首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Stone EM  Person MD  Costello NJ  Fast W 《Biochemistry》2005,44(18):7069-7078
Dimethylarginine dimethylaminohydrolase (DDAH) regulates the concentrations of human endogenous inhibitors of nitric oxide synthase, N(omega)-methyl-l-arginine (NMMA), and asymmetric N(omega),N(omega)-dimethyl-l-arginine (ADMA). Pharmacological regulation of nitric oxide synthesis is an important goal, but the catalytic mechanism of DDAH remains largely unexplored. A DDAH from Pseudomonas aeruginosa was cloned, and asymmetrically methylated arginine analogues were shown to be the preferred substrates, with ADMA displaying a slightly higher k(cat)/K(M) value than NMMA. DDAH is similar to members of a larger superfamily of guanidino-modifying enzymes, some of which have been shown to use an S-alkylthiouronium intermediate during catalysis. No covalent intermediates were found to accumulate during steady-state turnover reactions of DDAH with NMMA or ADMA. However, identification of a new substrate with an activated leaving group, S-methyl-l-thiocitrulline (SMTC), enabled acid trapping and ESI-MS characterization of a transient covalent adduct with a mass of 158 +/- 10 Da that accumulates during steady-state turnover. Subsequent trapping, proteolysis, peptide mapping and fragmentation by mass spectrometry, and site-directed mutagenesis demonstrated that this covalent adduct was attached to an active site residue and implicates Cys249 as the catalytic nucleophile required for intermediate formation. The use of covalent catalysis clearly links DDAH to this superfamily of enzymes and suggests that an S-alkylthiouronium intermediate may be a conserved feature in their mechanisms.  相似文献   

2.
3.
l-Arginine deiminase (ADI) catalyzes the irreversible hydrolysis of arginine to citrulline and ammonia. ADI is involved in the first step of the most widespread anaerobic route of arginine degradation. ADI, missing in high eukaryotes, is a potential antimicrobial and antiparasitic drug target. We have determined the crystal structure of ADI from Pseudomonas aeruginosa by the multi-wavelength anomalous diffraction method at 2.45 A resolution. The structure exhibits similarity to other arginine-modifying or substituted arginine-modifying enzymes such as dimethylarginine dimethylaminohydrolase (DDAH), arginine:glycine amidinotransferase, and arginine:inosamine-phosphate amidinotransferase, despite the lack of significant amino acid sequence homology to these enzymes. The similarity spans a core domain comprising five betabetaalphabeta motifs arranged in a circle around a 5-fold pseudosymmetry axis. ADI contains an additional alpha-helical domain of novel topology inserted between the first and the second betabetaalphabeta modules. A catalytic triad, Cys-His-Glu/Asp (arranged in a different manner from that of the thiol proteases), seen in the other arginine-modifying enzymes is also conserved in ADI, as well as many other residues involved in substrate binding. Based on this conservation pattern and the assumption that the substrate binding mode is similar to that of DDAH, an ADI catalytic mechanism is proposed. The main players are Cys-406, which mounts the nucleophilic attack on the carbon atom of the guanidinium group of arginine, and His-278, which serves as a general base.  相似文献   

4.
Tran CT  Fox MF  Vallance P  Leiper JM 《Genomics》2000,68(1):101-105
Endogenously produced asymmetrically methylated arginine residues are competitive inhibitors of all three isoforms of nitric oxide synthase (NOS). The enzyme dimethylarginine dimethylaminohydrolase (DDAH) specifically hydrolyzes these asymmetrically methylated arginine residues to citrulline and methylamines. Previously we have proposed that regulation of asymmetric methylarginine concentration by DDAH may provide a novel mechanism for the regulation of NOS activity in vivo. Recently we reported the cloning of human DDAH and identified a novel human DDAH isoform (DDAH I and DDAH II, respectively). Here we report that the DDAH1 gene maps to chromosome 1p22 and confirm that DDAH2 maps to the MHC III region of chromosome 6p21.3. Extensive analysis of the distribution of DDAH1 and DDAH2 mRNA in 50 human tissues indicates differential expression of DDAH isoforms in brain regions, in immune cells, and during development. DDAH2 expression predominates in highly vascularized tissues that express the endothelial NOS isoform and in immune tissues that can express iNOS. Whereas DDAH2 is expressed at relatively high levels in all fetal tissues examined, DDAH1 expression varies little between fetal and adult tissues. The chromosomal localization of the DDAHs is consistent with gene duplication, and consistent with this, comparison of the gene structures indicates that the intron/exon organization is highly conserved. Phylogenetic analysis of DDAH sequences from diverse species suggests that DDAH gene duplication occurred prior to the emergence of bony fish some 400 million years ago. Overall the data suggest that DDAH2 may be the more ancient of the two genes.  相似文献   

5.
Protein arginine methylation is catalyzed by a family of enzymes called protein arginine methyltransferases (PRMTs). Three forms of methylarginine have been identified in eukaryotes: monomethylarginine (l-NMMA), asymmetric dimethylarginine (ADMA), and symmetric dimethylarginine (SDMA), all characterized by methylation of one or both guanidine nitrogen atoms of arginine. l-NMMA and ADMA, but not SDMA, are competitive inhibitors of all nitric oxide synthase isoforms. SDMA is eliminated almost entirely by renal excretion, whereas l-NMMA and ADMA are further metabolized by dimethylarginine dimethylaminohydrolase (DDAH). To explore the interplay between methylarginine synthesis and degradation in vivo, we determined PRMT expression and DDAH activity in mouse lung, heart, liver, and kidney homogenates. In addition, we employed HPLC-based quantification of protein-incorporated and free methylarginine, combined with immunoblotting for the assessment of tissue-specific patterns of arginine methylation. The salient findings of the present investigation can be summarized as follows: 1) pulmonary expression of type I PRMTs was correlated with enhanced protein arginine methylation; 2) pulmonary ADMA degradation was undertaken by DDAH1; 3) bronchoalveolar lavage fluid and serum exhibited almost identical ADMA/SDMA ratios, and 4) kidney and liver provide complementary routes for clearance and metabolic conversion of circulating ADMA. Together, these observations suggest that methylarginine metabolism by the pulmonary system significantly contributes to circulating ADMA and SDMA levels.  相似文献   

6.
Isopenicillin N synthase is essential for the catalytic transformation of a linear tripeptide substrate δ-(l-α-aminoadipyl)-l-cysteinyl-d-valine to isopenicillin N in the biosynthesis of β-lactam antibiotics. The recent Aspergillus nidulans isopenicillin N synthase crystal structure proposed that a conserved arginine, R279, has a role in substrate binding. This study, the first site-directed mutagenesis experiment on arginine in isopenicillin N synthase, was carried out to ascertain the role of the similarly conserved and corresponding arginine residue R281 on catalysis in the fungal Cephalosporium acremonium isopenicillin N synthase. Replacement of the arginine residue with leucine to generate the mutant R281L Cephalosporium isopenicillin N synthase resulted in undetectable activity as shown by enzyme bioassays. It is possible that the mutant's substrate binding capability was eliminated, thus preventing the catalytic reaction. Further investigation into the corresponding arginine residues in isopenicillin N synthase of other species is warranted.  相似文献   

7.
N(G),N(G)-dimethyl-L-arginine (asymmetric dimethylarginine or ADMA) and N(G)-monomethyl-L-arginine (L-NMMA) are post-translationally synthesized amino acids of nuclear proteins. Upon release during protein turnover, they are not used in protein synthesis, but are excreted or metabolized by dimethylarginine dimethylaminohydrolase (DDAH) found in many tissues. DDAH is present in monocytic and polynuclear cells of blood, but no report has appeared of its presence in red blood cells (RBCs). Because methylated arginines can inhibit nitric oxide synthase (NOS) and elevations are reported in several diseases, we explored whether RBCs express this enzyme. DDAH is present in RBCs as supported by hydrolysis of both ADMA and L-NMMA, but not symmetric dimethylarginine, and by immunoprecipitation/Westem blot using a specific monoclonal antibody to human DDAH. In a pilot study of end-stage renal disease (ESRD) patients, RBC DDAH activity with ADMA as substrate correlated inversely with age (p = 0.005) and enzyme activities were higher in patients with greater diastolic blood pressure drops during hemodialysis (p = 0.02). Similar correlations were found with white cell DDAH activity. Thus, human RBCs can hydrolyze methylated arginines. These findings indicate the RBC could be used to assess the status of DDAH in various disease states.  相似文献   

8.
Congestive heart failure (CHF) is associated with impaired endothelium-dependent nitric oxide (NO)-mediated vasodilation (endothelial dysfunction). We hypothesized that coronary endothelial dysfunction in CHF may be due in part to decreased dimethylarginine dimethylaminohydrolase (DDAH), the enzyme that degrades endogenous inhibitors of NO synthase (NOS), including asymmetric dimethylarginine. Coronary blood flow and the endothelium-dependent vasodilator response to acetylcholine were studied in dogs in which CHF was produced by rapid ventricular pacing for 4 wk. Coronary flow and myocardial O2 consumption at rest and during treadmill exercise were decreased after development of CHF, and the vasodilator response to intracoronary acetylcholine (75 microg/min) was decreased by 39 +/- 5%. DDAH activity and DDAH isoform 2 (DDAH-2) protein content were decreased by 53 +/- 13% and 58 +/- 14%, respectively, in hearts with CHF, whereas endothelial NOS and DDAH isoform 1 (DDAH-1) were increased. Caveolin-1 and protein arginine N-methyltransferase 1, the enzyme that produces asymmetric dimethylarginine, were unchanged. Immunohistochemical staining showed DDAH-1 strongly expressed in coronary endothelium and smooth muscle and in the sarcolemma of cardiac myocytes. In cultured human endothelial cells, DDAH-1 was uniformly distributed in the cytosol and nucleus, whereas DDAH-2 was found only in the cytosol. Decreased DDAH activity and DDAH-2 protein expression may cause accumulation of endogenous inhibitors of endothelial NOS, thereby contributing to endothelial dysfunction in the failing heart.  相似文献   

9.
Altered nitric oxide (NO) biosynthesis is thought to play a role in the initiation and progression of atherosclerosis and may contribute to increased risk seen in other cardiovascular diseases. It is hypothesized that altered NO bioavailability may result from an increase in endogenous NO synthase (NOS) inhibitors, asymmetric dimethly araginine (ADMA), and N(G)-monomethyl arginine, which are normally metabolized by dimethyarginine dimethylamine hydrolase (DDAH). Lipid hydroperoxides and their degradation products are generated during inflammation and oxidative stress and have been implicated in the pathogenesis of cardiovascular disorders. Here, we show that the lipid hydroperoxide degradation product 4-hydroxy-2-nonenal (4-HNE) causes a dose-dependent decrease in NO generation from bovine aortic endothelial cells, accompanied by a decrease in DDAH enzyme activity. The inhibitory effects of 4-HNE (50 microM) on endothelial NO production were partially reversed with L-Arg supplementation (1 mM). Overexpression of human DDAH-1 along with antioxidant supplementation completely restored endothelial NO production following exposure to 4-HNE (50 microM). These results demonstrate a critical role for the endogenous methylarginines in the pathogenesis of endothelial dysfunction. Because lipid hydroperoxides and their degradation products are known to be involved in atherosclerosis, modulation of DDAH and methylarginines may serve as a novel therapeutic target in the treatment of cardiovascular disorders associated with oxidative stress.  相似文献   

10.
In mammals, the enzyme dimethylarginine dimethylaminohydrolase (DDAH) is implicated in the regulation of the cellular levels of asymmetric methylarginines, small molecule metabolites that themselves represent a family of endogenous inhibitors of nitric oxide synthase (NOS). The involvement of DDAH function in the regulation of NOS makes this enzyme a potentially attractive therapeutic target. DDAH from the bacterium Pseudomonas aeruginosa (PaDDAH) is so far the only structurally tractable homologue of mammalian DDAH isoforms. To complement the recent crystal structure of this protein, we show by hydrodynamic measurements that PaDDAH exists in dynamic equilibrium between monomer (ca 29 kDa) and symmetric homodimer (ca 58 kDa) states with a dimer dissociation constant, K(d) approximately 500nM. For the purposes of NMR-based approaches to the study of this enzyme's interactions with substrate and inhibitor ligands, it would be useful to obtain the protein in monomeric form. Through detailed analysis of the homodimer PaDDAH crystal structure we identified key residues involved in the protomer-protomer interface and targeted these for mutation. The hydrodynamic and self-associative properties of a series of PaDDAH interface mutants were analyzed by concentration-dependent analytical size-exclusion chromatography and sedimentation equilibrium analytical ultracentrifugation. The individual substitution of several of the interface residues shifts the equilibrium position towards the monomer, which allowed the design of a double mutant variant (Arg40-->Glu, Arg98-->His) that behaves exclusively as a stable monomer, yet retains greater than 95% catalytic activity compared to wild-type. Comparative two-dimensional (1)H, (15)N heteronuclear NMR spectra indicate that the double mutant remains a monomer even at approximately 1 mM concentration. Accordingly, the double mutant PaDDAH is an attractive template for further NMR-based investigations of the enzyme mechanism and characterization of ligand-binding and inhibitor-binding profiles. These results indicate that dimerization of PaDDAH is not critical for the maintenance of the biological function of the protein. These results are discussed in the context of known modes of self-association between structurally related, but functionally distinct, members of the beta/alpha-propeller fold class.  相似文献   

11.
Nitric oxide (NO) is synthesized from arginine (ARG) by NO synthase (NOS). Asymmetric dimethylarginine (ADMA), a competitive inhibitor of NOS, participates in the endogenous regulation of NO synthesis. The main amount of ADMA is enzymatically degraded by dimethylarginine dimethylaminohydrolase (DDAH) widely expressed in renal tissue. The aim of our study was to compare the changes in DDAH activity and ARG synthesis in kidneys, ADMA and ARG concentration in plasma and their urinary excretion under physiological conditions and in acute renal injury (ARI) induced by glycerol in rats. Urinary nitrite/nitrate excretion (NOx) was estimated as an indicator of whole-body NO synthesis. DDAH activity was decreased, ADMA excretion was increased and plasma ADMA did not change in ARI. Plasma ARG concentration, renal ARG synthesis and urinary NOx excretion were decreased. In conclusion, the diminished enzymatic hydrolysis of the NOS inhibitor ADMA and the reduced synthesis of the NOS substrate ARG might affect NO production in ARI.  相似文献   

12.
Stone EM  Schaller TH  Bianchi H  Person MD  Fast W 《Biochemistry》2005,44(42):13744-13752
The enzymes dimethylargininase [dimethylarginine dimethylaminohydrolase (DDAH); EC 3.5.3.18] and peptidylarginine deiminase (PAD; EC 3.5.3.15) catalyze hydrolysis of substituted arginines. Due to their role in normal physiology and pathophysiology, both enzymes have been identified as potential drug targets, but few useful inhibitors have been reported. Here, we find that 2-chloroacetamidine irreversibly inhibits both DDAH from Pseudomonas aeruginosa and human PAD4 in a time- and concentration-dependent manner, despite the nonoverlapping substrate specificities and low levels of amino acid identity of their catalytic domains. Substrate protection experiments indicate that inactivation occurs by modification at the active site, albeit with modest affinity. Mass spectral analysis demonstrates that irreversible inactivation of DDAH occurs through selective formation of a covalent thioether bond with the active-site Cys249 residue. The mechanism of inactivation by 2-chloroacetamidine is analogous to that of chloromethyl ketones, a set of inhibitors that have found wide application because of their specific covalent modification of active-site residues in serine and cysteine proteases. Likewise, 2-chloroacetamidine may potentially find wide applicability as a general pharmacophore useful in delineating characteristics of the amidinotransferase superfamily.  相似文献   

13.
Dimeric Salmonella typhimurium orotate phosphoribosyltransferase (OMP synthase, EC 2.4.2.10), a key enzyme in de novo pyrimidine nucleotide synthesis, has been cocrystallized in a complete substrate E·MgPRPP·orotate complex and the structure determined to 2.2 ? resolution. This structure resembles that of Saccharomyces cerevisiae OMP synthase in showing a dramatic and asymmetric reorganization around the active site-bound ligands but shares the same basic topology previously observed in complexes of OMP synthase from S. typhimurium and Escherichia coli. The catalytic loop (residues 99-109) contributed by subunit A is reorganized to close the active site situated in subunit B and to sequester it from solvent. Furthermore, the overall structure of subunit B is more compact, because of movements of the amino-terminal hood and elements of the core domain. The catalytic loop of subunit B remains open and disordered, and subunit A retains the more relaxed conformation observed in loop-open S. typhimurium OMP synthase structures. A non-proline cis-peptide formed between Ala71 and Tyr72 is seen in both subunits. The loop-closed catalytic site of subunit B reveals that both the loop and the hood interact directly with the bound pyrophosphate group of PRPP. In contrast to dimagnesium hypoxanthine-guanine phosphoribosyltransferases, OMP synthase contains a single catalytic Mg(2+) in the closed active site. The remaining pyrophosphate charges of PRPP are neutralized by interactions with Arg99A, Lys100B, Lys103A, and His105A. The new structure confirms the importance of loop movement in catalysis by OMP synthase and identifies several additional movements that must be accomplished in each catalytic cycle. A catalytic mechanism based on enzymic and substrate-assisted stabilization of the previously documented oxocarbenium transition state structure is proposed.  相似文献   

14.
The aim of the present study was to investigate the role of the endogenous nitric oxide synthase inhibitor asymmetric dimethylarginine (ADMA) and its degrading enzyme dimethylarginine dimethylaminohydrolase (DDAH) in angiotensin II (ANG II)-induced hypertension and target organ damage in mice. Mice transgenic for the human DDAH1 gene (TG) and wild-type (WT) mice (each, n = 28) were treated with 1.0 microg kg(-1) min(-1) ANG II, 3.0 microg kg(-1) min(-1) ANG II, or phosphate-buffered saline over 4 wk via osmotic minipumps. Blood pressure, as measured by tail cuff, was elevated to the same degree in TG and WT mice. Plasma levels of ADMA were lower in TG than WT mice and were not affected after 4 wk by either dose of ANG II in both TG and WT animals. Oxidative stress within the wall of the aorta, measured by fluorescence microscopy using the dye dihydroethidium, was significantly reduced in TG mice. ANG II-induced glomerulosclerosis was similar between WT and TG mice, whereas renal interstitial fibrosis was significantly reduced in TG compared with WT animals. Renal mRNA expression of protein arginine methyltransferase (PRMT)1 and DDAH2 increased during the infusion of ANG II, whereas PRMT3 and endogenous mouse DDAH1 expression remained unaltered. Chronic infusion of ANG II in mice has no effect on the plasma levels of ADMA after 4 wk. However, an overexpression of DDAH1 alleviates ANG II-induced renal interstitial fibrosis and vascular oxidative stress, suggesting a blood pressure-independent effect of ADMA on ANG II-induced target organ damage.  相似文献   

15.
A study of bovine endothelial nitric oxide synthase by Fourier transform infrared (FTIR) spectroscopy in the 1000-2500 cm(-)(1) range is reported. Binding of CO to the reduced enzyme gives two heme(II)-CO nu(C)(-)(O) stretches (1927 and 1904 cm(-)(1)) which appear to be in rapid equilibrium. Photolysis of this heme(II)-CO compound is accompanied by perturbation of the local fine structure around the catalytic site giving vibrational changes of protein backbone, substrate, amino acid residues, and cofactors, to which heme, substrate arginine, and catalytic site residues contribute. Possible assignments of vibrations to heme, substrate arginine, and catalytic site residues are discussed. The discussion of assignments is informed by known structures, absorbance frequencies, and extinction coefficients of residues and cofactors, analysis of H(2)O-D(2)O exchange effects, analysis of substrate (14)N-(15)N (guanidinium)-arginine exchange effects, and comparison with the nNOS isoform (which differs in the replacement of asparagine 368 with an aspartate within the substrate binding site). The FTIR data can be modeled on the known structure of the catalytic site and indicate the extent of modulation of vibrational modes upon photolysis of the CO compound.  相似文献   

16.
Levels of asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide synthase, are increased in lung, sputum, exhaled breath condensate and plasma samples from asthma patients. ADMA is metabolized primarily by dimethylarginine dimethylaminohydrolase 1 (DDAH1) and DDAH2. We determined the effect of DDAH1 overexpression on development of allergic inflammation in a mouse model of asthma. The expression of DDAH1 and DDAH2 in mouse lungs was determined by RT-quantitative PCR (qPCR). ADMA levels in bronchoalveolar lavage fluid (BALF) and serum samples were determined by mass spectrometry. Wild type and DDAH1-transgenic mice were intratracheally challenged with PBS or house dust mite (HDM). Airway inflammation was assessed by bronchoalveolar lavage (BAL) total and differential cell counts. The levels of IgE and IgG1 in BALF and serum samples were determined by ELISA. Gene expression in lungs was determined by RNA-Seq and RT-qPCR. Our data showed that the expression of DDAH1 and DDAH2 was decreased in the lungs of mice following HDM exposure, which correlated with increased ADMA levels in BALF and serum. Transgenic overexpression of DDAH1 resulted in decreased BAL total cell and eosinophil numbers following HDM exposure. Total IgE levels in BALF and serum were decreased in HDM-exposed DDAH1-transgenic mice compared to HDM-exposed wild type mice. RNA-Seq results showed downregulation of genes in the inducible nitric oxide synthase (iNOS) signaling pathway in PBS-treated DDAH1-transgenic mice versus PBS-treated wild type mice and downregulation of genes in IL-13/FOXA2 signaling pathway in HDM-treated DDAH1-transgenic mice versus HDM-treated wild type mice. Our findings suggest that decreased expression of DDAH1 and DDAH2 in the lungs may contribute to allergic asthma and overexpression of DDAH1 attenuates allergen-induced airway inflammation through modulation of Th2 responses.  相似文献   

17.
Nitric oxide (NO) has been suggested to play a key role in the pathogenesis of pulmonary hypertension (PH). To determine which mechanism exists to affect NO production, we examined the concentration of endogenous nitric oxide synthase (NOS) inhibitors and their catabolizing enzyme dimethylarginine dimethylaminohydrolase (DDAH) activity and protein expression (DDAH1 and DDAH2) in pulmonary artery endothelial cells (PAECs) of rats given monocrotaline (MCT). We also measured NOS and arginase activities and NOS protein expression. Twenty-four days after MCT administration, PH and right ventricle (RV) hypertrophy were established. Endothelium-dependent, but not endothelium-independent, relaxation and cGMP production were significantly impaired in pulmonary artery specimens of MCT group. The constitutive NOS activity and protein expression in PAECs were significantly reduced in MCT group, whereas the arginase, which shares l-arginine as a common substrate with NOS, activity was significantly enhanced in PAECs of MCT group. The contents of monomethylarginine (MMA) and asymmetric dimethylarginine (ADMA), but not symmetric dimethylarginine (SDMA), were increased in PAECs of MCT group. The DDAH activity and DDAH1, but not DDAH2, protein expression were significantly reduced in PAECs of MCT group. These results suggest that the impairment of cGMP production as a marker of NO production is possibly due to the blunted endothelial NOS activity resulting from the downregulation of endothelial NOS protein, accumulation of endogenous NOS inhibitors, and accelerated arginase activity in PAECs of PH rats. The decreased overall DDAH activity accompanied by the downregulation of DDAH1 would bring about the accumulation of endogenous NOS inhibitors.  相似文献   

18.
Nitric oxide synthase is inhibited by NG-methylated derivatives of arginine whose cellular levels are controlled by dimethylarginine dimethylamino-hydrolase (DDAH). DDAH-1 is a Zn(II)-containing enzyme that through hydrolysis of methylated l-arginines regulates the activity of NOS. Herein, we report the kinetic properties of hDDAH-1 and its redox-dependent regulation. Kinetic studies using recombinant enzyme demonstrated Km values of 68.7 and 53.6 microM and Vmax values of 356 and 154 nmols/mg/min for ADMA and L-NMMA, respectively. This enzymatic activity was selective for free ADMA and L-NMMA and was incapable of hydrolyzing peptide incorporated methylarginines. Subsequent studies performed to determine the effects of reactive oxygen and reactive nitrogen species on DDAH activity demonstrated that low level oxidant exposure had little effect on enzyme activity and that concentrations approaching >or=100 microM were needed to confer significant inhibition of DDAH activity. However, exposure of DDAH to the lipid oxidation product, 4-HNE, dose-dependently inhibited DDAH activity with 15% inhibition observed at 10 microM, 50% inhibition at 50 microM, and complete inhibition at 500 microM. Mass spectrometry analysis demonstrated that the mechanism of inhibition resulted from the formation of Michael adducts on His 173, which lies within the active site catalytic triad of hDDAH-1. These studies were performed with pathophysiologicaly relevant concentrations of this lipid peroxidation product and suggest that DDAH activity can be impaired under conditions of increased oxidative stress. Because DDAH is the primary enzyme involved in methylarginine metabolism, the loss of activity of this enzyme would result in impaired NOS activity and reduced NO bioavailability.  相似文献   

19.
Glucose-induced oxidative stress is involved in endothelial dysfunction. Dimethylarginine dimethylaminohydrolase (DDAH) and arginase are regulators of the endothelial NO synthase (eNOS). This study aimed to compare the effect of two polyphenolic antioxidants, resveratrol and piceatannol, on DDAH and arginase pathways in bovine aortic endothelial cells under 25 mM glucose for 24 h. DDAH activity and expression were decreased in these cells as compared to control cells, whereas arginase activity was unchanged. DDAH inhibition led to intracellular accumulation of asymmetric dimethylarginine (ADMA), a natural inhibitor of eNOS. Under these conditions, cell pre-treatment with resveratrol (0.1-10 μM) restored basal DDAH activity and ADMA level with a dose-dependent effect. Piceatannol acted as resveratrol on DDAH pathway but at 10-fold lower concentrations. Resveratrol and piceatannol restored DDAH activity even in the presence of splitomicin, a specific inhibitor of Sirtuin 1. These results suggest potential therapeutic intervention targeting resveratrol or piceatannol administration to improve endothelial dysfunction.  相似文献   

20.
Disruption of methylarginine metabolism impairs vascular homeostasis   总被引:9,自引:0,他引:9  
Asymmetric dimethylarginine (ADMA) and monomethyl arginine (L-NMMA) are endogenously produced amino acids that inhibit all three isoforms of nitric oxide synthase (NOS). ADMA accumulates in various disease states, including renal failure, diabetes and pulmonary hypertension, and its concentration in plasma is strongly predictive of premature cardiovascular disease and death. Both L-NMMA and ADMA are eliminated largely through active metabolism by dimethylarginine dimethylaminohydrolase (DDAH) and thus DDAH dysfunction may be a crucial unifying feature of increased cardiovascular risk. However, despite considerable interest in this pathway and in the role of ADMA as a cardiovascular risk factor, there is little evidence to support a causal role of ADMA in pathophysiology. Here we reveal the structure of human DDAH-1 and probe the function of DDAH-1 both by deleting the DDAH1 gene in mice and by using DDAH-specific inhibitors which, as we demonstrate by crystallography, bind to the active site of human DDAH-1. We show that loss of DDAH-1 activity leads to accumulation of ADMA and reduction in NO signaling. This in turn causes vascular pathophysiology, including endothelial dysfunction, increased systemic vascular resistance and elevated systemic and pulmonary blood pressure. Our results also suggest that DDAH inhibition could be harnessed therapeutically to reduce the vascular collapse associated with sepsis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号