首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rat liver chromatin contains a 3'-phosphatase/5'-OH kinase which may be involved in the repair of DNA strand breaks limited by 3'-phosphate/5'-OH ends. In order to determine whether the phosphate group can be transferred directly from the 3' to the 5' position, a polynucleotide duplex was synthesized between poly (dA) and oligo (dT) segments which had 3'-[32P]phosphate and 5'-OH ends. The oligo (dT) segments were separated by simple nicks as shown by the ability of T4 DNA ligase to seal the nick after the 3'-phosphate was removed by a phosphatase and the 5' end was phosphorylated with a kinase. The chromatin 3'-phosphatase/5'-OH kinase was unable to transfer phosphate directly from the 3' to the 5' end of the oligo (dT) segments in the original duplex; ATP was needed to phosphorylate the 5'-OH end. It is concluded that the chromatin 3'-phosphatase/5'-OH kinase is unable to convert a 3'-phosphate/5'-OH nick which cannot be repaired by DNA ligase directly into a 3'-OH/5'-phosphate nick which can be repaired by DNA ligase; the chromatin enzyme rather acts in two steps: hydrolysis of the 3'-phosphate followed by ATP-mediated phosphorylation of the 5'-OH end.  相似文献   

2.
Mammalian polynucleotide kinase (PNK) is a key component of both the base excision repair (BER) and nonhomologous end-joining (NHEJ) DNA repair pathways. PNK acts as a 5'-kinase/3'-phosphatase to create 5'-phosphate/3'-hydroxyl termini, which are a necessary prerequisite for ligation during repair. PNK is recruited to repair complexes through interactions between its N-terminal FHA domain and phosphorylated components of either pathway. Here, we describe the crystal structure of intact mammalian PNK and a structure of the PNK FHA bound to a cognate phosphopeptide. The kinase domain has a broad substrate binding pocket, which preferentially recognizes double-stranded substrates with recessed 5' termini. In contrast, the phosphatase domain efficiently dephosphorylates single-stranded 3'-phospho termini as well as double-stranded substrates. The FHA domain is linked to the kinase/phosphatase catalytic domain by a flexible tether, and it exhibits a mode of target selection based on electrostatic complementarity between the binding surface and the phosphothreonine peptide.  相似文献   

3.
Tpp1 is a DNA 3'-phosphatase in Saccharomyces cerevisiae that is believed to act during strand break repair. It is homologous to one domain of mammalian polynucleotide kinase/3'-phosphatase. Unlike in yeast, we found that Tpp1 could confer resistance to methylmethane sulfonate when expressed in bacteria that lack abasic endonuclease/3'-phosphodiesterase function. This species difference was due to the absence of delta-lyase activity in S. cerevisiae, since expression of bacterial Fpg conferred Tpp1-dependent resistance to methylmethane sulfonate in yeast lacking the abasic endonucleases Apn1 and Apn2. In contrast, beta-only lyases increased methylmethane sulfonate sensitivity independently of Tpp1, which was explained by the inability of Tpp1 to cleave 3' alpha,beta-unsaturated aldehydes. In parallel experiments, mutations of TPP1 and RAD1, encoding part of the Rad1/Rad10 3'-flap endonuclease, caused synthetic growth defects in yeast strains lacking Apn1. In contrast, Fpg expression led to a partial rescue of apn1 apn2 rad1 synthetic lethality by converting lesions into Tpp1-cleavable 3'-phosphates. The collected experiments reveal a profound toxicity of strand breaks with irreparable 3' blocking lesions, and extend the function of the Rad1/Rad10 salvage pathway to 3'-phosphates. They further demonstrate a role for Tpp1 in repairing endogenously created 3'-phosphates. The source of these phosphates remains enigmatic, however, because apn1 tpp1 rad1 slow growth could be correlated with neither the presence of a yeast delta-lyase, the activity of the 3'-phosphate-generating enzyme Tdp1, nor levels of endogenous oxidation.  相似文献   

4.
Two novel, structurally and functionally distinct phosphatases have been identified through the functional complementation, by maize cDNAs, of an Escherichia coli diphosphonucleoside phosphatase mutant strain. The first, ZmDP1, is a classical Mg(2+)-dependent and Li(+)-sensitive diphosphonucleoside phosphatase that dephosphorylates both 3'-phosphoadenosine 5'-phosphate (3'-PAP) and 2'-PAP without any discrimination between the 3'- and 2'-positions. The other, ZmDP2, is a distinct phosphatase that also catalyzes diphosphonucleoside dephosphorylation, but with a 12-fold lower Li(+) sensitivity, a strong preference for 3'-PAP, and the unique ability to utilize double-stranded DNA molecules with 3'-phosphate- or 3'-phosphoglycolate-blocking groups as substrates. Importantly, ZmDP2, but not ZmDP1, conferred resistance to a DNA repairdeficient E. coli strain against oxidative DNA-damaging agents generating 3'-phosphate- or 3'-phosphoglycolate-blocked single strand breaks. ZmDP2 shares a partial amino acid sequence similarity with a recently identified human polynucleotide kinase 3'-phosphatase that is thought to be involved in DNA repair, but is devoid of 5'-kinase activity. ZmDP2 is the first DNA 3'-phosphoesterase thus far identified in plants capable of converting 3'-blocked termini into priming sites for reparative DNA polymerization.  相似文献   

5.
Enzyme action at 3' termini of ionizing radiation-induced DNA strand breaks   总被引:13,自引:0,他引:13  
gamma-Irradiation of DNA in vitro produces two types of single strand breaks. Both types of strand breaks contain 5'-phosphate DNA termini. Some strand breaks contain 3'-phosphate termini, some contain 3'-phosphoglycolate termini (Henner, W.D., Rodriguez, L.O., Hecht, S. M., and Haseltine, W. A. (1983) J. Biol. Chem. 258, 711-713). We have studied the ability of prokaryotic enzymes of DNA metabolism to act at each of these types of gamma-ray-induced 3' termini in DNA. Neither strand breaks that terminate with 3'-phosphate nor 3'-phosphoglycolate are substrates for direct ligation by T4 DNA ligase. Neither type of gamma-ray-induced 3' terminus can be used as a primer for DNA synthesis by either Escherichia coli DNA polymerase or T4 DNA polymerase. The 3'-phosphatase activity of T4 polynucleotide kinase can convert gamma-ray-induced 3'-phosphate but not 3'-phosphoglycolate termini to 3'-hydroxyl termini that can then serve as primers for DNA polymerase. E. coli alkaline phosphatase is also unable to hydrolyze 3'-phosphoglycolate groups. The 3'-5' exonuclease actions of E. coli DNA polymerase I and T4 DNA polymerase do not degrade DNA strands that have either type of gamma-ray-induced 3' terminus. E. coli exonuclease III can hydrolyze DNA with gamma-ray-induced 3'-phosphate or 3'-phosphoglycolate termini or with DNase I-induced 3'-hydroxyl termini. The initial action of exonuclease III at 3' termini of ionizing radiation-induced DNA fragments is to remove the 3' terminal phosphate or phosphoglycolate to yield a fragment of the same nucleotide length that has a 3'-hydroxyl terminus. These results suggest that repair of ionizing radiation-induced strand breaks may proceed via the sequential action of exonuclease, DNA polymerase, and DNA ligase. The possible role of exonuclease III in repair of gamma-radiation-induced strand breaks is discussed.  相似文献   

6.
In Saccharomyces cerevisiae, the apurinic/apyrimidinic (AP) endonucleases Apn1 and Apn2 act as alternative pathways for the removal of various 3'-terminal blocking lesions from DNA strand breaks and in the repair of abasic sites, which both result from oxidative DNA damage. Here we demonstrate that Tpp1, a homologue of the 3' phosphatase domain of polynucleotide kinase, is a third member of this group of redundant 3' processing enzymes. Unlike Apn1 and Apn2, Tpp1 is specific for the removal of 3' phosphates at strand breaks and does not possess more general 3' phosphodiesterase, exonuclease, or AP endonuclease activities. Deletion of TPP1 in an apn1 apn2 mutant background dramatically increased the sensitivity of the double mutant to DNA damage caused by H2O2 and bleomycin but not to damage caused by methyl methanesulfonate. The triple mutant was also deficient in the repair of 3' phosphate lesions left by Tdp1-mediated cleavage of camptothecin-stabilized Top1-DNA covalent complexes. Finally, the tpp1 apn1 apn2 triple mutation displayed synthetic lethality in combination with rad52, possibly implicating postreplication repair in the removal of unrepaired 3'-terminal lesions resulting from endogenous damage. Taken together, these results demonstrate a clear role for the lesion-specific enzyme, Tpp1, in the repair of a subset of DNA strand breaks.  相似文献   

7.
Polynucleotide kinase is a bifunctional enzyme containing both DNA 3'-phosphatase and 5'-kinase activities seemingly suited to the coupled repair of single-strand nicks in which the phosphate has remained with the 3'-base. We show that the yeast Saccharomyces cerevisiae is able to repair transformed dephosphorylated linear plasmids by non-homologous end joining with considerable efficiency independently of the end-processing polymerase Pol4p. Homology searches and biochemical assays did not reveal a 5'-kinase that would account for this repair, however. Instead, open reading frame YMR156C (here named TPP1) is shown to encode only a polynucleotide kinase-type 3'-phosphatase. Tpp1p bears extensive similarity to the ancient L-2-halo-acid dehalogenase and DDDD phosphohydrolase superfamilies, but is specific for double-stranded DNA. It is present at high levels in cell extracts in a functional form and so does not represent a pseudogene. Moreover, the phosphatase-only nature of this gene is shared by Saccharomyces mikatae YMR156C and Arabidopsis thaliana K15M2.3. Repair of 3'-phosphate and 5'-hydroxyl lesions is thus uncoupled in budding yeast as compared with metazoans. Repair of transformed dephosphorylated plasmids, and 5'-hydroxyl blocking lesions more generally, likely proceeds by a cycle of base removal and resynthesis.  相似文献   

8.
The DNA 3'-phosphatase activity of rat-liver chromatin has been purified. A DNA 5'-hydroxyl kinase activity comigrates at each step of purification. Both enzymes have the same molecular mass (79 kDa) and the same isoelectric point (8.6). It thus seems that the two activities are born by the same protein just as with the phage T4 enzyme which is, at the same time, a 5'-hydroxyl kinase and a 3'-phosphatase. An additional argument is that ATP, which does not influence the rate of the 3'-phosphatase reaction but which is a cosubstrate of the 5'-hydroxyl kinase, protects the 3'-phosphatase activity against thermal denaturation and trypsin digestion. The two active sites must, however, be largely independent within a common support: the thermal denaturation and trypsin inactivation rates are very different for the two activities; increasing the ionic strength activates the kinase and inhibits the phosphatase; polyvalent anions inhibit the phosphatase and have little effect on the kinase. The two active sites might belong to different domains of the protein; they could not however be separated by a partial trypsin digestion. The rates of 3'-dephosphorylation and 5'-phosphorylation by the chromatin enzyme are the same in native and denatured DNA. The 3'-phosphatase has no action on 3'-monodeoxynucleotide, but it hydrolyzes the 3'-phosphate in dinucleotides. The Km of the 3'-phosphatase is 0.548 microM. The Km (5'-OH) and Km (ATP) of the 5'-hydroxyl kinase are about 3.9 microM and 0.69 microM respectively. The chromatin enzyme is unable to hydrolyze 3'-phosphoglycolate ends in DNA.  相似文献   

9.
Histones and polyamines nick the phosphodiester bond 3' to AP (apurinic/apyrimidinic) sites in DNA by inducing a beta-elimination reaction, which can be followed by delta-elimination. These beta- and delta-elimination reactions might be important for the repair of AP sites in chromatin DNA in either of two ways. In one pathway, after the phosphodiester bond 5' to the AP site has been hydrolysed with an AP endonuclease, the 5'-terminal base-free sugar 5'-phosphate is released by beta-elimination. The one-nucleotide gap limited by 3'-OH and 5'-phosphate ends is then closed by DNA polymerase-beta and DNA ligase. We have shown in vitro that such a repair is possible. In the other pathway, the nicking 3' to the AP site by beta-elimination occurs first. We have shown that the 3'-terminal base-free sugar so produced cannot be released by the chromatin AP endonuclease from rat liver. But it can be released by delta-elimination, leaving a gap limited by 3'-phosphate and 5'-phosphate. After conversion of the 3'-phosphate into a 3'-OH group by the chromatin 3'-phosphatase, there will be the same one-nucleotide gap, limited by 3'-OH and 5'-phosphate, as that formed by the successive actions of the AP endonuclease and the beta-elimination catalyst in the first pathway.  相似文献   

10.
[5'-32P]pdT8d(-)dT7, containing an AP (apurinic/apyrimidinic) site in the ninth position, and [d(-)-1',2'-3H, 5'-32P]DNA, containing AP sites labelled with 3H in the 1' and 2' positions of the base-free deoxyribose [d(-)] and with 32P 5' to this deoxyribose, were used to investigate the yields of the beta-elimination and delta-elimination reactions catalysed by spermine, and also the yield of hydrolysis, by the 3'-phosphatase activity of T4 polynucleotide kinase, of the 3'-phosphate resulting from the beta delta-elimination. Phage-phi X174 RF (replicative form)-I DNA containing AP (apurinic) sites has been repaired in five steps: beta-elimination, delta-elimination, hydrolysis of 3'-phosphate, DNA polymerization and ligation. Spermine, in one experiment, and Escherichia coli formamidopyrimidine: DNA glycosylase, in another experiment, were used to catalyse the first and second steps (beta-elimination and delta-elimination). These repair pathways, involving a delta-elimination step, may be operational not only in E. coli repairing its DNA containing a formamido-pyrimidine lesion, but also in mammalian cells repairing their nuclear DNA containing AP sites.  相似文献   

11.
Solanapyrone A, a phytotoxin and enzyme inhibitor isolated from a fungus (SUT 01B1-2) selectively inhibits the activities of mammalian DNA polymerase beta and lambda (pol beta and lambda) in vitro. The IC50 values of the compound were 30 microm for pol beta and 37 microm for pol lambda. Because pol beta and lambda are in a family and their three-dimensional structures are thought to be highly similar to each other, we used pol beta to analyze the biochemical relationship with solanapyrone A. On pol beta, solanapyrone A antagonistically competed with both the DNA template and the nucleotide substrate. BIAcore analysis demonstrated that solanapyrone A bound selectively to the N-terminal 8-kDa domain of pol beta. This domain is known to bind single-stranded DNA, provide 5'-phosphate recognition of gapped DNA, and cleave the sugar-phosphate bond 3' to an intact apurinic/apyrimidinic (AP) site (i.e. AP lyase activity) including 5'-deoxyribose phosphate lyase activity. Solanapyrone A inhibited the single-stranded DNA-binding activity but did not influence the activities of the 5'-phosphate recognition in gapped DNA structures and the AP lyase. Based on these results, the inhibitory mechanism of solanapyrone A is discussed.  相似文献   

12.
Human polynucleotide kinase (hPNK) is required for processing and rejoining DNA strand break termini. The 5'-DNA kinase and 3'-phosphatase activities of hPNK can be stimulated by the "scaffold" protein XRCC1, but the mechanism remains to be fully elucidated. Using a variety of fluorescence techniques, we examined the interaction of hPNK with XRCC1 and substrates that model DNA single-strand breaks. hPNK binding to substrates with 5'-OH termini was only approximately 5-fold tighter than that to identical DNA molecules with 5'-phosphate termini, suggesting that hPNK remains bound to the product of its enzymatic activity. The presence of XRCC1 did not influence the binding of hPNK to substrates with 5'-OH termini, but sharply reduced the interaction of hPNK with DNA bearing a 5'-phosphate terminus. These data, together with kinetic data obtained at limiting enzyme concentration, indicate a dual function for the interaction of XRCC1 with hPNK. First, XRCC1 enhances the capacity of hPNK to discriminate between strand breaks with 5'-OH termini and those with 5'-phosphate termini; and second, XRCC1 stimulates hPNK activity by displacing hPNK from the phosphorylated DNA product.  相似文献   

13.
A putative role for mammalian polynucleotide kinases that possess both 5'-phosphotransferase and 3'-phosphatase activity is the restoration of DNA strand breaks with 5'-hydroxyl termini or 3'-phosphate termini, or both, to a form that supports the subsequent action of DNA repair polymerases and DNA ligases, i.e. 5'-phosphate and 3'-hydroxyl termini. To further assess this possibility, we compared the activity of the 3'-phosphatase of purified calf thymus polynucleotide kinase towards a variety of substrates. The rate of removal of 3'-phosphate groups from nicked or short (1 nt) gapped sites in double-stranded DNA was observed to be similar to that of 3'-phosphate groups from single-stranded substrates. Thus this activity of polynucleotide kinase does not appear to be influenced by steric accessibility of the phosphate group. We subsequently demonstrated that the concerted reactions of polynucleotide kinase and purified human DNA ligase I could efficiently repair DNA nicks possessing 3'-phosphate and 5'-hydroxyl termini, and similarly the combination of these two enzymes together with purified rat DNA polymerase beta could seal a strand break with a 1 nt gap. With a substrate containing a nick bounded by 3'- and 5'-OH termini, the rate of gap filling by polymerase beta was significantly enhanced in the presence of polynucleotide kinase and ATP, indicating the positive influence of 5'-phosphorylation. The reaction was further enhanced by addition of DNA ligase I to the reaction mixture. This is due, at least in part, to an enhancement by DNA ligase I of the rate of 5'-phosphorylation catalyzed by polynucleotide kinase.  相似文献   

14.
T4 phage polynucleotide kinase (PNK) was identified over 35 years ago and has become a staple reagent for molecular biologists. The enzyme displays 5'-hydroxyl kinase, 3'-phosphatase, and 2',3'-cyclic phosphodiesterase activities against a wide range of substrates. These activities modify the ends of nicked tRNA generated by a bacterial response to infection and facilitate repair by T4 RNA ligase. DNA repair enzymes that share conserved motifs with PNK have been identified in eukaryotes. PNK contains two functionally distinct structural domains and forms a homotetramer. The C-terminal phosphatase domain is homologous to the L-2-haloacid dehalogenase family and the N-terminal kinase domain is homologous to adenylate kinase. The active sites have been characterized through structural homology analyses and visualization of bound substrate.  相似文献   

15.
Mammalian polynucleotide kinases catalyze the 5'-phosphorylation of nucleic acids and can have associated 3'-phosphatase activity, predictive of an important function in DNA repair following ionizing radiation or oxidative damage. The sequences of three tryptic peptides from a bovine 60-kDa polypeptide that correlated with 5'-DNA kinase and 3'-phosphatase activities identified human and murine dbEST clones. The 57.1-kDa conceptual translation product of this gene, polynucleotide kinase 3'-phosphatase (PNKP), contained a putative ATP binding site and a potential 3'-phosphatase domain with similarity to L-2-haloacid dehalogenases. BLAST searches identified possible homologs in Caenorhabditis elegans, Schizosaccharomyces pombe, and Drosophila melanogaster. The gene was localized to chromosome 19q13.3-13.4. Northern analysis indicated a 2-kilobase mRNA in eight human tissues. A glutathione S-transferase-PNKP fusion protein displayed 5'-DNA kinase and 3'-phosphatase activities. PNKP is the first gene for a DNA-specific kinase from any organism. PNKP expression partially rescued the sensitivity to oxidative damaging agents of the Escherichia coli DNA repair-deficient xth nfo double mutant. PNKP gene function restored termini suitable for DNA polymerase, consistent with in vivo removal of 3'-phosphate groups, facilitating DNA repair.  相似文献   

16.
T4 polynucleotide kinase (Pnk) is the founding member of a family of 5'-kinase/3'-phosphatase enzymes that heal broken termini in RNA or DNA by converting 3'-PO(4)/5'-OH ends into 3'-OH/5'-PO(4) ends, which are then suitable for sealing by RNA or DNA ligases. Here we employed site-directed mutagenesis and biochemical methods to dissect the domain structure of the homotetrameric T4 Pnk protein and to localize essential constituents of the apparently separate active sites for the 5'-kinase and 3'-phosphatase activities. We characterized deletion mutants Pnk(42-301) and Pnk(1-181), which correspond to domains defined by proteolysis with chymotrypsin. Pnk(1-181) is a monomer with no 3'-phosphatase and low residual 5'-kinase activity. Pnk(42-301) is a dimer with no 5'-kinase and low residual 3'-phosphatase activity. Four classes of missense mutational effects were observed. (i) Mutations K15A, S16A, and D35A inactivated the 5'-kinase but did not affect the 3'-phosphatase or the tetrameric quaternary structure of T4 Pnk. 5'-kinase activity was ablated by the conservative mutations K15R, K15Q, and D35N; however, kinase activity was restored by the S16T change. (ii) Mutation D167A inactivated the 3'-phosphatase without affecting the 5'-kinase or tetramerization. (iii) Mutation D85A caused a severe decrement in 5'-kinase activity and only a modest effect on the 3'-phosphatase; the nearby N87A mutation resulted in a significantly reduced 3'-phosphatase activity and slightly reduced 5'-kinase activity. D85A and N87A both affected the quaternary structure, resulting in a mixed population of tetramer and dimer species. (iv) Alanine mutations at 11 other conserved positions had no significant effect on either 5'-kinase or 3'-phosphatase activity.  相似文献   

17.
DNA ligase D (LigD) performs end remodeling and end sealing reactions during nonhomologous end joining in bacteria. Pseudomonas aeruginosa LigD consists of a central ATP-dependent ligase domain fused to a C-terminal polymerase domain and an N-terminal phosphoesterase (PE) module. The PE domain catalyzes manganese-dependent phosphodiesterase and phosphomonoesterase reactions at the 3' end of the primer strand of a primer-template. The phosphodiesterase cleaves a 3'-terminal diribonucleotide to yield a primer strand with a ribonucleoside 3'-PO4 terminus. The phosphomonoesterase converts a terminal ribonucleoside 3'-PO4 or deoxyribonucleoside 3'-PO4 of a primer-template to a 3'-OH. Here we report that the phosphodiesterase and phosphomonoesterase activities are both dependent on the presence and length of the 5' single-strand tail of the primer-template substrate. Although the phosphodiesterase activity is strictly dependent on the 2'-OH of the penultimate ribose, it is indifferent to a 2'-OH versus a2'-H on the terminal nucleoside. Incision at the ribonucleotide linkage is suppressed when the 2'-OH is moved by 1 nucleotide in the 5' direction, suggesting that LigD is an exoribonuclease that cleaves the 3'-terminal phosphodiester. We report the effects of conservative amino acid substitutions at residues: (i) His42, His48, Asp50, Arg52, His84, and Tyr88, which are essential for both the ribonuclease and 3'-phosphatase activities; (ii) Arg14, Asp15, Glu21, and Glu82, which are critical for 3'-phosphatase activity but not 3'-ribonucleoside removal; and (iii) at Lys66 and Arg76, which participate selectively in the 3'-ribonuclease reaction. The results suggest roles for individual functional groups in metal binding and/or phosphoesterase chemistry.  相似文献   

18.
The Escherichia coli dinB gene encodes DNA polymerase (pol) IV, a protein involved in increasing spontaneous mutations in vivo. The protein-coding region of DINB1, the human ortholog of DNA pol IV, was fused to glutathione S-transferase and expressed in insect cells. The purified fusion protein was shown to be a template-directed DNA polymerase that we propose to designate pol kappa. Human pol kappa lacks detectable 3' --> 5' proofreading exonuclease activity and is not stimulated by recombinant human proliferating cell nuclear antigen in vitro. Between pH 6.5 and 8.5, human pol kappa possesses optimal activity at 37 degrees C over the pH range 6.5-7.5, and is insensitive to inhibition by aphidicolin, dideoxynucleotides, or NaCl up to 50 mm. Either Mg(2+) or Mn(2+) can satisfy a metal cofactor requirement for pol kappa activity, with Mg(2+) being preferred. Human pol kappa is unable to bypass a cisplatin adduct in the template. However, pol kappa shows limited bypass of an 2-acetylaminofluorene lesion and can incorporate dCTP or dTTP across from this lesion, suggesting that the bypass is potentially mutagenic. These results are consistent with a model in which pol kappa acts as a specialized DNA polymerase whose possible role is to facilitate the replication of templates containing abnormal bases, or possessing structurally aberrant replication forks that inhibit normal DNA synthesis.  相似文献   

19.
We identify and characterize an end-healing enzyme, CthPnkp, from Clostridium thermocellum that catalyzes the phosphorylation of 5'-OH termini of DNA or RNA polynucleotides and the dephosphorylation of 2',3' cyclic phosphate, 2'-phosphate, and 3'-phosphate ribonucleotides. CthPnkp also catalyzes an autoadenylylation reaction via a polynucleotide ligase-type mechanism. These characteristics are consistent with a role in end-healing during RNA or DNA repair. CthPnkp is a homodimer of an 870-amino-acid polypeptide composed of three catalytic domains: an N-terminal module that resembles the polynucleotide kinase domain of bacteriophage T4 Pnkp, a central metal-dependent phosphoesterase module, and a C-terminal module that resembles the nucleotidyl transferase domain of polynucleotide ligases. The distinctive feature of CthPnkp vis-à-vis known RNA repair enzymes is that its 3' end modification component belongs to the calcineurin-type phosphatase superfamily. It contains putative counterparts of the amino acids that form the dinuclear metal-binding site and the phosphate-binding site of bacteriophage lambda phosphatase. As with lambda phosphatase, the 2',3' cAMP phosphatase activity of CthPnkp is specifically dependent on nickel or manganese. We identify homologs of CthPnkp in other bacterial proteomes.  相似文献   

20.
Mammalian polynucleotide kinase 3' phosphatase (PNK) plays a key role in the repair of DNA damage, functioning as part of both the nonhomologous end-joining (NHEJ) and base excision repair (BER) pathways. Through its two catalytic activities, PNK ensures that DNA termini are compatible with extension and ligation by either removing 3'-phosphates from, or by phosphorylating 5'-hydroxyl groups on, the ribose sugar of the DNA backbone. We have now determined crystal structures of murine PNK with DNA molecules bound to both of its active sites. The structure of ssDNA engaged with the 3'-phosphatase domain suggests a mechanism of substrate interaction that assists DNA end seeking. The structure of dsDNA bound to the 5'-kinase domain reveals a mechanism of DNA bending that facilitates recognition of DNA ends in the context of single-strand and double-strand breaks and suggests a close functional cooperation in substrate recognition between the kinase and phosphatase active sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号