Comparisions with NADAC and Sterogel, other affinity beads used for PgR purification, show that the former takes up much less receptor, while the latter takes up and releases similar amounts of receptor but more extraneous protein, and is less stable. We therefore believe that hexynyl-nortestosterone-Sepharose, having a high density of a high affinity ligand, and having chemically and biochemically stable covalent bonds, should be a good reagent for affinity purification of PgR.  相似文献   

16.
The innate immune response in vertebrates and invertebrates requires the presence of pattern recognition receptors or proteins that recognize microbial cell components including lipopolysaccharide, bacterial peptidoglycan (PGN), and fungal 1,3-beta-D-glucan. We reported previously that PGN and 1,3-beta-D-glucan recognition proteins from insect hemolymph were able to induce the activation of the prophenoloxidase-activating system, one of the major invertebrate innate immune reactions. The goal of this study was to characterize the biochemical properties and effects of the human counterparts of these molecules. Soluble pattern recognition proteins were purified from human serum and identified as human mannose-binding lectin (MBL) and L-ficolin. The use of specific microbial cell component-coupled columns demonstrated that MBL and L-ficolin bind to PGN and 1,3-beta-D-glucan, respectively. Purified MBL and L-ficolin were associated with MBL-associated serine proteases-1 and -2 (MASPs) and small MBL-associated protein as determined by Western blot analysis. Finally, the binding of purified MBL/MASP and L-ficolin/MASP complexes to PGN and 1,3-beta-D-glucan, respectively, resulted in the activation of the lectin-complement pathway. These results indicate that human PGN and 1,3-beta-D-glucan recognition proteins function as complement-activating lectins.  相似文献   

17.
The characterization of phosphorylated proteins is a challenging analytical task since many of the proteins targeted for phosphorylation are low in abundance and phosphorylation is typically substoichiometric. Highly efficient enrichment procedures are therefore required. Here we describe a protocol for selective phosphopeptide enrichment using titanium dioxide (TiO2) chromatography. The selectivity toward phosphopeptides is obtained by loading the sample in a 2,5-dihydroxybenzoic acid (DHB) or phthalic acid solution containing acetonitrile and trifluoroacetic acid (TFA) onto a TiO2 micro-column. Although phosphopeptide enrichment can be achieved by using TFA and acetonitrile alone, the selectivity is dramatically enhanced by adding DHB or phthalic acid since these compounds, in conjunction with the low pH caused by TFA, prevent binding of nonphosphorylated peptides to TiO2. Using an alkaline solution (pH > or = 10.5) both monophosphorylated and multiphosphorylated peptides are eluted from the TiO2 beads. This highly efficient method for purification of phosphopeptides is well suited for the characterization of phosphoproteins from both in vitro and in vivo studies in combination with mass spectrometry (MS). It is a very easy and fast method. The entire protocol requires less than 15 min per sample if the buffers have been prepared in advance (not including lyophilization).  相似文献   

18.
The hydrazones of glucose and N-acetylglucosamine, as models for the residues at the reducing termini of glycans, were covalently and reversibly bound in good yield to hydroxybenzaldehydo ligands attached to a polymer support. The binding, by a sugar azine linkage, occurred within two hours at room temperature at neutral pH, and efficient recoveries of sugars from the beads were achieved by displacement with aqueous hydrazine hydrate, ethanolic benzaldehyde, or aqueous acetone. Enzyme modification of glycans was demonstrated by separation of the products of hydrolysis of lactose hydrazone with -galactosidase, using hydroxybenzaldehyde-derivatized polystyrene beads. Addition of a spacer arm to aminopolystyrene beads, for binding of reducing sugars as Amadori compounds to the aromatic amine function, was also investigated.  相似文献   

19.
Bryohealin is a lectin involved in the wound-healing process of the marine green alga Bryopsis plumosa. In the previous purification study, it has been shown that lectin was composed of two identical subunits of 27 kDa, cross-linked by disulfide bond, and showed binding specificity to N-acetyl-d-glucosamine and N-acetyl-d-galactosamine (GlcNAc and GalNAc, respectively). To determine if the lectin recognize the two different sugars at the same binding domain, the carbohydrate binding sites of Bryohealin was analyzed using chromatography and chemical modification methods. Results showed that the same binding site of the lectin was responsible for the recognition of two sugars, GalNAc as well as GlcNAc. Chemical modification studies showed that hemagglutinating activities of Bryohealin were not affected by modification of histidine, tryptophan, aspartic acid, and glutamic acid. When arginine residues were modified with 1,2-cyclohexanedione, the activity of Bryohealin rapidly decreased. The sugar binding sites remained intact when the lectin was treated with inhibitory sugars (0.2 M GalNAc and/or GlcNAc) prior to 1,2-cyclohexanedione treatment. The sugar binding domain of Bryohealin was predicted from the MALDI-TOF analysis and the full cDNA sequence of the lectin gene.  相似文献   

20.
This paper deals with the isolation and partial characterization of a protein capable of high affinity sulfobromophthalein-binding from liver plasma membrane. The purification involves acetone powder of a crude preparation of rat liver plasma membrane, salt extraction and purification through two chromatographic steps. Based on sulfobromophthalein binding, the process gives a yield of approximately 40%, with a purification of about 300 times with respect to the starting homogenate. The best preparation can bind more than 100 nmol sulfobromophthalein/mg protein. The protein behaves as a single species in dodecyl sulphate polyacrylamide gel electrophoresis, with an apparent molecular weight of 1.7 . 10(5). The molecule does not contain sugars. The dissociation constant of the protein . sulfobromophthalein complex has been found to be 4. 10(-6) M, a value in agreement with that of high affinity binding sites described on isolated liver plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号