首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is found that acute ethanol intoxication is accompanied by a decrease in the ascorbic acid content in the brain, liver and kidneys. The content of dehydroascorbic acid in kidneys in this case increases and in the brain tends to decrease. The chronic alcohol intoxication of rats has an opposite (as compared to the acute intoxication) effect on changes in the content of ascorbic and dehydroascorbic acids in the studied organs. People with chronic alcohol intoxication have the lower content of ascorbic acid in blood plasma and the higher content in erythrocytes, the content of dehydroascorbic acid being increased.  相似文献   

2.
The content of neurotransmitters and their metabolites was investigated in brain cortex hemispheres, thalamus and brainstem of rats subjected to chronic morphine intoxication (7–21 days). Morphine administration for 7–14 days was accompanied by changes of the catecholamine system functioning, which was the most pronounced in the thalamus and the brainstem. These changes included increased secretion of dopamine and noradrenaline, their decrease in the brain tissue, and an increased content of their metabolites. The changes in serotonin and GABA content were less pronounced and included a decrease of serotonin level and the increase of the GABA content in different periods of opiate administration.  相似文献   

3.
Albino mongrel rats were used for the determination of the gamma-glutamyl transferase (gamma-GTF) and acetylcholine esterase (AChE) activities in various brain areas (cerebral hemispheres, cerebellum, hippocampus, brain stem) during acute (1.5; 4 and 6 g/kg i. p.) and chronic (15 months) alcoholic intoxication and alcohol withdrawal (24-48 h, 4 and 8 days). An increase or a decrease in the activity of these two enzymes in the various rat brain areas depends on the dose of ethanol and the time of its action. The activity of gamma-GTF grew in all brain areas during chronic ethanol intoxication; the activity of AChE was also enhanced in three brain areas but it was diminished in cerebral hemispheres. Alcohol withdrawal caused diverse changes in the activities of these two enzymes in various areas of the brain. A tendency to normalization of the gamma-GTF and AChE activities is manifested 4-8 days after alcohol withdrawal.  相似文献   

4.
It is found that serotonin content in the brain areas and heart of rats with low alcohol motivation decreases after 5 months of chronic consumption of 48% ethanol solution in a dose of 4 g/kg; in animals with high alcohol motivation serotonin content decreases only in the hypothalamus. Under chronic alcoholization for 1 and 12 months no considerable changes were found in serotonin level of the studied tissues. 60 min after intraperitoneal administration of 20% ethanol solution in a dose of 3 g/kg in intact animals there occurs an increase of serotonin content in the brain hemispheres and heart and its decrease in the hypothalamus; in rat with low alcohol motivation after taking ethanol for 5 months this administration evokes a decrease of serotonin content in the hypothalamus and truncus cerebri; in rats with high alcohol motivation--its decrease in the hypothalamus. Excretion of 5-oxyindoleacetic acid with urine decreases 10 months after alcohol intoxication. When rats were not given ethanol after its chronic taking for 3 months serotonin oxidation was intensified for the first day, which was not observed after 7-month alcoholization of animals.  相似文献   

5.
The influence of the new anti-alcohol drug Inmecarb on the alcohol consumption as well as on activity of the liver cytochrome P-450 system was studied in rats during chronic alcohol intoxication in the free choice situation between water and 15% ethanol solution. It was shown that voluntary alcohol consumption of different duration (10 days to 8 months) does not change the activity of liver cytochrome P-450 system. Inmecarb treatment (40 mg/kg, i.p. twice a day) during 14 days resulted in decrease of alcohol consumption in rats. This effect was most pronounced in late stages of experimental alcoholism. Inmecarb decreases the cytochrome P-450 content and suppresses the activity of aniline hydroxylase in rats with different duration of voluntary alcohol intoxication, but most pronounced effect was observed during the late stages of experimental alcoholism.  相似文献   

6.
Histological and histochemical studies of the rat skeletal muscles in acute alcohol intoxication have revealed metabolic disturbances, characterized by a decreased glycogen level, small-drop fatty infiltration, decreased activity of aerobic and enhanced activity of anaerobic enzyme glycolysis, dystrophic and focal necrotic myocyte changes. Acute alcohol intoxication in fasting animals is accompanied by more pronounced dystrophic and necrotic myocyte changes, decreased glycogen and lipid content.  相似文献   

7.
In the researches carried out on rats with models of chronic alcoholism and alcohol abstinence the most vulnerable to chronic action of alcohol biochemical parameters are revealed: a level of reduced glutathione (it was estimated by the content of free SH-groups in tissues), the content of thiamine diphosphate and thiaminekinase activity in a brain, the content of folic acid in the blood, the content of ubiquinone in the cardiac muscle, RNA/DNA relation in the liver. The data obtained demonstrate first of all the negative influence of alcohol on metabolism of sulfur-containing substances and processes of transmethylation. The results of our investigation have also shown that the part of metabolic changes caused by long-term usage of alcohol, can be caused by direct influence of ethanol or its metabolites on those or other enzymatic proteins or receptors, and their functions can quickly be normalized after the abolition of alcohol (NAD+ contents, alpha-ketoglutarate dehydrogenase activity and some others). More stable changes in other parts of metabolism, that were specified earlier, may be also a result of long-term alcohol consumption.  相似文献   

8.
The level of glycemia, contents of free radical oxidation products (thiobarbituric acid reactive substances, oxidatively modified proteins) have been investigated in blood plasma and heart of rats with diabetes mellitus subjected to chronic alcohol intoxication. Preexisting diabetes mellitus had no influence on the effect of chronic alcohol consumption on the blood plasma levels of oxidatively modified proteins, thiobarbituric acid reactive substances and glucose. However, the contents of thiobarbituric acid reactive substances and products of oxidative modification of proteins were significantly higher in hearts of diabetic rats with chronic alcohol intoxication than in diabetic rats without alcohol intoxication or in rats subjected to chronic alcohol treatment. The alcohol-induced hyperactivation of free radical processes found in the heart may have additional damaging effect.  相似文献   

9.
10.
Kharchenko  N. K. 《Neurophysiology》2000,32(5):312-320
We studied in rats the effects of peroral glycine introduction on the contents of catecholamines (CA) – noradrenaline (NA) and dopamine (DA) – in different brain structures (hypothalamus, midbrain, and neocortex), as well as the levels of adrenaline (A), NA, and DA in the blood and the activity of alcohol-metabolizing (AlM) enzymes – alcohol dehydrogenase (AlDH) and aldehyde dehydrogenase (AdhDH) – in the blood serum. The experimental group included animals with a disposition to alcohol consumption under conditions of free choice for drinking between an alcohol solution and water. The measurements were performed in animals in the state of acute alcohol intoxication (i.p. injection of 4 g/kg ethanol) or chronic alcohol addiction (formed due to a 3-month-long free access to ethanol solution). Introduction of 150 mg/kg glycine increased the NA and DA contents (the latter, to a lesser extent) in all examined brain structures; the NA level in the blood increased, while that of DA decreased. Under conditions of acute alcohol intoxication and chronic alcohol addiction, the ratio of the activities of AlM enzymes, AdhDH/AlDH, was significantly shifted toward values indicative of accumulation of acetaldehyde (AcAdh) in the tissues. This was accompanied by noticeable modifications of the CA contents in the brain structures and blood of the rats; in particular, the [DA]/[NA] ratio in the brain significantly increased. Introduction of glycine under conditions of acute alcohol intoxication provided normalization of the AdhDH/AlDH activity ratio. Obvious trends toward normalization of the CA levels in the brain structures were also observed in both acute and chronic experiments. In the latter case, the glycine treatment course resulted in a drop in the daily alcohol consumption by the animals. We conclude that glycine, which binds AcAdh and modifies the metabolism of CA transmitters, exerts a significant corrective influence on the pathogenetic mechanisms of alcohol addiction. Our experimental findings demonstrate that there are contact points between the acetaldehyde and catecholamine hypotheses of pathogenesis of alcoholism.  相似文献   

11.
This review identifies the various pathways responsible for modulating hepatic protein synthesis following acute and chronic alcohol intoxication and describes the mechanism(s) responsible for these changes. Alcohol intoxication induces a defect in global protein synthetic rates that is localized to impaired translation of mRNA at the level of peptide-chain initiation. Translation initiation is regulated at two steps: formation of the 43S preinitiation complex [controlled by eukaryotic initiation factors 2 (eIF2) and 2B (eIF2B)] and the binding of mRNA to the 40S ribosome (controlled by the eIF4F complex). To date, alcohol-induced alterations in eIF2 and eIF2B content and activity are best investigated. Ethanol decreases eIF2B activity when ingested either acutely or chronically. The reduced eIF2B activity most likely is a consequence of twofold increased phosphorylation of the alpha-subunit of eIF2 on Ser(51) following acute intoxication. The increase in eIF2alpha phosphorylation after chronic alcohol consumption is the same as that induced by acute ethanol intoxication, and protein synthesis is not further reduced by long-term alcohol ingestion despite additional reduced expression of initiation factors and elongation factors. eIF2alpha phosphorylation alone appears sufficient to maximally inhibit hepatic protein synthesis. Indeed, pretreatment with Salubrinal, an inhibitor of eIF2alpha(P) phosphatase, before ethanol treatment does not further inhibit protein synthesis or increase eIF2alpha phosphorylation, suggesting that acute ethanol intoxication causes maximal eIF2alpha phosphorylation elevation and hepatic protein synthesis inhibition. Ethanol-induced inhibition of hepatic protein synthesis is not rapidly reversed by cessation of ethanol consumption. In conclusion, sustained eIF2alpha phosphorylation is a hallmark of excessive alcohol intake leading to inhibition of protein synthesis. Enhanced phosphorylation of eIF2alpha represents a unique response of liver to alcohol intoxication, because the ethanol-induced elevation of eIF2alpha(P) is not observed in skeletal muscle or heart.  相似文献   

12.
It was found that acute ethanol intoxication caused an imbalance of the neurotransmitters in the CNS: accumulation of GABA and serotonin and depletion of catecholamines. Alcohol depression was characterized by suppression of the evoked potentials of the various rat brain structures. Under chronic ethanol intoxication of animals, relative stabilization of the electrophysiological indices of the rat brain activity was observed. This reflects the CNS adaptation to the constant ethanol presence in the blood. This state was also characterized by the relative stabilization of the serotonin system and by the increase of the catecholamine level. Withdrawal of ethanol after prolonged consumption caused accumulation of catecholamines in rat brain, depletion of serotonin and GABA, and increased excitability of the nervous structures. The changes of activity of the GABA- and monoaminergic systems are coupled to manifestation of symptoms of alcohol depression and convulsive reactions during ethanol withdrawal.  相似文献   

13.
Chronic alcoholic myopathy is one of the most numerous and profound manifestations of chronic alcohol intoxication. This disease is characterized by the pronounced atrophy of the locomotor muscles, which involves fibers expressing predominantly type II (fast) myosin isoforms. In early experiments with rats receiving alcohol and studies of patients, the impairment of the anabolic intracellular signaling pathways and decrease in protein synthesis rate were shown. We were the first to analyze the signaling pathways involved in the pathogenesis of alcoholic myopathy with different fiber atrophy levels. At the early stages of pathogenesis, we observed also a sufficient increase in mRNA of E3 ubiquitin ligases. However, the ubiquitinylation level was not altered in patients as compared to the control subjects. This phenomenon could be related to an increased expression of heat shock proteins known for their protective action.  相似文献   

14.
It is known that alcohol possesses embryotoxic, teratogenic, neurotoxic and other effects. Alteration of the trace element and mineral metabolism can be one of the triggering mechanisms of metabolic changes during an alcoholic intoxication. The aim of the recent study was to compare the profiles of elements in brain structures of matured offspring which were born by female rats exposed and non-exposed to alcohol before conception. A decreasing tendency in the levels of all detected macro and trace elements in four brain structures was observed. The most prominent changes were found in the brain cortex. Experimental data show that short term consumption of alcohol by female rats before pregnancy alters the distribution of macro and trace elements in the offspring's brain structures.  相似文献   

15.
Lately the mechanism of craving for alcohol has been related to the local level of brain acetaldehyde occurring in ethanol consumption and depending on the activities of the brain and liver ethanol and acetaldehyde-metabolizing systems. In this connection, we studied the effect of chronic acetaldehyde intoxication on the activities of alcohol dehydrogenase (ADH), aldehyde dehydrogenase (ALDH), the microsomal ethanol oxidizing system (MEOS) and liver and brain catalase as well as ethanol and acetaldehyde levels in the blood. The results showed that the chronic acetaldehyde intoxication did not alter significantly the activities of liver ADH, MEOS and catalase as well as liver and brain ALDH. In parallel with this, the systemic acetaldehyde administration led to shortened time of ethanol narcosis and activation of catalase in the cerebellum and left hemisphere, which may indicate involvement of this enzyme into metabolic tolerance development.  相似文献   

16.
Acute alcohol intoxication decreases muscle protein synthesis, but there is a paucity of data on the ability of alcohol to regulate muscle protein degradation. Furthermore, various types of atrophic stimuli appear to regulate ubiquitin-proteasome-dependent proteolysis by increasing the muscle-specific E3 ligases atrogin-1 and MuRF1 (i.e., "atrogenes"). Therefore, the present study was designed to test the hypothesis that acute alcohol intoxication increases atrogene expression leading to an elevated rate of muscle protein breakdown. In male rats, the intraperitoneal injection of alcohol dose- and time-dependently increased atrogin-1 and MuRF1 mRNA in gastrocnemius, the latter of which was most pronounced. A comparable change was absent in the soleus and heart. The ability of in vivo-administered ethanol to increase atrogene expression was independent of the route of alcohol administration (intraperitoneal vs. oral), as well as of nutritional status (fed vs. fasted) and gender (male vs. female). The increase in atrogin-1 and MuRF1 was independent of alcohol metabolism, and the overproduction of endogenous glucocorticoids and could not be prevented by maintaining the circulating concentration of insulin-like growth factor-I. Despite marked changes in atrogene expression, acute alcohol in vivo did not alter the release of either 3-methylhistidine (MH) or tyrosine from the isolated perfused hindlimb, suggesting that the rate of muscle proteolysis remains unchanged. Moreover, alcohol did not increase the directly determined rate of protein degradation in isolated epitrochlearis muscles or cultured myocytes. Finally, no increase in atrogene expression or 3-MH release was detected in muscle from rats fed an alcohol-containing diet. Our results indicate that although acute alcohol intoxication increases atrogin-1 and MuRF1 mRNA preferentially in fast-twitch skeletal muscle, this change was not associated with increased rates of muscle proteolysis. Therefore, the loss of muscle mass/protein in response to chronic alcohol abuse appears to result primarily from a decrement in muscle protein synthesis, not an increase in degradation.  相似文献   

17.
《Process Biochemistry》2007,42(7):1056-1062
Mullet (Mugil cephalus) muscle homogenates were adjusted to different pH ranging from 2 to12 and the proteins extracted were evaluated for changes in solubility and conformational characteristics viz. surface hydrophobicity and reactive sulphydryl groups. Altering the pH of muscle homogenate to acidic or alkaline increased protein solubility. The hydrophobicity of the proteins increased on exposure to extreme pH indicating unfolding. The reactive sulphydryl groups decreased at acidic and alkaline pH with the lowest at pH 4. When the pH of the muscle homogenates was brought back to the original pH (6.3), the protein solubility was found to decrease. Reactive sulphydryl groups and ANS hydrophobicity of the proteins increased on readjusting the pH resulting in a molten-globule state. The electrophortogram of the samples corresponded well with the observations. Alterations in functional properties of these modified proteins are an area of interest for commercial application.  相似文献   

18.
In the following study we examined the combined effect of chronic alcohol administration and anti-hypertensive drug treatment in spontaneously hypertensive rats (SHR). SHR were fed alcohol for six weeks while taking the angiotensin converting enzyme (ACE) inhibitor lisinopril. After six weeks, protein synthesis rates, contractile protein levels and protease activities were examined in control; alcohol; control+lisinopril; alcohol+lisinopril groups. Lisinopril treatment significantly reduced left ventricular mass, protein content and contractile proteins in control rats, but these effects were not as pronounced in alcohol+lisinopril rats. Protein synthesis rates in both mixed and myofibrillar fractions were not significantly different in any of the 4 groups. The enzyme activities of the proteases cathepsin D and dipeptidyl aminopepetidase I increased in control+lisinopril rats, however, this effect was not evident in alcohol+lisinopril rats. Contractile proteins identified by one-dimensional electrophoresis showed that lisinopril treatment reduced all contractile proteins in control rats. However, in alcohol+ lisinopril rats, myosin heavy chain was higher than in control+lisinopril rats. In summary, alcohol ingestion impairs the regression of the hypertrophic myocardium in SHR on ACE-inhibitor treatment, which was reflected by altered protein metabolism. This study suggests that successful anti-hypertensive treatment may not be achieved if alcohol misuse is evident.  相似文献   

19.
Acetaldehyde alone and in combination with acute and chronic ethanol intoxication has been studied for its effect on the concentration of epinephrine and norepinephrine in different brain areas, in the heart muscle, in adrenals and blood plasma of rats. Acetaldehyde is shown to enhance the epinephrine and norepinephrine levels in the brain areas which are non-specific for neuromediation of the mentioned catecholamines. The joint administration of acetaldehyde and ethanol increased the epinephrine concentration in adrenals probably due to the effect of acetaldehyde. On the contrary, the norepinephrine concentration in the heart decreased because of the action of ethanol. The authors' data show that acetaldehyde becomes an inductor of the mechanisms of hormone-mediator dissociation, thus altering the functions of vegetative-adrenal system. The results of the investigation support the hypothesis that acetaldehyde plays a significant role among pathogenic factors of ethanol intoxication, since it changes in a special way the catecholamine concentration in the brain and in peripheral tissues.  相似文献   

20.
We measured the activities of the main alcohol-metabolizing enzymes (alcohol dehydrogenase, AlDH, and aldehyde dehydrogenase, AdhDH) in the blood serum, comparing these indices with the contents of ethanol and its main metabolite, acetaldehyde (AcAdh), in the blood, and also measured the contents of catecholamines (adrenaline, noradrenaline, and dopamine) in the blood and in different brain structures (hypothalamus, midbrain, and neocortex) of rats in the states of acute alcohol intoxication and chronic alcohol addiction. It was shown that, because of dissimilar changes in the activities of AlDH and AdhDH under conditions of alcohol intoxication, the dynamic balance between endogenous ethanol and AcAdh existing in the norm is disturbed, which results in an increase in the level of AcAdh. Such a phenomenon probably is one of the crucial factors underlying the development of alcohol addiction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号