首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
To understand the biology and the biochemistry of the epidermal growth factor (EGF) precursor in normal tissues we partially purified the EGF precursor from mouse kidney. The precursor was purified by affinity chromatography, using wheat germ lectin and antibodies to murine EGF. The EGF precursor is a glycosylated integral membrane protein of apparent molecular mass of 140-150 kDa. The solubilized EGF precursor is biologically active as evidenced by its ability to compete with 125I-labeled EGF for binding to the EGF receptor in intact fibroblasts and its ability to stimulate the growth of cells dependent on EGF for growth. The EGF precursor from mouse kidney can be proteolytically processed by the EGF-associated arginine esterase into a smaller fragment (97 kDa) that retains both immunologic sensitivity to EGF antiserum and biological activity. Extensive digestion of the EGF precursor with pepsin liberates a biologically and immunologically active protein of approximately the size of mature EGF.  相似文献   

2.
We have used the soluble covalent cross-linking agent 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDAC) to examine the capacity of epidermal growth factor (EGF) to stimulate the dimerization of purified EGF receptor, of EGF receptor in membrane preparations and in intact A431 cells. The addition of EGF either to membranes from A431 cells or to EGF receptor which was purified from A431 cells by immunoaffinity chromatography caused the appearance of a cross-linked product of Mr 340,000 which was identified using EGF receptor-specific antibodies as an EGF receptor dimer. Three independent approaches including biosynthetic labeling, surface iodination, and immunoblotting experiments were utilized to follow EGF receptor dimerization in living A431 cells. These approaches provided consistent results indicating that EGF induced rapid dimerization of EGF receptor in living cells, suggesting that this process may play a role in transmembrane signalling mediated by EGF.  相似文献   

3.
Glycosphingolipids added exogenously to 3T3 cells in culture were shown to inhibit cell growth, alter the membrane affinity to platelet-derived growth factor binding, and reduce platelet-derived growth factor-stimulated membrane phosphorylation (Bremer, E., Hakomori, S., Bowen-Pope, D. F., Raines, E., and Ross, R. (1984) J. Biol. Chem. 259, 6818-6825). This approach has been extended to the epidermal growth factor (EGF) receptor of human epidermoid carcinoma cell lines KB and A431. GM3 and GM1 gangliosides inhibited both KB cell and A431 cell growth, although GM3 was a much stronger inhibitor of both KB and A431 cell growth. Neither GM3 nor GM1 had any affect on the binding of 125I-EGF to its cell surface receptor. However, GM3 and, to a much lower extent, GM1 were capable of inhibiting EGF-stimulated phosphorylation of the EGF receptor in membrane preparations of both KB and A431 cells. Further characterization of GM3-sensitive receptor phosphorylation was performed in A431 cells, which had a higher content of the EGF receptor. The following results were of particular interest. (i) EGF-dependent tyrosine phosphorylation of the EGF receptor and its inhibition by GM3 were also demonstrated on isolated EGF receptor after adsorption on the anti-receptor antibody-Sepharose complex, and the receptor phosphorylation was enhanced on addition of phosphatidylethanolamine. (ii) Phosphoamino acid analysis of the EGF receptor indicated that the reduction of phosphorylation induced by GM3 was entirely in the phosphotyrosine and not in the phosphoserine nor phosphothreonine content. (iii) The inhibitory effect of GM3 on EGF-dependent receptor phosphorylation could be reproduced in membranes isolated from A431 cells that had been cultured in medium containing 50 nmol/ml GM3 to effect cell growth inhibition. The membrane fraction isolated from such growth-arrested cells was found to be less responsive to EGF-stimulated receptor phosphorylation. These results suggest that membrane lipids, especially GM3, can modulate EGF receptor phosphorylation in vitro as well as in situ.  相似文献   

4.
Monoclonal antibodies to mouse epidermal growth factor (EGF) receptor were prepared by the immunization of rats with receptor glycoprotein purified from mouse liver by affinity chromatography on immobilized EGF. Purified mouse EGF receptor retained EGF-inducible autophosphorylating activity and was antigenic in rats and rabbits. The monoclonal antibodies cross react very poorly with human EGF receptor, while polyclonal rabbit antibodies immunoprecipitate human, rat and mouse EGF receptor equally well. The rabbit antibody blocks EGF binding to mouse fibroblast cells and, at 20-fold higher concentrations, stimulates uptake of tritiated thymidine into DNA. This indicates that antibodies bind at or close to the EGF-binding site and can mimic the effects of the growth factor. None of the monoclonals bind at the EGF site of the receptor. Immunoprecipitation, immunoblotting, 125I-EGF cross linking, 125I-surface labelling, immunohistochemistry and autophosphorylation techniques were used to delineate the basis for the induction of EGF receptors when OC15 embryonal carcinoma (EC) cells differentiate into endodermal derivatives (END). EGF-stimulated autophosphorylation of a 170 X 10(3) Mr protein in solubilized OC15 EC cells is readily detectable, although intact EC cells do not bind or respond to EGF by all other tests. The results suggest that cryptic EGF receptors are present in EC stem cells, a finding with implications in development.  相似文献   

5.
Epidermal growth factor (EGF) receptor protein kinase activity, estimated by the use of peptide substrates, was reduced by as much as 70% after the treatment of intact A431 human carcinoma cells with EGF. The apparent decrease in protein kinase activity was observed after immunoprecipitation of the receptor or after purification of the receptor by lectin chromatography. By the use of [35S]methionine, it was determined that the total amount of receptor obtained was the same whether or not cells were treated with EGF. EGF stimulated the purified receptor protein kinase activity in vitro; however, the EGF-stimulated activity of receptor from EGF-treated cells continued to be reduced by as much at 70% compared to the EGF-stimulated activity from untreated cells. The reduction in receptor protein kinase activity induced by EGF may represent a feedback mechanism by which responsiveness to the growth factor is regulated.  相似文献   

6.
An acid-stable transforming growth factor (TGF) that interacts with epidermal growth factor (EGF) receptors and is structurally related to EGF was isolated from serum-free culture fluids of Snyder-Theilen feline sarcoma virus-transformed rat embryo (FeSV-Fre) cells. Purification of this EGF-like TGF (eTGF) was achieved by molecular filtration chromatography and successive reverse-phase high pressure liquid chromatography steps on octadecyl support eluted with acetonitrile and 1-propanol gradients, respectively. Rat eTGF consists of a 7.4-kD single polypeptide chain that co-migrates with biological activity in dodecyl sulfate-polyacrylamide electrophoresis gels. Like preparations of a related TGF from human melanoma cells (Marquardt, H., and Todaro, G.J. (1982) J. Biol. Chem. 257, 5220-5225), but unlike EGF from rat, human, or mouse, rat eTGF has phenylalanine and lacks methionine. However, the sequence of the first 30 amino acid residues in rat eTGF is H2N-Val-Val-Ser-His-Phe-Asn-Lys-Cys-Pro-Asp-Ser-His-Thr-Gln-Tyr-Cys-Phe-His-Gly - Thr-(x)-Arg-Phe-Leu-Val-Gln-Glu-Glu-(Lys)-(Lys)-, which is significantly (20% and 28%) homologous to the NH2-terminal region of mouse EGF and human EGF, respectively. In addition to eTGF, molecular filtration chromatography of acid-soluble extracts from medium conditioned by FeSV-Fre cells resolved a 14-kD transforming factor(s) apparently devoid of intrinsic mitogenic activity but able to elicit a strong anchorage-independent growth response in the presence of eTGF or EGF. These results show that: 1) a 7.4-kDa TGF structurally and functionally related to EGF has been isolated from FeSV-Fre cells and 2) the full anchorage-independent growth-promoting activity of medium conditioned by FeSV-Fre cells is due to the coordinate action of at least two types of factors, the 7.4-kDa eTGF and a second 14-kDa transforming factor(s).  相似文献   

7.
The distribution of the epidermal growth factor receptor (EGFR) in mouse testis was ascertained by immunocytochemical methodology using a polyclonal antibody (RK2) shown previously to recognize the cytoplasmic domain of the human (A431 cells), murine (Swiss 3T3 cells), and chicken (CK 109 cells) EGFR. Initial studies performed to determine the usefulness of this antibody as a probe of the murine EGFR in testis employed two murine cell lines, TM4 and MA10, of Sertoli cell and Leydig cell origin, respectively, in which a physiological response of EGF and specific binding of iodinated EGF has been demonstrated. Western blotting in membrane preparations of TM4 and MA10 revealed only one prominent band at 170 kDa. Immunocytochemical localization in TM4 and MA10 cells illustrated a plasma membrane distribution of the receptor. Western blotting of membrane fractions prepared from testis also revealed a specific band at 170 kDa. In the intact testis, the EGFR was immunolocalized specifically in Leydig cells and Sertoli cells only. These results suggest that the involvement of EGF action in spermatogenesis may occur at the level of the somatic components of the testes, principally in the Leydig and Sertoli cells.  相似文献   

8.
The receptor for epidermal growth factor (EGF) in the human epidermoid carcinoma cell line A-431 is a glycoprotein of apparent molecular weight = 170,000. During biosynthesis, the receptor is first detected as a precursor of apparent Mr = 160,000. In this report we describe our studies on the structures of the oligosaccharide moieties of the mature receptor and its precursor. A-431 cells were grown in medium containing radioactive sugars and the radiolabeled receptors were purified by immunoprecipitation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Radiolabeled glycopeptides were prepared from the purified receptor by proteolysis, and their structures were examined by a variety of techniques. The mature EGF receptor contains both complex-type and high mannose-type Asn-linked oligosaccharides in the approximate ratio of 2 to 1, while the precursor contains only high mannose-type chains. A number of experimental results demonstrate that the mature receptor does not contain oligosaccharides in O-linkage through N-acetylgalactosamine to either serine or threonine. The high mannose-type oligosaccharides in both precursor and mature receptor can be cleaved by endo-beta-N-acetylglucosaminidase H and occur in the mature receptor as Man9GlcNAc2 (6%), Man8GlcNAc2 (49%), Man7GlcNAc2 (25%), and Man6GlcNAc2 (20%), whereas, in the receptor precursor the high mannose chains occur primarily as Man8GlcNAc2 (70%). The complex-type oligosaccharides in the mature receptor are predominantly tri- or tetraantennary species and are unusual in several respects. (i) Many of the chains do not contain sialic acid, while the remaining chains contain 1-2 sialic acid residues. (ii) Half of the [3H] mannose-derived radioactivity was recovered as [3H] fucose and the remaining half as [3H] mannose, indicating that there may be an average of 3 fucose residues/chain. (iii) About one-third of the [3H] glucosamine-derived radioactivity in these glycopeptides was recovered as N-acetylgalactosamine and these residues are all alpha-linked and occur at the nonreducing termini. These data demonstrate that the complex-type Asn-linked oligosaccharides in the EGF receptor from A-431 cells contain sugar residues related to human blood type A. In light of other recent studies, these results suggest that in A-431 cells blood group determinants in surface glycoproteins are contained in Asn-linked but not O-linked oligosaccharides.  相似文献   

9.
We have recently reported that a polypeptide mitogen, the embryonal carcinoma-derived growth factor (ECDGF), induces phosphorylation of the epidermal growth factor (EGF) receptor in intact C3H 10T 1/2 mouse fibroblasts with concomittant loss of high affinity EGF binding sites. This phenomenon appears to be mediated through an activation of protein kinase C. Several groups have described an acidic 80,000 dalton protein substrate of protein kinase C. In this paper, we demonstrate that the addition of ECDGF or the phorbol ester TPA to intact C3H 10T 1/2 cells results in the enhanced phosphorylation of this 80 kd protein in vivo. Furthermore, this response is demonstrable in vitro. Thus the addition of ECDGF, the phorbol ester TPA, protein kinase C or phosphoinositidase C to crude membranes prepared from C3H 10T 1/2 cells resulted in the enhanced phosphorylation of this protein. Data obtained by phosphopeptide mapping of the 80 kd protein show that the ECDGF-induced activation of protein kinase C in our membrane preparations is comparable with that obtained in vivo. The availability of an in vitro system in which this response is preserved should now allow a detailed biochemical analysis of the steps between binding of a mitogen to its receptor and the activation of protein kinase C.  相似文献   

10.
Previously it was reported (Bremer, E.G., Schlessinger, J., and Hakomori, S.-I. (1986) J. Biol. Chem. 261, 2434-2440) that ganglioside GM3 inhibited epidermal growth factor (EGF)-stimulated phosphorylation of the EGF receptor in Triton X-100-treated preparations of human epidermoid carcinoma (A431) cell membranes. In addition, these authors reported that GM3 inhibited the growth of A431 cells. In contrast, a modified ganglioside, de-N-acetyl GM3, enhanced the EGF-dependent tyrosine kinase activity of the EGF receptor. In this work and in subsequent studies (Hanai, N., Dohi, T., Nores, G. A., and Hakomori, S.-I. (1988) J. Biol. Chem. 263, 6296-6301), the tyrosine kinase activity of the receptor from A431 cell membranes was assayed in the presence of Triton X-100. In this report, we confirm that GM3 inhibited and de-N-acetyl GM3 stimulated EGF receptor autophosphorylation in the presence of Triton X-100. However, in the absence of detergents, ganglioside GM3 inhibited EGF-stimulated receptor autophosphorylation, whereas de-N-acetyl GM3 had no effect on EGF-stimulated receptor autophosphorylation. The effects of these gangliosides on receptor autophosphorylation were measured in both A431 cell plasma membranes and in 3T3 cell membranes permeabilized to [32P]ATP by a freeze-thaw procedure, in intact A431 cells permeabilized with alamethicin, and in intact A431 cells grown in the presence of [32P]orthophosphate. Thus, the inhibitory effect of GM3 on receptor autophosphorylation was demonstrated in the presence and in the absence of detergent; the stimulatory effect of de-N-acetyl GM3 was observed only in the presence of detergent. We also demonstrate that ganglioside GM3 inhibited EGF-stimulated growth of transfected murine fibroblasts (3T3) that express the gene for human EGF receptor (Velu, T. J., Beguinot, L., Vass, W. C., Zhang, K., Pastan, I., and Lowy, D. R. (1989) J. Cell. Biochem. 39, 153-166). De-N-acetyl ganglioside GM3 had no effect on the growth of these cells. Growth of control fibroblasts, which lack endogenous EGF receptors (Pruss, R. M., and Herschman, H. R. (1977) Proc. Natl. Acad. Sci. U.S.A. 74, 3918-3921), was not affected by the presence of either ganglioside. Similarly, ganglioside GM3, but not de-N-acetyl ganglioside GM3, inhibited the EGF-dependent incorporation of [3H]thymidine into DNA by transfected fibroblasts. Incorporation of labeled thymidine into DNA of control fibroblasts was not affected by the presence of either ganglioside. These studies indicate that ganglioside GM3, but not its deacetylated analogue, can affect EGF receptor kinase activity in intact membranes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
We have examined the ability of epidermal growth factor (EGF) and platelet-derived growth factor (PDGF) to stimulate cultures of young and senescent WI-38 cells to carry out tyrosine-specific phosphorylation of their respective membrane receptors. Previously we reported no reduction in EGF-stimulated phosphorylation in plasma membrane preparations of senescent cells. In this study we found no reduction in PDGF-stimulated phosphorylation in plasma membrane preparations from senescent cells. Furthermore, we found no differences in the EGF- or PDGF-stimulated phosphorylation of their respective receptors in intact cells. These data support the previous findings that although the EGF receptor autokinase activity becomes highly labile during extraction and immunoprecipitation of senescent cells, in situ loss of receptor tyrosine kinase activity is apparently not responsible for the age-associated loss of mitogenic responsiveness.  相似文献   

12.
The effect of autophosphorylation and protein kinase C-catalyzed phosphorylation on the tyrosine-protein kinase activity and ligand binding affinity of the epidermal growth factor (EGF) receptor has been studied. Kinetic parameters for the phosphorylation by the receptor kinase of synthetic peptide substrates having sequences related to the 3 in vitro receptor autophosphorylation sites (tyrosine residues 1173 (P1), 1148 (P2), and 1068 (P3)) were measured. The Km of peptide P1 (residues 1164-1176) was significantly lower than that for peptides P2 (residues 1141-1151) or P3 (residues 1059-1072). The tyrosine residue 1173 was also the most rapidly autophosphorylated in purified receptor preparations, consistent with previous observations for the receptor in intact cells (Downward, J., Parker, P., and Waterfield, M. D. (1984) Nature 311, 483-485). Variation in the extent of receptor autophosphorylation from 0.1 to 2.8 mol of phosphate/mol of receptor did not influence kinase activity or EGF binding affinity either for purified receptor or receptor in membrane preparations. Phosphorylation of the EGF receptor by protein kinase C was shown to cause a 3-fold decrease in the affinity of purified EGF receptor for EGF and to reduce the receptor kinase activity. In membrane preparations, phosphorylation of the EGF receptor by protein kinase C resulted in conversion of high affinity EGF binding sites to a low affinity state. This suggests that activation of protein kinase C by certain growth promoting agents and tumor promoters is directly responsible for modulation of the affinity of the EGF receptor for its ligand EGF. The regulation of the EGF receptor function by protein kinase C is discussed.  相似文献   

13.
The C57BL/6J-cpk mouse has an inheritable form of polycystic kidney disease similar to the autosomal recessive disorder seen in humans. Between approximately 1 and 3 weeks of age, affected cpk mice develop numerous large cysts in the collecting tubule segment of kidney nephrons. The present study examined the ontogeny of renal and submandibular gland prepro-epidermal growth factor (preproEGF) gene expression in the cpk mouse using Northern blot hybridization and immunohistochemistry. There was a virtual absence of renal preproEGF gene expression in cystic kidneys over the 3-week postnatal period, during which time renal preproEGF mRNA and proEGF/EGF protein normally reach significant levels. PreproEGF mRNA was expressed in salivary glands of cystic mice; however, this mRNA could not be further elevated with testosterone suggesting that there are abnormalities in the regulation of the preproEGF gene in the submandibular gland, as well as in the kidney. Since renal preproEGF expression during the early postnatal period occurs when collecting duct cysts form, it is possible that a deficiency in renal proEGF or EGF contributes to the rapid development of collecting duct cysts and the concomitant renal failure in the C57BL/6J-cpk cystic mouse.  相似文献   

14.
We have previously reported the isolation of a 35-kDa protein from A-431 cells that, in the presence of Ca2+, is an excellent in vitro substrate for the epidermal growth factor (EGF) receptor/kinase present in membrane preparations (Fava, R. A., and Cohen, S. (1984) J. Biol. Chem. 259, 2636-2645). In this communication we demonstrate that the phosphorylation of the 35-kDa protein is markedly enhanced in intact, 32P-labeled, A-431 cells following exposure of the cells to EGF. The 35-kDa protein immunoprecipitated from cells treated with EGF is phosphorylated to a 20-120-fold greater extent than comparable preparations from control cells. Both phosphotyrosine and phosphoserine residues are detected in the protein after treatment of the cells with EGF. EGF-dependent phosphorylation of the 35-kDa protein is barely detected unless the intact cells are exposed to EGF for periods greater than 5 min. We suggest that endosomes containing internalized EGF X receptor/kinase complexes are primarily responsible for the observed phosphorylation of the 35-kDa protein in intact cells.  相似文献   

15.
A monoclonal antibody to the epidermal growth factor (EGF) receptor of A431 cells was obtained after fusion of immunized BALB/c mouse spleen cells with NS-1 myeloma cells. Specific binding of the antibody to the plasma membrane of A431 cells was demonstrated by indirect immunofluorescence and electron microscopy. The antibody did not react with human KB cells, normal rat kidney cells, or Swiss 3T3 cells. The antibody is an IgG3K; it specifically immunoprecipitated a Mr approximately 170,000 protein from radiolabeled A431 cell extracts. This protein is phosphorylated in a EGF-dependent manner in intact A431 cells and in Triton X-100-solubilized plasma membranes. The specificity of the interaction of the antibody with the Mr = 170,000 protein was confirmed by electrophoretic transfer of A431 cell proteins to nitrocellulose followed by incubation with the antibody and 125I-protein A. When 125I-EGF was covalently cross-linked to its receptor, the 125I-EGF-receptor complex was specifically precipitated by the antibody. The monoclonal antibody did not inhibit the binding of 125I-EGF to its receptor in intact A431 cells and also failed to stimulate the phosphorylation of the Triton X-100-solubilized EGF receptor. The results indicate that the antibody and EGF bind to different sites on the EGF receptor. The antibody will be useful for isolating the EGF receptor in an unactivated form.  相似文献   

16.
Reactive oxygen species initiate multiple signal transduction pathways including tyrosine kinase signaling. Here, we demonstrate tyrosine phosphorylation of EGF receptor, STAT3, and, to a lesser extent, STAT1 upon H2O2 treatment of HER14 cells (NIH3T3 fibroblasts transfected with full-length EGF receptor). Maximum phosphorylation levels were observed in 5 min of stimulation at 1-2 mM H2O2. It has been shown that the intrinsic EGF-receptor tyrosine kinase is responsible for the receptor phosphorylation upon H2O2 stimulation. STAT3 and STAT1 activation in HER14 cells was demonstrated to depend on EGF receptor kinase activity, rather than JAK2 activity, while in both K721A and CD126 cells (NIH3T3 transfected with kinase-dead EGF receptor, and EGF receptor lacking major autophosphorylation sites, respectively) STAT1 and STAT3 tyrosine phosphorylation requires JAK2 kinase activity. Furthermore, STAT3 is constitutively phosphorylated in K721A and CD126 cells, and STAT1 H2O2-stimulated activation in these cells is much more prominent than in HER14. In all the cell lines used, Src-kinase activity was demonstrated to be unnecessary for ROS-initiated phosphorylation of STATs. Herein, we postulate that EGF receptor plays a role in H2O2-induced STAT activation in HER14 cells. Our data also prompted a hypothesis of constitutive inhibition of JAK2-dependent STAT activation in this cell line.  相似文献   

17.
Binding of epidermal growth factor (EGF) to cell surface EGF receptors initiates the formation of the receptor homodimers that can be detected by covalent cross-linking in intact cells or in detergent-solubilized cell extracts. Low pH dissociation of EGF from surface receptors results in immediate monomerization of receptor dimers. Using chemical cross-linking during mild permeabilization or cell solubilization, we have detected dimers of internalized EGF receptors in human carcinoma A-431 cells and transfected NIH 3T3 cells that express human EGF receptors. The percentage of internalized cross-linked receptor dimers was similar to that observed for surface EGF receptors. Furthermore, at the time of maximal accumulation of EGF-receptor complexes within the endosomal compartment (10-15 min of incubation at 37 degrees C), both the dimeric and monomeric forms of the EGF receptor are tyrosine-phosphorylated to the same extent as surface dimer and monomer species. In transfected NIH 3T3 cells, the level of dimerized and internalized kinase-negative EGF receptors was not different from that observed for wild-type receptors. These data suggest that for some time after internalization EGF does not dissociate from its receptor and indicate that a receptor conformation is preserved intracellularly that allows maintenance of receptor-receptor interactions and tyrosine kinase activity.  相似文献   

18.
A431 cells have been used as an immunogen for generating monoclonal antibodies against the epidermal growth factor (EGF) receptor. Two immunoglobulin M and eight immunoglobulin G3 anti-EGF receptor antibodies were cloned. All ten antibodies immunoprecipitated biosynthetically labeled mature A431 cell EGF receptor and were able to recognize the receptor in Western blotting. However, none of the antibodies immunoprecipitated precursor polypeptides of the A431 cell EGF receptor, neither did they recognize EGF receptors from human foreskin fibroblasts, human placenta, nor a human-mouse hybrid cell expressing EGF receptor. The antibodies were found to bind to glycolipids from A431 cells and it was shown that the determinant involved was the blood group A antigen. It appears that this determinant is present on both the EGF receptor and glycolipids of A431 cells but is not expressed on EGF receptors from other human cells tested. One of the monoclonal antibodies raised was used for immunoaffinity purification of the EGF receptor. The procedure took advantage of the carbohydrate nature of the antigenic determinant by employing sugar-specific elution. The mild conditions permitted the purification of A431 cell EGF receptor (70-80% pure) that possessed an intrinsic EGF-stimulated tyrosine kinase activity with a specific activity of about 20 nmol/min/mg.  相似文献   

19.
The primary structure of the chicken epidermal growth factor (EGF) receptor was deduced from the sequence of a cDNA clone containing the complete coding sequence and shown to be highly homologous to the human EGF receptor. NIH-3T3 cells devoid of endogenous EGF receptor were transfected with the appropriate cDNA constructs and shown to express either chicken or human EGF receptors. Like the human EGF receptor, the chicken EGF receptor is a glycoprotein with an apparent molecular weight of 170,000. Murine EGF bound to the chicken receptor with approximately 100-fold lower affinity than to the human receptor molecule. Surprisingly, human transforming growth factor alpha (TGF-alpha) bound equally well or even better to the chicken EGF receptor than to the human EGF receptor. Moreover, TGF-alpha stimulated DNA synthesis 100-fold better than did EGF in NIH 3T3 cells that expressed the chicken EGF receptor. The differential binding and potency of mammalian EGF and TGF-alpha by the avian EGF receptor contrasts with the similar affinities of the mammalian receptor for the two growth factors.  相似文献   

20.
Treatment of Swiss mouse 3T3 cells and human epidermoid carcinoma A431 cells with protamine at 37 degrees C increased the 125I-epidermal growth factor (EGF) binding activity at 4 degrees C. The effect of protamine on the increase of 125I-EGF binding activity appeared to be time, temperature, and dose dependent. This up-modulation of 125I-EGF binding by protamine correlated with protamine enhancement of EGF-stimulated mitogenesis, with respect to the magnitude of the effect and the dose response curves. Scatchard plot analyses indicated that protamine induced an increase in numbers of both high and low affinity EGF receptors without affecting their affinities. Protamine also increased functionally active EGF receptors in plasma membranes and solubilized membranes. This was evidenced by Scatchard plot analyses and by a protamine-induced increase of 125I-EGF-EGF receptor complex and an increase in EGF-stimulated phosphorylation of the EGF receptor. Combined with column chromatography of the solubilized EGF receptor on protamine-agarose gel, these results suggest that protamine may increase the EGF receptor number by directly activating cryptic EGF receptors in the plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号