首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synthetic peptides corresponding to the autoinhibitory domains of calcium/calmodulin-dependent protein kinase II (CaMK-(281-309)), smooth muscle myosin light chain kinase (MLCK-(480-501)), and protein kinase C (PKC-(19-36)) as well as a peptide derived from the heat-stable inhibitor of cAMP-dependent protein kinase (PKI-tide) were tested for their inhibitory specificities. The inhibitory potencies of the four peptides were determined for each of the four protein kinases using both peptide substrates (at approximate Km concentrations) and protein substrates (at concentrations less than Km). In agreement with previous studies PKI-tide was a specific and potent inhibitor of only cAMP kinase, and none of the other inhibitory peptides gave significant inhibition of cAMP kinase at concentrations of less than 100 microM. With synthetic peptide substrates, PKC-(19-36) strongly inhibited native PKC (IC50 less than 1 microM) but also significantly inhibited autophosphorylated CaMK-II (IC50 = 30 microM) and proteolytically activated MLCK (IC50 = 35 microM). MLCK-(480-501) potently inhibited MLCK (IC50 = 0.25 microM) and also strongly inhibited both PKC and CaMK-II (IC50 = 1.4 and 1.7 microM, respectively). CaMK-(281-309) inhibited autophosphorylated CaMK-II, PKC, and proteolyzed MLCK almost equally (IC50 = 10, 38, and 48 microM, respectively). Qualitatively similar results were obtained with protein substrates. These studies validate the use of PKI-tide as a specific inhibitor of cAMP kinase in intact cell studies and suggest that PKC-(19-36) can also be used but only within a narrow concentration range. However, the autoinhibitory domain peptides from MLCK and CaMK-II are not sufficiently specific to be used in similar investigations.  相似文献   

2.
Rat liver cyclic AMP-dependent protein kinase catalytic subunit (cAK), assayed using the synthetic peptide substrate, LRRASLG, is inhibited by a range of plant-derived flavonoids. In general, maximal inhibitory effectiveness (IC50 values 1 to 2 microM) requires 2,3-unsaturation and polyhydroxylation involving at least two of the three flavonoid rings. 3-Hydroxyflavone (IC50 value 4 microM), 3,5,7,2',4'-pentahydroxyflavone (IC50 = 10 microM) and 5,7,4'-trihydroxyflavone (IC50 = 7 microM) represent somewhat less active variations from this pattern. Flavonoid O-methylation or O-glycosylation greatly decreases inhibitory effectiveness, as does 2,3-saturation. Various flavonoid-related compounds, notably gossypol (IC50 = 10 microM), also inhibit cAK. Flavonoids and related compounds are in general much better inhibitors of cAK than of avian Ca(2+)-calmodulin-dependent myosin light chain kinase or of plant Ca(2+)-dependent protein kinase. Tricetin (IC50 = 1 microM) inhibits cAK in a fashion that is non-competitive with respect to both peptide substrate and ATP (Ki value 0.7 microM). When histone III-S is used as a substrate, inhibition of cAK requires much higher flavonoid concentrations.  相似文献   

3.
M DasGupta 《Plant physiology》1994,104(3):961-969
A calcium-dependent protein serine/threonine kinase (GnCDPK) has been detected in groundnut (Arachis hypogea) seeds that specifically phosphorylates a peptide (MLCpep) representing the phosphate-accepting domain of smooth muscle myosin light chains. GnCDPK has been purified to near homogeneity from the soluble fraction of groundnut seeds by ammonium sulfate precipitation, Q Sepharose, Blue Sepharose, and Sephacryl 300 chromatography. The molecular weight of GnCDPK is estimated to be 53,000. Enzyme activity is stimulated about 100-fold in the presence of free Ca2+ (concentration required for half-maximal activation = 0.5 microM). GnCDPK is capable of binding 45Ca2+ ions directly in an electroblot, indicating it to be a calcium-binding protein. Phosphorylation of MLCpep is found to be optimal at an alkaline pH range (pH 9-10). Unlike all other calcium-dependent protein kinases reported from higher plants, GnCDPK does not accept casein or histones as substrate. Sequences related to MLCpep (> 60% homologous) that are present in myosin light chains from skeletal muscles of chicken and rabbit also fail to act as a substrate for GnCDPK. In contrast to the Ca2+/calmodulin dependence of myosin light chain kinases, GnCDPK activity is not affected by the presence of exogenous calmodulin (1-10 microM). However, enzyme activity is considerably inhibited in the presence of calmodulin antagonists like N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide (concentration required for 50% inhibition [IC50] = 30 microM) and calmidazolium (IC50 = 10 microM), indicating an endogenous calmodulin structure to be present in GnCDPK. The probability of GnCDPK being a bona fide plant myosin light chain kinase is discussed.  相似文献   

4.
Previous studies have shown that exposure to broad-spectrum protein kinase inhibitors results in parthenogenetic activation of metaphase II arrested porcine oocytes. The objective of this study was to determine the effect of inhibitors of myosin light chain kinase and other protein kinases on pronuclear development, dephosphorylation of a 25-kDa protein, and cortical granule exocytosis. Metaphase II arrested oocytes were obtained by in vitro maturation. Cumulus-free oocytes were cultured with specific inhibitors in modified Whitten's medium for 24 h. Treatment with inhibitors that should inhibit myosin light chain kinase--HA100 (250 microM), Wortmannin (1 microM), and a combination of Wortmannin (1 microM), KT5720 (75 nM), and Iso-H7 (50 microM)--resulted in significantly higher pronuclear development (74.0%, 18.0%, and 35.0%, respectively) than in the negative control, H7 (10 microM; 2.0-12.4% depending upon the replication). Treatment with HA100 (250 microM) resulted in the dephosphorylation of the 25-kDa protein to a 22-kDa protein in 80.0% (n = 10) of oocytes exposed. However, Wortmannin (1 microM; n = 17), KT5720 (75 nM; n = 16), and Iso-H7 (50 microM; n = 19) treatment individually and in combination (n = 19) did not result in significant (p < 0.05; n = 19) dephosphorylation over the negative control, H7 (10 microM; n = 19). HA100 treatment resulted in significant cortical granule exocytosis when evaluated by laser confocal microscopy. In addition, protein kinase assays revealed lower myosin light chain kinase activity in electroactivated oocytes (p < 0.05) and protein kinase inhibitor-treated oocytes (p < 0.05) than in negative controls, nonelectroactivated oocytes, and H7 (10 microM)-treated oocytes. Treatment with HA100 (250 microM) resulted in pronuclear formation, dephosphorylation of the 25-kDa protein, and some release of cortical granules. These observations suggest that inhibition of myosin light chain kinase, protein kinase A, and protein kinase C results in activation of porcine oocytes.  相似文献   

5.
We investigated the combined effect of 5-hydroxytryptamine (5-HT, serotonin) and calcium ionophore (A23187) on human platelet aggregation. Aggregation, monitored at 37 degrees C using a Dual-channel Lumi-aggregometer, was recorded for 5 min after challenge by a change in light transmission as a function of time. 5-HT (2-200 microM) alone did not cause platelet aggregation, but markedly potentiated A23187 (low dose) induced aggregation. Inhibitory concentration (IC50) values for a number of compounds were calculated as means +/- SEM from dose-response determinations. Synergism between 5-HT (2-5 microM) and A23187 (0.5-2 microM) was inhibited by 5-HT receptor blockers, methysergide (IC50 = 18 microM) and cyproheptadine (IC50 = 20 microM), and calcium channel blockers (verapamil and diltiazem, IC50 = 20 microM and 40 microM respectively). Interpretation of the effects of these blockers is complicated by their lack of specificity. Similarly, U73122, an inhibitor of phospholipase C (PLC), blocked the synergistic effect at an IC50 value of 9.2 microM. Wortmannin, a phosphatidylinositide 3-kinase (PI 3-K) inhibitor, also blocked the response (IC50 = 2.6 microM). However, neither genistein, a tyrosine-specific protein kinase inhibitor, nor chelerythrine, a protein kinase C inhibitor, affected aggregation at concentrations up to 10 microM. We conclude that the synergistic interaction between 5-HT and ionophore may be mediated by activation of PLC/Ca2+ and PI 3-kinase signalling pathways, but definitive proof will require other enzyme inhibitors with greater specificity.  相似文献   

6.
Blebbistatin is a myosin II-specific inhibitor. However, the mechanism and tissue specificity of the drug are not well understood. Blebbistatin blocked the chemotaxis of vascular smooth muscle cells (VSMCs) toward sphingosylphosphorylcholine (IC(50) = 26.1 +/- 0.2 and 27.5 +/- 0.5 microM for GbaSM-4 and A7r5 cells, respectively) and platelet-derived growth factor BB (IC(50) = 32.3 +/- 0.9 and 31.6 +/- 1.3 muM for GbaSM-4 and A7r5 cells, respectively) at similar concentrations. Immunofluorescence and fluorescent resonance energy transfer analysis indicated a blebbistatin-induced disruption of the actin-myosin interaction in VSMCs. Subsequent experiments indicated that blebbistatin inhibited the Mg(2+)-ATPase activity of the unphosphorylated (IC(50) = 12.6 +/- 1.6 and 4.3 +/- 0.5 microM for gizzard and bovine stomach, respectively) and phosphorylated (IC(50) = 15.0 +/- 0.6 microM for gizzard) forms of purified smooth muscle myosin II, suggesting a direct effect on myosin II motor activity. It was further observed that the Mg(2+)-ATPase activities of gizzard myosin II fragments, heavy meromyosin (IC(50) = 14.4 +/- 1.6 microM) and subfragment 1 (IC(50) = 5.5 +/- 0.4 microM), were also inhibited by blebbistatin. Assay by in vitro motility indicated that the inhibitory effect of blebbistatin was reversible. Electron-microscopic evaluation showed that blebbistatin induced a distinct conformational change (i.e., swelling) of the myosin II head. The results suggest that the site of blebbistatin action is within the S1 portion of smooth muscle myosin II.  相似文献   

7.
CP-46,665-1, an antineoplastic lipoidal amine, was found to inhibit phospholipid/Ca2+-dependent protein kinase (PL/Ca-PK, or protein kinase C), with an IC50 (concentration causing a 50% inhibition) of 10 microM. Its inhibition of the enzyme was reversed by phosphatidylserine, but not by Ca2+. The agent also inhibited the enzyme activity which was further augmented by 12-0-tetradecanoylphorbol-13-acetate (TPA), mezerein or diolein. Phosphorylation of endogenous proteins from HL-60 cells by the enzyme, with or without being further augmented by TPA, was inhibited by CP-46,665-1 as well as by alkyllysophospholipid (an antineoplastic agent). CP-46,665-1, while without effect on cyclic AMP-dependent protein kinase, also inhibited myosin light chain kinase (a calmodulin/Ca2+-dependent protein kinase). The present findings suggest that inhibition of the Ca2+-effector enzymes may be related in part to the antimetastatic activity of the lipoidal amine.  相似文献   

8.
A retro-inverso analogue of the pseudosubstrate sequence, Arg-Phe-Ala-Arg-Lys-Gly-Ala25-Leu-Arg-Gln-Lys-Asn-Val (1), found in the regulatory domain of all protein kinase C (PKC) subspecies was synthesized. It shows to be an inhibitor (IC50 = 31 microM) of the phosphorylation, by PKC, of [Ala9.10,Lys11.12] glycogen synthase (1-12). Its analogue in which D Ala25 is replaced by D Ser is not a PKC substrate, but a more potent inhibitor, competitive with the peptidic substrate (IC50 = 5 microM, Ki = 2 microM). Both retro-inverso peptides are highly specific for PKC versus adenosine cAMP-dependent protein kinase (PKA) and are totally stable towards proteolysis by trypsin or pronase.  相似文献   

9.
Tyrosine protein kinase present in the membrane fraction of bovine cerebral cortex were extracted and chromatographically fractionated. The activity associated with tyrosine protein kinases was fully extracted from the membranes by 1% sodium cholate and eluted in two peaks (I and II) during chromatography of protein extracts on DEAE-Toyopearl in the presence of sodium cholate. The predominant in cerebral cortex membrane tyrosine protein kinase of peak I (about 75% of the total activity) was purified 1930-fold by gel filtration on Sephacryl S-300, chromatography on hexyl- and phenyl-Sepharose and by rechromatography on DEAE-Toyopearl. The amount of the enzyme prepared from 250 g of bovine brain was 20 micrograms, the enzyme yield and specific activity being 3.8% and 3.9 nmol/mg protein/min, respectively. The purified protein kinase of peak I represents a protein with Mr of 62-63,000 (p62) capable of being autophosphorylated in the presence of [gamma-32P]. Protein kinase p62 phosphorylates enolase, tubulin and calpactin I as well as model substrates in the series: histone H5 greater than poly(G, T)n greater than or equal to histone H2A greater than poly(G, A, T)n, histone H4 greater than caseins, histones H1 and H2B, poly(G, A, L, T)n. The enzyme is specific for Mn2+ at the optimal concentration about 1 mM. The KmMn-ATP is 0.3 microM; Km for histone H5 and poly(G, T)n are 0.45 mg/ml and 0.06 mg/ml, respectively. The protein kinase p62 activity is inhibited by NaCl (IC50 approximately 75-100 mM) as well as by quercetin, adriamycin and lasalocid (IC50 approximately 14-34, 23 and 90 microM, respectively). It is concluded that protein kinase p62 is analogous to the c-src gene protein kinase.  相似文献   

10.
The Na+/H+ exchanger isoforms NHE1, NHE2, and NHE3 were all found to be expressed in Ehrlich ascites tumor cells, as evaluated by Western blotting and confocal microscopy. Under unstimulated conditions, NHE1 was found predominantly in the plasma membrane, NHE3 intracellularly, and NHE2 in both compartments. Osmotic cell shrinkage elicited a rapid intracellular alkalinization, the sensitivity of which to EIPA (IC50 0.19 microM) and HOE 642 (IC50 0.85 microM) indicated that it predominantly reflected activation of NHE1. NHE activation by osmotic shrinkage was inhibited by the protein kinase C inhibitors chelerythrine (IC50 12.5 microM), G? 6850 (5 microM), and G? 6976 (1 microM), and by the p38 MAPK inhibitor SB 203580 (10 microM). Furthermore, hypertonic cell shrinkage elicited a biphasic increase in p38 MAPK phosphorylation, with the first significant increase detectable 2 minutes after the hypertonic challenge. Neither myosin light chain kinase-specific concentrations of ML-7 (IC50 40 microM) nor ERK1/2 inhibition by PD 98059 (50 microM) had any effect on NHE activation. Under isotonic conditions, the serine/threonine protein phosphatase inhibitor calyculin A elicited an EIPA- and HOE 642-inhibitable intracellular alkalinization, indicating NHE1 activation. Similarly, shrinkage-induced NHE activation was potentiated by calyculin A. The calyculin A-induced alkalinization was not associated with an increase in the free, intracellular calcium concentration, but was abolished by chelerythrine. It is concluded that shrinkage-induced NHE activation is dependent on PKC and p38 MAPK, but not on MLCK or ERK1/2. NHE activity under both iso- and hypertonic conditions is increased by inhibition of serine/threonine phosphatases, and this effect appears to be PKC-dependent.  相似文献   

11.
Okadaic acid (OA), a potent inhibitor of protein phosphatases type 1 and type 2A, inhibited thrombin-induced platelet aggregation (IC50 = 0.8 microM), [14C]serotonin release and increase in intracellular Ca2+ ([Ca2+]i) in the same dose dependence. In the absence of thrombin OA increased the phosphorylation of 50-kDa protein and 20-kDa myosin light chain (MLC20). The 50-kDa protein phosphorylation was accomplished within a shorter time period and at a lower concentration than was the MLC20. OA decreased the thrombin-induced phosphorylation of 47-kDa protein and MLC20, although phosphorylation of MLC20 reincreased at higher concentrations of OA (5-10 microM). Since type 2A phosphatase is more sensitive to OA than type 1, these results suggest that type 2A phosphatases are involved in the regulation of Ca2+ signaling in thrombin-induced platelet activation.  相似文献   

12.
Although muscarinic acetylcholine receptors (mAChR) regulate the activity of smooth muscle myosin, the effects of mAChR activation on cytoplasmic myosin have not been characterized. We found that activation of transfected human M3 mAChR induces the phosphorylation of myosin light chains (MLC) and the formation of myosin-containing stress fibers in Chinese hamster ovary (CHO-m3) cells. Direct activation of protein kinase C (PKC) with phorbol 12-myristate 13-acetate (PMA) also induces myosin light chain phosphorylation and myosin reorganization in CHO-m3 cells. Conventional (alpha), novel (delta), and atypical (iota) PKC isoforms are activated by mAChR stimulation or PMA treatment in CHO-m3 cells, as indicated by PKC translocation or degradation. mAChR-mediated myosin reorganization is abolished by inhibiting conventional PKC isoforms with Go6976 (IC50 = 0.4 microM), calphostin C (IC50 = 2.4 microM), or chelerythrine (IC50 = 8.0 microM). Stable expression of dominant negative RhoAAsn-19 diminishes, but does not abolish, mAChR-mediated myosin reorganization in the CHO-m3 cells. Similarly, mAChR-mediated myosin reorganization is diminished, but not abolished, in CHO-m3 cells which are multi-nucleate due to inactivation of Rho with C3 exoenzyme. Expression of dominant negative RhoAAsn-19 or inactivation of RhoA with C3 exoenzyme does not affect PMA-induced myosin reorganization. These findings indicate that the PKC-mediated pathway of myosin reorganization (induced either by M3 mAChR activation or PMA treatment) can continue to operate even when RhoA activity is diminished in CHO-m3 cells. Conventional PKC isoforms and RhoA may participate in separate but parallel pathways induced by M3 mAChR activation to regulate cytoplasmic myosin. Changes in cytoplasmic myosin elicited by M3 mAChR activation may contribute to the unique ability of these receptors to regulate cell morphology, adhesion, and proliferation.  相似文献   

13.
Smooth muscle myosin light chain kinase contains a 64 residue sequence that binds calmodulin in a Ca2+-dependent manner (Guerriero, V., Jr., Russo, M. A., and Means, A. R. (1987) Biochemistry, in press). Within this region is a sequence with homology to the corresponding sequence reported for the calmodulin binding region of skeletal muscle myosin light chain kinase (Blumenthal, D. K., Takio, K., Edelman, A. M., Charbonneau, H., Titani, L., Walsh, K. A., and Krebs, E. G. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 3187-3191). Inspection of these sequences reveals that they both share a similar number and spatial arrangement of basic residues with those present in the myosin light chain substrate. We have synthesized a 22-residue peptide corresponding to residues 480-501 (determined from the cDNA) of the smooth muscle myosin light chain kinase. This peptide, Ala-Lys-Lys-Leu-Ser-Lys-Asp-Arg-Met-Lys-Lys-Tyr-Met-Ala-Arg-Arg-Lys-Trp- Gln-Lys-Thr-Gly, inhibited calmodulin-dependent activation of the smooth muscle myosin light chain kinase with an IC50 of 46 nM. At saturating concentrations of calmodulin, the 22-residue peptide inhibited myosin light chain and synthetic peptide substrate phosphorylation competitively with IC50 values of 2.7 and 0.9 microM, respectively. An 11-residue synthetic peptide analog, corresponding to part of the calmodulin-binding sequence in skeletal muscle myosin light chain kinase, Lys-Arg-Arg-Trp-Lys-Lys-Asn-Phe-Ile-Ala-Val, also competitively inhibited synthetic peptide substrate phosphorylation with a Ki of 1 microM. The competitive inhibitory activity of the calmodulin binding regions is similar to the apparent Km of 2.7 microM for phosphorylation of the 23-residue peptide analog of the smooth muscle myosin light chain and raises the possibility that the calmodulin binding region of the myosin light chain kinase may act as a pseudosubstrate inhibitor of the enzyme.  相似文献   

14.
In the present report, we demonstrate that Tb3+ binds to protein kinase C and serves as a luminescent reporter of certain cationic metal-binding sites. Tb3+ titration of 50 nM protein kinase C results in a 20-fold enhancement of Tb3+ luminescence which is half-maximal at 12 microM Tb3+. A Kd of approximately 145 nM was determined for Tb3+ binding to the enzyme. The excitation spectrum of bound Tb3+ exhibits a peak at 280 nm characteristic of energy transfer from protein tryptophan or tyrosine residues. The luminescence of this complex can be markedly decreased by other metals, including Pb2+ (IC50 = 25 microM), La3+ (IC50 = 50 microM), Hg2+ (IC50 = 300 microM), Ca2+ (IC50 = 6 mM), and Zn2+ (IC50 greater than 10 mM), and chelation of Tb3+ by 2 mM EGTA. Tb3+ binding to protein kinase C is correlated with its inhibition of protein kinase activity (IC50 = 8 microM), r = 0.99) and phorbol ester binding (IC50 = 15 microM, r = 0.98). Tb3+ inhibition of protein kinase C activity cannot be overcome by excess Ca2+, but can be partially overcome with excess phosphatidylserine or by chelation of Tb3+ with EGTA. Tb3+ noncompetitively inhibits phorbol ester binding by decreasing the maximal extent of binding without significantly altering binding affinity. The results suggest that the Tb3(+)-binding site is at or allosterically related to the enzyme's phosphatidylserine-binding site, but is distinct from the phorbol ester-binding domain and the Ca2(+)-binding site that regulates enzyme activity.  相似文献   

15.
Synthetic peptide analogs of the bovine myelin basic protein (MBP) corresponding to residues 104-118 were found to specifically inhibit phospholipid/ Ca2+-dependent protein kinase (protein kinase C). The peptides [Ala107]MBP (104-118) and [Ala113]MBP (104-118) inhibited protein phosphorylation of intact MBP, histone H1 and peptide phosphorylation with MBP(104-123), MBP(104-118) or [Ala105]MBP (104-118) as substrates. The inhibitor peptides [Ala107]MBP(104-118) and [Ala113]MBP (104-118), containing alanine in place of the arginine recognition sites, apparently inhibited the enzyme noncompetitively with respect to substrates, with IC50 values ranging from 46-145 and 28-62 microM, respectively. These peptide analogs did not inhibit cyclic AMP-dependent protein kinase or myosin light chain kinase but inhibited phospholipid/Ca2+-dependent phosphorylation of endogenous proteins in the total, solubilized fraction of rat brain.  相似文献   

16.
The inhibition of phosphatidylinositol 3-kinase by quercetin and analogs.   总被引:6,自引:0,他引:6  
Phosphatidylinositol (PtdIns) 3-kinase is an enzyme involved in cellular responses to growth factors. Quercetin (2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-1-benzopyrano-4-one), a naturally occuring bioflavinoid, was found to inhibit PtdIns 3-kinase with an IC50 of 1.3 micrograms/ml (3.8 microM); inhibition appears to be directed towards the ATP binding site of the kinase. Analogs of quercetin were also investigated as PtdIns 3-kinase inhibitors, with the most potent compounds exhibiting IC50's in the range of 1.7-8.4 micrograms/ml (5-19 microM). In contrast, genistein, a potent tyrosine kinase inhibitor of the isoflavone class, did not inhibit PtdIns 3-kinase significantly (IC50 greater than 30 micrograms/ml). These findings suggest that flavinoids may serve as potent inhibitors of PtdIns 3-kinase. Furthermore, the enzyme is much more sensitive to substituents at the 3-position of the flavinoid ring than are other protein and PtdIns kinases, suggesting that specific inhibitors of PtdIns 3-kinase can be developed to explore the biological role of the enzyme in cellular proliferation and growth factor response.  相似文献   

17.
Daphnetin, one of coumarin derivatives, is a protein kinase inhibitor.   总被引:7,自引:0,他引:7  
Protein kinases play key roles in the control of cell proliferation, differentiation and metabolism. In this work, we studied the effect of coumarin and its derivatives, including daphnetin, esculin, 2-OH-coumarin, 4-OH-coumarin and 7-OH-coumarin, on the activity of protein kinases. It was found that, in these compounds, only daphnetin was a protein kinase inhibitor. This compound inhibited tyrosine-specific protein kinase, EGF receptor (IC(50) = 7.67 microM), and serine/threonine-specific protein kinases, including cAMP-dependent protein kinase (PKA) (IC(50) = 9.33 microM) and protein kinase C (PKC) (IC(50) = 25.01 microM) in vitro. The inhibition of EGF receptor tyrosine kinase by daphnetin was competitive to ATP and non-competitive to the peptide substrate. The inhibition of EGF-induced tyrosine phosphorylation of EGF receptor by daphnetin was not observed in human hepatocellular carcinoma HepG2 cells. The structural comparison of daphnetin with coumarin and other coumarin derivatives suggests that the hydroxylation at C8 may be required for daphnetin acting as a protein kinase inhibitor.  相似文献   

18.
SQ-27986, a oxabicycloheptane derivative, potently inhibits ADP-, collagen- and arachidonic acid-induced platelet aggregation in human platelet-rich plasma. Human platelet aggregation induced by ADP is inhibited by SQ-27986 (EC50 = 22nM), and the inhibitory action of SQ-27986 can be prevented with N-0164, a PGD2 antagonist. By comparison, ADP-induced rat platelet aggregation is unaffected by SQ-27986 (IC50 greater than 80 microM). Washed human platelets treated with SQ-27986 exhibit elevated cAMP levels and activated cAMP-dependent protein kinase. Elevation of platelet cAMP levels (greater than 4 fold basal) and activation of the cAMP-dependent protein kinase (greater than 4 fold) are observed with SQ-27986 concentrations above 100 nM. The SQ-27986-induced elevation of cAMP can be prevented by N-0164. Lysed platelets treated with SQ-27986 showed stimulated adenylate cyclase activity. SQ-27986 competes with [3H]prostaglandin D2 binding to isolated platelet membranes (EC50 for SQ-27986 is 20 nM, which was more potent than cold PGD2 itself). Radiolabeled Iloprost binding is virtually unaffected by SQ-27986 (EC50 greater than 100 microM), indicating that SQ-27986 does not interact with platelet prostacyclin receptors. These studies indicate that SQ-27986 inhibits platelet aggregation by activating platelet adenylate cyclase via stimulation of platelet PGD2 receptors.  相似文献   

19.
The basic mechanism by which calmodulin activates bovine-cardiac muscle myosin light-chain kinase was investigated using highly purified preparations of mixed bovine-cardiac myosin light chains or isolated myosin light chain 2. The apparent contamination of these substrate proteins by calmodulin, as detected by activation of calmodulin-sensitive phosphodiesterase, was less than 4 parts/million and was undetectable by antibodies against calmodulin. The apparent KA for calmodulin was 2 nM and 20 nM in the presence of isolated myosin light-chain 2 and mixed myosin light chains, respectively. Purified bovine cardiac troponin C activated myosin light-chain kinase by about 10% at a concentration of 2 microM. Mixed myosin light chains were phosphorylated in the absence and presence of calmodulin and in the presence of calcium with a V of 11.1 and 11.0 mumol phosphate transferred min-1 (mg enzyme)-1, respectively. The apparent Km values for mixed myosin light chains were 8.0 and 0.35 mg/ml in the absence and presence of calmodulin, respectively. Similarly calmodulin lowered the Km value for isolated myosin light-chain 2 over 20-fold and increased the V value only about 1.5-fold. Activity observed in the absence of calmodulin was dependent on the presence of calcium and was suppressed by chelating free calcium either before or during a phosphorylation reaction. The apparent KA for calcium was 1.2 microM and 0.4 microM in the absence and presence of calmodulin. Activity in the absence of calmodulin was inhibited at very high concentrations of the 'specific' calmodulin antagonists W-7, trifluoperazine and R24571 with apparent IC50 values of 0.3 mM, 0.2 mM and 0.02 mM. Antibiotics raised against calmodulin suppressed completely the kinase activity in the presence of calmodulin but had no effect on the activity measured in its absence. These results suggest that calmodulin stimulates the activity of bovine-cardiac myosin light-chain kinase by increasing over 20-fold the affinity for its substrate myosin light-chain 2.  相似文献   

20.
Effects of melittin, an amphipathic polypeptide, on various species of protein kinases were investigated. It was found that melittin inhibited the newly identified phospholipid-sensitive Ca2+-dependent protein kinase (from heart, brain, spleen and neutrophils) and the cardiac myosin light-chain kinase, a calmodulin-sensitive Ca2+-dependent enzyme. In contrast, melittin had little or no effect on either the holoenzymes of the cardiac cyclic AMP-dependent and cyclic GMP-dependent protein kinases or the catalytic subunit of the former. Kinetic analysis indicated that melittin inhibited phospholipid-sensitive Ca2+-dependent protein kinase non-competitively with respect to ATP (Ki = 1.3 microM); although exhibiting complex kinetics, its inhibition of the enzyme was overcome by phosphatidylserine (a phospholipid cofactor), but not by protein substrate (histone H1) or Ca2+. On the other hand, melittin inhibited myosin light-chain kinase non-competitively with respect to ATP (Ki = 1.4 microM) or Ca2+ (Ki = 1.9 microM), and competitively with respect to calmodulin (Ki = 0.08 microM); although exhibiting complex kinetics, its inhibition of the enzyme was reversed by myosin light chains (substrate protein). The present findings indicate the presence of functionally important hydrophobic or hydrophilic loci on the Ca2+-dependent protein kinases, but not on the cyclic nucleotide-dependent class of protein kinase, with which melittin can interact. Moreover, the kinetic data suggest that melittin inhibited myosin light-chain kinase by interacting with a site on the enzyme the same as, or proximal to, the calmodulin-binding site, thus interfering with the formation of active enzyme-calmodulin-Ca2+ complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号