首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The intermediate and terminal products of cyanide and thiocyanate decomposition by individual strains of the genus Pseudomonas, P. putida strain 21 and P. stutzeri strain 18, and by their association were analyzed. The activity of the enzymes of nitrogen and sulfur metabolism in these strains was compared with that of the collection strains P. putida VKM B-2187T and P. stutzeri VKM B-975T. Upon the introduction of CN and SCN into cell suspensions of strains 18 and 21 in phosphate buffer (pH 8.8), the production of NH 4 + was observed. Due to the high rate of their utilization, NH3, NH 4 + , and CNO were absent from the culture liquids of P. putida strain 21 and P. stutzeri strain 18 grown with CN or SCN. Both Pseudomonas strains decomposed SCN via cyanate production. The cyanase activity was 0.75 μmol/(min mg protein) for P. putida strain 21 and 1.26 μmol/(min mg protein) for P. stutzeri strain 18. The cyanase activity was present in the cells grown with SCN but absent in cells grown with NH 4 + . Strain 21 of P. putida was a more active CN decomposer than strain 18 of P. stutzeri. Ammonium and CO2 were the terminal nitrogen and carbon products of CN and SCN decomposition. The terminal sulfur products of SCN decomposition by P. stutzeri strain 18 and P. putida strain 21 were thiosulfate and tetrathionate, respectively. The strains utilized the toxic compounds in the anabolism only, as sources of nitrogen (CN and SCN) and sulfur (SCN). The pathway of thiocyanate decomposition by the association of bacteria of the genus Pseudomonas is proposed based on the results obtained. Original Russian Text ? N.V. Grigor’eva, T.F. Kondrat’eva, E.N. Krasil’nikova, G.I. Karavaiko, 2006, published in Mikrobiologiya, 2006, Vol. 75, No. 3, pp. 320–328.  相似文献   

2.
In this study, pyruvate production of Fusarium equiseti was significantly increased when the yeast extract concentration was raised from 5 to 25 g/L while it was increased to only up to 10 g/L yeast extract in F. acuminatum. Upon supplementation with urea as an alternative nitrogen source, production of pyruvate for both of the Fusarium species were decreased with respect to increase in urea concentration in medium. On the other hand, ethanol production and alcohol dehydrogenase activity of F. equiseti were decreased approximately 1.9- and 1.6-fold with an increase in yeast concentration from 5 to 25 whereas the levels of F. acuminatum were increased 2.3- and 1.8-fold, respectively. In addition, ethanol productions and ADH activities in F. equiseti and F. acuminatum significantly increased on the 12th day up to 15 and 25 g/L urea concentrations, respectively. However, they were significantly decreased under these conditions at higher nitrogen sources. In addition, ethanol production and alcohol dehydrogenase activity in urea supplemented medium were higher than yeast extract supplemented. The results may suggest that the pyruvate, ethanol production and ADH enzyme activity variations and balance between aerobic and anaerobic respiration in F. equiseti and F. acuminatum were effected from yeast extract and urea concentrations in the nutrient medium.  相似文献   

3.
A promising biotechnological strategy in the management of phosphorus (P) fertilization is the use of phosphate-solubilizing fungi to solubilize rock phosphates and allow the recovery of unavailable P fixed to soil particles. Phosphate-solubilizing rhizosphere fungus, Talaromyces funiculosus SLS8, isolated from Neem (Azadirachta indica) on saline soil, was tolerant to environmental stressors, salinity and agricultural systemic fungicides. Phosphate solubilization under different nutritional conditions was investigated by culturing T. funiculosus SLS8 in Pikovskaya liquid medium containing different nitrogen sources (ammonium sulfate, casein, urea, potassium nitrate or sodium nitrate) and carbon sources (glucose, fructose, galactose or sucrose), NaCl, and three systemic fungicides. The highest concentration of solubilised phosphate (187 mg P L?1) was achieved after 5 days of incubation in the medium with glucose and ammonium sulphate. The culture pH decreased from 6.5 to 4.2 and HPLC demonstrated organic acid production. Phosphate solubilized was highly negatively correlated with pH (r?=??0.96). Increasing salinity had no effect on phosphate solubilization. The maximum tolerance limits to systemic fungicides carbendazim, mancozeb, and hexaconazole were 12.5 μg mL?1, 2,000 μg mL?1 and 250 μl mL?1 respectively. At these concentrations carbendazim, mancozeb and hexaconazole were found to decrease phosphate solubilization by 55 %, 37 %, and 30 %, respectively. Our results indicate that T. funiculosus SLS8 may be a potential candidate for the development of a biofertilizer for maintaining available phosphate levels in environmentally stressed soils such as saline agricultural soils impacted by systemic fungicide application or seed treatment.  相似文献   

4.
5.
【背景】连作可引起微生物群落结构失调,导致土壤环境恶化、养分循环不畅、当归[Angelica sinensis (Oliv.) Diels]产量降低,通过现代微生物技术改良土壤、消减连作障碍势在必行。【目的】于大田条件下,研究施用复合菌剂对当归根围土壤酶活、速效养分及产量的影响,明确增产机制,改进增产措施。【方法】利用溶磷圈法检测不同菌株溶磷活性、乙炔还原法检测固氮活性、试剂盒法检测过氧化物酶和硝化能力;复合菌剂T1[荧光假单胞菌(Pseudomonas fluorescens)CBS5、产碱假单胞菌(Pseudomonas alcaligenes) CBS7、嗜冷假单胞菌(Pseudomonas extremaustralis)CBSB、生枝动胶菌(Zoogloea ramigera) CBS4]和T2 (荧光假单胞菌CBS5、产碱假单胞菌CBS7、嗜冷假单胞菌CBSB)及对照CK (无菌马铃薯葡萄糖肉汤培养基)分别处理连作当归,分光光度法测定根围土壤及根中养分循环、转化相关酶活,氮、磷、钾速效养分含量;常规方法测产量;统计软件进行相关数据方差分析和主成分分析。【结果】产碱假单胞菌C...  相似文献   

6.
Both the soil isolate,Pseudomonas stutzeri JM300, and the marine isolate,Pseudomonas stutzeri strain ZoBell, have been shown previously to be naturally transformable. This study reports the detection of genetic exchange by natural transformation between these two isolates. Transformation frequency was determined by filter transformation procedures. Three independent antibiotic resistance loci were used as chromosomal markers to monitor this exchange event: resistance to rifampicin, streptomycin, and nalidixic acid. The maximum frequencies of transformation were on the order of 3.1 to 3.8×10-6 transformants per recipient; frequencies over an order of magnitude greater than those for spontaneous antibiotic resistance, although they are lower than those observed for soil: soil or marine: marine strain crosses. This exchange was inhibited by DNase I. Transformation was observed between soil and marine strains, both by filter transformation using purified DNA solutions and when transforming DNA was added in the form of viable donor cells. The results from this study support the close genetic relationship betweenP. stutzeri JM300 andP. stutzeri strain ZoBell. These results also further validate the utility ofP. stutzeri as a benchmark organism for modeling gene transfer by natural transformation in both soil and marine habitats.  相似文献   

7.
Developmental deficiency of somatic embryos and regeneration to plantlets, especially in the case of transformation, are major problems of somatic embryo regeneration in alfalfa. One of the ways to overcome these problems is the use of natural plant regulators and nutrients in the culture medium of somatic embryos. For investigating the influence of Cuscuta campestris extract on the efficiency of plant regeneration and transformation, chimeric tissue type plasminogen activator was transferred to explants using Agrobacterium tumefaciens, and transgenic plants were recovered using medium supplemented with different concentration of the extract. Transgenic plants were analyzed by PCR and RT-PCR. Somatic embryos of Medicago sativa L. developed into plantlets at high frequency level (52 %) in the maturation medium supplemented with 50 mg 1?1 C. campestris extract as compared to the medium without extract (26 %). Transformation efficiency was 29.3 and 15.2 % for medium supplemented with dodder extract and without the extract, respectively. HPLC and GC/MS analysis of the extract indicated high level of ABA and some compounds such as Phytol, which can affect the somatic embryo maturation. The antibacterial assay showed that the extract was effective against some strains of A. tumefaciens. These results have provided a scientific basis for using of C. campestris extract as a good natural source of antimicrobial agents and plant growth regulator as well, that can be used in tissue culture of transgenic plants.  相似文献   

8.
Cytoplasmic phosphomonoesters and inorganic phosphate, as well as vacuolar inorganic phosphate and polyphosphates, gave rise to the major peaks in 31P nuclear magnetic resonance (NMR) spectra of the marine macroalgae Enteromorpha sp., Ceramium sp., and Ulva lactuca which were collected from the sea. In contrast, NMR-visible polyphosphates were lacking in Pylaiella sp. and intracellular vacuolar phosphate seemed to act as the main phosphorus store in this organism. In laboratory experiments, polyphosphates decreased in growing U. lactuca which was cultivated in continuous light under phosphate-deficient conditions. In contrast, the same organism cultivated in seawater with added phosphate and ammonium, accumulated phosphate mainly in the form of polyphosphates. When nitrate was provided as the only nitrogen source, accumulation of polyphosphates in the algae decreased with increasing external nitrate concentration. From the chemical shift of the cytoplasmic Pi peak, the cytoplasmic pH of superfused preparations of Ulva was estimated at 7.2. The vacuolar pH, determined from the chemical shifts of the vacuolar Pi and the terminal polyphosphate peaks, was between 5.5 and 6.0. The intracellular nitrate and ammonium levels in U. lactuca were determined by 14N NMR. Both nitrogen sources were taken up and stored intracellularly; however, the uptake of ammonium was much faster than that of nitrate.  相似文献   

9.
Pseudomonas sp. strain ADP uses the herbicide atrazine as the sole nitrogen source. We have devised a simple atrazine degradation assay to determine the effect of other nitrogen sources on the atrazine degradation pathway. The atrazine degradation rate was greatly decreased in cells grown on nitrogen sources that support rapid growth of Pseudomonas sp. strain ADP compared to cells cultivated on growth-limiting nitrogen sources. The presence of atrazine in addition to the nitrogen sources did not stimulate degradation. High degradation rates obtained in the presence of ammonium plus the glutamine synthetase inhibitor MSX and also with an Nas mutant derivative grown on nitrate suggest that nitrogen regulation operates by sensing intracellular levels of some key nitrogen-containing metabolite. Nitrate amendment in soil microcosms resulted in decreased atrazine mineralization by the wild-type strain but not by the Nas mutant. This suggests that, although nitrogen repression of the atrazine catabolic pathway may have a strong impact on atrazine biodegradation in nitrogen-fertilized soils, the use of selected mutant variants may contribute to overcoming this limitation.  相似文献   

10.
11.
Spinach (Spinacea oleracea L. “Correnta F1”) and pea (Pisum sativum L. “Macrocarpon”) plants were grown in a hydroponic culture with nitrate (5 mM), or ammonium (5 mM) as the nitrogen source. Dry matter accumulation declined dramatically in spinach plants fed with ammonium, whereas there was no change in pea plants when compared with nitrate-fed plants. Data obtained from δ15N, the organic nitrogen content, N-assimilation enzyme activity, glutamine synthetase (L-glutamate:ammonia-ligase; EC 6.3.1.2), glutamate dehydrogenase (L-glutamate:NAD+-oxidoreductase; EC 1.4.1.2) and enzymes from the tricarboxylic acid cycle suggest that ammonium incorporation into organic nitrogen is localized in the roots in pea plants and in the shoots in spinach plants. Distribution of incorporated ammonium (in shoots and roots) may determine ammonium tolerance. Our results show that unlike in spinach plants, in pea plants, an ammonium-tolerant species, GDH enzyme plays an important role in ammonium detoxification by its incorporation into amino acids. Furthermore, phosphoenolpyruvate carboxylase (phosphate:oxaloacetate-carboxy-lyase; EC 4.1.1.31) and pyruvate kinase (ATP:pyruvate-2-O-phosphotransferase; EC 2.7.1.40) activities reflect a major flow of carbon for ammonium assimilation through oxalacetate in pea plants and through pyruvate in spinach plants. The differences in the sensitivity to ammonium between the species are discussed in terms of differences in the site of ammonium assimilation as well as in the nitrogen assimilation ways.  相似文献   

12.
In this study, the dynamics of biomass production, accumulation of periplocin, medium conditions and consumption of carbon, nitrogen and phosphate were investigated in adventitious roots culture of Periploca sepium in shake flasks over a period of 4 weeks. The biomass reached the maximum peak on day 24 (2.46 and 0.213 g of fresh and dry weight, respectively). Similarly, periplocin production got to a peak of 0.083 mg g?1 on day 24, simultaneously. PH in medium had a decrease tendency at the beginning and then remained stable around 4.0, however, EC declined during the whole culture with the nutrients consumed. Sucrose was almost used up on the first 12 days which led to the increase in glucose and fructose. In case of nitrogen, consumption of ammonium is faster than nitrate at the beginning. Phosphate was almost consumed during the first 8 days. Based on the nutrients consumption, the adding time of nutrients (1/2 MS medium and 30 g L?1 sucrose) was investigated and it obtained highest content of periplocin (0.106 mg g?1) and yield (0.513 mg L?1) on day 12.  相似文献   

13.
A highly sensitive and specific PCR-based method of monitoring 16S rRNA genes of Pseudomonas stutzeri was developed for searching P. stutzeri DNA in environmental samples. This monitoring was combined with a reliable and sensitive method for isolating P. stutzeri colony formers from soil and sediment, depending on their utilization of ethylene glycol, starch, and maltose. With these techniques, P. stutzeri populations (n = 2 to 170) were obtained from five of six sites giving positive PCR signals (including three marine sediment and two soil samples). The phylogenetic positions of isolates from the five sites, based on their 16S ribosomal DNA sequences, indicated that the environmental isolates were affiliated with different genomovars of P. stutzeri. Using the broad-host-range plasmid pNS1 with kanamycin and gentamicin resistance determinants as the transforming DNA, naturally transformable strains were identified among the isolates from all sites. For one population from soil, the genetic relationship of the 120 members was determined by randomly amplified polymorphic DNA-PCR with three PCR primers. Among the population members which are taxonomically closely related as determined by 16S sequence comparisons of group representatives, a rather high genetic diversity and a characteristic clustering into subgroups were found. Remarkably, within the population, nontransformability and different levels of transformability (a frequency between about 10−9 and 10−4 per cell) were often associated with distinct genetic subgroups. It is concluded that transformability is widespread among environmental P. stutzeri strains and that its specific level is a heritable trait that may vary strongly within a local population.  相似文献   

14.
In this paper we show that partial deprivation of a carbon source, a nitrogen source, or phosphate in the presence of all other nutrients needed for growth initiates meiosis and sporulation of Saccharomyces cerevisiae homothallic strain Y55. For carbon deprivation experiments, cells were grown in synthetic medium (pH 5.5) containing an excess of one carbon source and then transferred to the same medium containing different concentrations of the same carbon source. In the case of transfer to different acetate concentrations, the log optical density at 600 nm increased at the previous rate until the cells had used up all of the acetate, whereupon the cells entered a stationary phase and did not sporulate. The same was observed with ethanol. In contrast, at different concentrations of dihydroxy-acetone or pyruvate, cells grew at different rates and sporulated optimally at intermediate concentrations (50 to 75 mM). The response to galactose was similar but reflected the presence of a low-affinity galactose transport system and the induction of a high-affinity galactose transport system. Cells could also sporulate when a glucose medium ran out of glucose, apparently because they initiated sporulation during the subsequent lag period and then used the produced ethanol as a carbon source. For phosphate deprivation experiments, cells growing with excess ethanol or pyruvate and phosphate were transferred to the same medium containing limiting amounts of phosphate. First, they used up the intracellular phosphate reserves for rapid growth, and then they sporulated optimally when an intermediate concentration (30 μM) of phosphate had been added to the medium. For nitrogen deprivation experiments, cells grown with excess acetate, ethanol, or pyruvate and NH4+ were transferred to the same medium from which all nitrogen had been removed. These cells sporulated well in acetate medium but poorly in ethanol and pyruvate media. However, the sporulation frequency in the latter media could be increased greatly by adding intermediate concentrations (1 mM) of the slowly metabolizable amino acids glycine, histidine, or phenylalanine. If one assumes that the sporulation response to partial deprivation of carbon-, nitrogen-, or phosphorus-containing compounds reflects control by a single metabolite, the intracellular concentration of this metabolite may decide at the START position (G1 phase) of the cell cycle whether a/α cells enter mitosis or meiosis.  相似文献   

15.
A nutrient medium was elaborated for the efficient production of glutamyl endopeptidase by the recombinantBacillus subtilis strain AJ73 bearing theBacillus intermedius 3–19 glutamyl endopeptidase gene within a multicopy plasmid. Optimal concentrations of the main nutrients, peptone and inorganic phosphate, were found using a multifactor approach. To provide for active growth and efficient glutamyl endopeptidase production, the cultivation medium of the recombinant strain should be enriched in phosphorus, organic and inorganic nitrogen sources, and yeast extract. Complex protein substrates, such as casein and gelatin, enhanced the biosynthesis of glutamyl endopeptidase. At the same time, easily metabolizable carbon sources suppressed it. The production of glutamyl endopeptidase was stimulated by the bivalent cations Ca2+, Mg2+, and Co2+.  相似文献   

16.
The moderately thermophilic iron-oxidizing bacterium strain TI-1, which lacks enzyme systems involved in CO2 fixation, grows at 45°C in Fe2+ medium supplemented with yeast extract to give a maximum cell growth of 1.0 × 108 cells per ml, but does not grow in Fe2+ medium without yeast extract. To elucidate the physiology of the strain, a synthetic medium was developed. It was found that the best synthetic medium was Fe2+-6AA, containing Fe2+, salts, and the following six l-amino acids: alanine, aspartic acid, glutamic acid, arginine, serine, and histidine. In this medium, strain TI-1 showed a maximum cell growth of 10 × 108 cells/ml. The six amino acids in the Fe2+-6AA medium were used not only as a carbon source but also as a source of nitrogen. Inorganic nitrogen sources, such as ammonium ion, hydrazine, hydroxylamine, nitrite, and nitrate, were not used as a sole source of nitrogen, but rather strongly inhibited the utilization of the six amino acids at 1 mM. In the Fe2+ (10 mM)-6AA medium supplemented with 21 mM Fe3+, reduction of Fe3+ to Fe2+ that was dependent on the added amino acids was observed, suggesting another role of the amino acids in the growth of strain TI-1. Washed, intact cells of strain TI-1 had the activity to reduce Fe3+ to Fe2+.  相似文献   

17.
Spirulina platensis was cultivated, in comparative studies, using several sources of nitrogen. The standard source used (sodium nitrate) was the same as that used in the synthetic medium Zarrouk, whereas the alternative nitrogen sources consisted of ammonium nitrate, urea, ammonium chloride, ammonium sulphate or acid ammonium phosphate. The initial nitrogen concentrations tested were 0.01, 0.03 and 0.05 M in an aerated photobioreactor at 30 °C, with an illuminance of 1900 lux, and 12 h-light/12 h-dark photoperiod over a period of 672 h. Maximum biomass was produced in medium containing sodium nitrate (0.01–0.03–0.05 M), followed by ammonium nitrate (0.01 M) and urea (0.01 M). The final biomass concentrations were 1.992 g l–1 (0.03 M sodium nitrate), 1.628 g l–1 (0.05 M sodium nitrate), 1.559 g l–1 (0.01 M sodium nitrate), 0.993 g l–1 (0.01 M ammonium nitrate) and 0.910 g l–1 (0.01 M urea). This suggested that it is possible to utilize nitrogen sources other than sodium nitrate for growing S. platensis, in order to decrease the production costs of scaled up projects.  相似文献   

18.
We report the establishment of a Pinus pinaster (Ait.) cell suspension culture in a modified MS medium supplemented with 2 mg ml−1 2,4-D and 1 mg ml−1 BA. Calli were obtained from seedling root segments and established a friable isodiametric cell suspension, suitable for in vitro studies of maritime pine at the cellular level. Growth (dry weight), cell viability, pH, and nutrient consumption: carbon source (sucrose, fructose and glucose), nitrogen source (ammonia and nitrate) and phosphate were monitored over 24 h. Suspension cells exhibited a 15-day exponential growth stage, during which a biphasic consumption profile was observed for all nutrients. Phosphate was the first limiting nutrient and preferable consumption was observed for glucose over fructose and nitrate over ammonium.  相似文献   

19.
The nutritional requirements of Xanthomonas campestris NRRL B1459 for optimal xanthan production were studied in a chemically defined medium. Of the carbon sources tested, a 4% sucrose or glucose medium yielded the highest xanthan titers. The further addition of certain organic acids, such as succinate, pyruvate, and α-ketoglutarate, stimulated xanthan production; excess concentrations of these organic acids inhibited xanthan formation. Certain amino acids (e.g., glutamate) and nitrate salts were superior to ammonium salts for xanthan production. Concentrations of these nitrogen sources higher than the optimal levels inhibited xanthan production while stimulating growth. Xanthan production was also sensitive to high concentrations of inorganic phosphate. High xanthan potencies, up to 30 g/kg of broth, were achieved in these shake-flask studies, in which completely defined media were used.  相似文献   

20.
Application of a laboratory-scale photobioreactor containing a biofilter composed of the aerial microalga Trentepohlia aurea to the removal of ammonium from synthetic wastewater was assessed to determine whether the system could be applied to water purification and the treatment of eutrophic water. The removal efficiency of the photobioreactor was tested after ten biofilter sheets (total dry weight cells: 50 mg) were cycled in nitrogen-free Bold’s basal (BB) medium for 72 h (pretreatment cycle). The ammonium removal ability was significantly enhanced when the photobioreactor was operated after performing the pretreatment cycle using nitrogen-free BB medium supplemented with magnesium. Moreover, the illumination conditions during the treatment were shown to affect the nitrogen removal ability, and this ability was strongly dependent on the concentrations of organic compounds (e.g., α-ketoglutarate and pyruvate) for assimilating the nitrogen source in the T. aurea biofilter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号