首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The chondroitin sulfate proteoglycan aggrecan forms link protein-stabilized complexes with hyaluronan (HA), via its N-terminal G1-domain, that provide cartilage with its load bearing properties. Similar aggregates (potentially containing new members of the link protein family), in which other chondroitin sulfate proteoglycans (i.e. versican, brevican, and neurocan) substitute for aggrecan, may contribute to the structural integrity of many other tissues including skin and brain. In this study, cartilage link protein (cLP) and the G1-domains of aggrecan (AG1) and versican (VG1) were expressed in Drosophila S2 cells. The recombinant human proteins were found to have properties similar to those described for the native molecules (e.g. cLP was able to form oligomers, and HA decasaccharides were the minimum size that could compete effectively for their binding to polymeric HA). Gel filtration and protein cross-linking/matrix-assisted laser desorption ionization time-of-flight peptide fingerprinting showed that cLP and AG1 interact in the absence or presence of HA. Conversely, cLP and VG1 did not bind directly to each other in solution yet formed ternary complexes with HA24. N-linked glycosylation of AG1 and VG1 was demonstrated to be unnecessary for either HA binding or the formation of ternary complexes. Surprisingly, the length of HA required to accommodate two G1-domains was found to be significantly larger for aggrecan than versican, which may reflect differences in the conformation of HA stabilized on binding these proteins.  相似文献   

2.
Link protein has greater affinity for versican than aggrecan   总被引:6,自引:0,他引:6  
The function of link protein in stabilizing the interaction between aggrecan and hyaluronan to form aggrecan aggregates, via the binding of link protein to the aggrecan G1 domain and hyaluronan, is well established. However, it is not known whether link protein can function with similar avidity with versican, another member of the large hyaluronan-binding proteoglycan family that also binds to hyaluronan via its G1 domain. To address this issue, we have compared the interaction of the versican and aggrecan G1 domains with link protein and hyaluronan using recombinant proteins expressed in insect cells and BIAcore analysis. The results showed that link protein could significantly improve the binding of both G1 domains to hyaluronan and that its interaction with VG1 is of a higher affinity than that with AG1. These observations suggest that link protein may function as a stabilizer of the interaction, not only between aggrecan and hyaluronan in cartilage, but also between versican and hyaluronan in many tissues.  相似文献   

3.
Hyaluronan (HA) and link protein are essential components of the aggrecan proteoglycan aggregate, whereby HA binds multiple aggrecan monomers, an interaction which is stabilised by link protein. In this study, we have examined the turnover of the aggregate components, HA, link protein, and the N-terminal G1 domain of aggrecan, in explant cultures of tissue from compressed and tensional regions of young and mature bovine tendons. Western blot analyses revealed the release of highly processed link protein and G1-containing metabolites, in the absence of catabolic agents, indicating an increased turnover of these components in tendon. In addition, significant levels of HA were released from the tissue matrix into the media compartment. Furthermore, RT-PCR analysis showed that the mRNA expression of link protein and enzymes/proteins associated with HA metabolism may be modulated in the distinct functional regions of tendon with development. Perturbation of normal aggrecan aggregate metabolism may lead to tissue dysfunction.  相似文献   

4.
5.
The core protein of the large hyaline cartilage proteoglycan, aggrecan, is composed of six distinct domains: globular 1 (G1), interglobular, globular 2 (G2), keratan sulfate attachment, chondroitin sulfate (CS) attachment, and globular 3 (G3). Monoclonal antibodies that recognize epitopes in these domains were raised against Swarm rat chondrosarcoma aggrecan that was either denatured through reduction and alkylation or partially deglycosylated through chondroitinase ABC digestion or alkali elimination, the latter with or without sulfite addition. Monoclonal antibodies were further characterized for reactivity to purified aggrecan substructures including rat chondrosarcoma G1 and CS attachment domains, a recombinant rat chondrosarcoma G3 domain fusion protein, bovine articular cartilage G2 domain, and rat chondrosarcoma link protein (LP). Biochemical characterization of the specificities of these monoclonal antibodies indicated that one (1C6) recognized an epitope shared by both the G1 and the G2 domains; one (5C4) recognized an epitope shared by both LP and the G1 domain; one (7D1) recognized an epitope shared by both the G1 and the CS attachment domains; two (14A1 and 15B2) recognized epitopes in the CS attachment domain; one (14B4) recognized an epitope in the G3 domain; and one (13D1) recognized a ubiquitous epitope shared by the G1, G2, G3, and CS attachment domains of aggrecan and also LP. Collectively the specificities of these antibodies confirm the occurrence of multiple repeated epitopes (both carbohydrate and protein in nature) throughout the different domain structures of aggrecan. These antibodies have been proven to be useful for identifying aggrecan-like molecules in several connective tissues other than cartilage.  相似文献   

6.
Chondrodysplasia of gene knockout mice for aggrecan and link protein   总被引:2,自引:0,他引:2  
The proteoglycan aggregate of the cartilage is composed of aggrecan, link protein, and hyaluronan and forms a unique gel-like moiety that provides resistance to compression in joints and a foundational cartilage structure critical for growth plate formation. Aggrecan, a large chondroitin sulfate proteoglycan, is one of the major structural macromolecules in cartilage and binds both hyaluronan and link protein through its N-terminal domain G1. Link protein, a small glycoprotein, is homologous to the G1 domain of aggrecan. Mouse cartilage matrix deficiency (cmd) is caused by a functional null mutation of the aggrecan gene and is characterized by perinatal lethal dwarfism and craniofacial abnormalities. Link protein knockout mice show chondrodysplasia similar to but milder than cmd mice, suggesting a supporting role of link protein for the aggregate structure. Analysis of these mice revealed that the proteoglycan aggregate plays an important role in cartilage development and maintenance of cartilage tissue and may provide a clue to the identification of human genetic disorders caused by mutations in these genes. Published in 2003.  相似文献   

7.
The extracellular polysaccharide hyaluronan (HA) is ubiquitous in all vertebrate tissues, where its various functions are encoded in the supramolecular complexes and matrices that it forms with HA-binding proteins (hyaladherins). In tissues, these supramolecular architectures are frequently subjected to mechanical stress, yet how this affects the intermolecular bonding is largely unknown. Here, we used a recently developed single-molecule force spectroscopy platform to analyze and compare the mechanical strength of bonds between HA and a panel of hyaladherins from the Link module superfamily, namely the complex of the proteoglycan aggrecan and cartilage link protein, the proteoglycan versican, the inflammation-associated protein TSG-6, the HA receptor for endocytosis (stabilin-2/HARE), and the HA receptor CD44. We find that the resistance to tensile stress for these hyaladherins correlates with the size of the HA-binding domain. The lowest mean rupture forces are observed for members of the type A subgroup (i.e., with the shortest HA-binding domains; TSG-6 and HARE). In contrast, the mechanical stability of the bond formed by aggrecan in complex with cartilage link protein (two members of the type C subgroup, i.e., with the longest HA-binding domains) and HA is equal or even superior to the high affinity streptavidin?biotin bond. Implications for the molecular mechanism of unbinding of HA?hyaladherin bonds under force are discussed, which underpin the mechanical properties of HA?hyaladherin complexes and HA-rich extracellular matrices.  相似文献   

8.
The basal rate of in vitro proteoglycan (PG) synthesis in explants of equine articular cartilage was subject to considerable variation in animals of the same age but was greater in younger than older animals. Synthesis of PGs in explant cultures was stimulated by a synthetic link peptide, identical in sequence to the N-terminus of the link protein (LP) of PG aggregates, in a similar manner to that demonstrated previously for human articular cartilage [Biochem. Soc. Trans. 25 (1997) 427; Arthritis Rheum. 41 (1998) 157]. Stimulation occurred in tissue from animals ranging from 1 to 30 years old but older animals required higher concentrations of peptide to produce a measurable response. Synthesis of PGs increased in a concentration-dependent manner and was paralleled by increases in the ability of aggrecan monomers to form aggregates with hyaluronan (HA). In addition to its effect on synthesis of PGs, link peptide also increased synthesis of both aggrecan and LP mRNA. Cartilage explant and chondrocyte cultures secreted small amounts of biologically active interleukin 1 (IL 1) and secretion of this cytokine was reduced considerably by the addition of link peptide. Reduction in the activity of this catabolic cytokine coupled with the increased synthesis of mRNA for aggrecan and link peptide may be the mechanism by which link peptide exerts its positive effect on the rate of PG synthesis in articular cartilage.  相似文献   

9.
The ternary complex involving link protein (LP), proteoglycan monomer, and hyaluronic acid (HA) is an important component of the extracellular matrix of cartilage. LP contains tandemly repeated sequences that were tested for their ability to interact with HA. A solid-phase assay was developed in which LP could specifically bind to immobilized HA. Detection of LP was by means of an antiserum directed against a peptide from the NH2-terminal half of LP. LP binding to HA could be inhibited with mAb 8A4 (Caterson, B., J. R. Baker, J. E. Christner, Y. Lee, and M. Lentz. 1985. J. Biol. Chem. 260:11348-11356). Using synthetic peptides that correspond to specific amino acid sequences of chicken LP (Deák, F., I. Kiss, K. J. Sparks, W. S. Argraves, G. Hampikian, and P. F. Goetinck. 1986. Proc. Natl. Acad. Sci. USA. 83:3766-3770) the epitopes for mAb 8A4 were determined to reside in peptides Gly217-Pro226 and Arg316-Arg325. These two peptides were also capable of inhibiting the interaction between LP and HA. The peptide Trp242-Val251 and Pro339-Val348 could also inhibit the interaction between LP and HA. All four peptides reside in the tandemly repeated domains of LP and they contain clusters of positively charged amino acids. Polylysine could not inhibit the interaction of LP with HA. The results indicate that the sites for interaction with HA are in the tandemly repeated sequences of LP and that there are four potential sites available for that interaction.  相似文献   

10.
Proteoglycan aggregates free of non-aggregating proteoglycan have been prepared from the annuli fibrosi and nuclei pulposi of intervertebral discs of three human lumbar spines by extraction with 4M-guanidinium chloride, associative density gradient centrifugation, and chromatography on Sepharose CL-2B. The aggregate (A1-2B.V0) was subjected to dissociative density-gradient ultracentrifugation. Three proteins of Mr 38 900, 44 200 and 50 100 found in the fraction of low buoyant density (A1-2B.V0-D4) reacted with antibodies to link protein from newborn human articular cartilage. After reduction with mercaptoethanol, two proteins of Mr 43 000 and two of Mr 20 000 and 14 000 were seen. The A1-2B.V0-D4 fraction, labelled with 125I, coeluted with both hyaluronate and a hyaluronate oligosaccharide (HA14) on a Sepharose CL-2B column. HA10 and HA14 reduced the viscosity of A1 fractions; HA4, HA6 and HA8 did not. HA14 decreased the viscosity of disc proteoglycans less than it did that of bovine cartilage proteoglycans. Thus, although a link protein was present in human intervertebral disc, it stabilized proteoglycan aggregates less well than did the link protein from bovine nasal cartilage.  相似文献   

11.
Aggrecan, versican, neurocan, and brevican are important components of the extracellular matrix in various tissues. Their amino-terminal globular domains bind to hyaluronan, but the function of their carboxyl-terminal globular domains has long remained elusive. A picture is now emerging where the C-type lectin motif of this domain mediates binding to other extracellular matrix proteins. We here demonstrate that aggrecan, versican, and brevican lectin domains bind fibulin-2, whereas neurocan does not. As expected for a C-type lectin, the interactions are calcium-dependent, with K(D) values in the nanomolar range as measured by surface plasmon resonance. Solid phase competition assays with previously identified ligands demonstrated that fibulin-2 and tenascin-R bind the same site on the proteoglycan lectin domains. Fibulin-1 has affinity for the common site on versican but may bind to a different site on the aggrecan lectin domain. By using deletion mutants, the interaction sites for aggrecan and versican lectin domains were mapped to epidermal growth factor-like repeats in domain II of fibulin-2. Affinity chromatography and solid phase assays confirmed that also native full-length aggrecan and versican bind the lectin domain ligands. Electron microscopy confirmed the mapping and demonstrated that hyaluronan-aggrecan complexes can be cross-linked by the fibulins.  相似文献   

12.
The aggregating proteoglycans (aggrecan, versican, neurocan, and brevican) are important components of many extracellular matrices. Their N-terminal globular domain binds to hyaluronan, but the function of their C-terminal region containing a C-type lectin domain is less clear. We now report that a 90-kDa protein copurifies with recombinant lectin domains from aggrecan and versican, but not from the brain-specific neurocan and brevican. Amino acid sequencing of tryptic peptides from this protein identified it as fibulin-1. This extracellular matrix glycoprotein is strongly expressed in tissues where versican is expressed (blood vessels, skin, and developing heart), and also expressed in developing cartilage and bone. It is thus likely to interact with these proteoglycans in vivo. Surface plasmon resonance measurements confirmed that aggrecan and versican lectin domains bind fibulin-1, whereas brevican and neurocan do not. As expected for a C-type lectin, the interactions with fibulin-1 are Ca2+-dependent, with KD values in the low nanomolar range. Using various deletion mutants, the binding site for aggrecan and versican lectin domains was mapped to the epidermal growth factor-like repeats in domain II of fibulin-1. No difference in affinity was found for deglycosylated fibulin-1, indicating that the proteoglycan C-type lectin domains bind to the protein part of fibulin-1.  相似文献   

13.
A large proteoglycan (365 kDa), identified with monoclonal antibodies raised against chondroitin sulfate, was isolated from human brain. The isolation required anion-exchange chromatography followed by gel filtration through a Sephacryl S-500 column. The proteoglycan bound specifically to [3H]hyaluronate (HA). The binding was not reduced by high salt concentrations (up to 4 M) and was inhibited at low pH (< 4.0). The binding was inhibited by the octamer and decamer (but not the hexamer) oligosaccharides of HA. Limited proteolysis of the proteoglycan gave rise to a relatively stable polypeptide (80 kDa). The amino-terminal sequence of the 80-kDa polypeptide was identical to the cDNA-derived amino-terminal sequence of versican, a large human fibroblast proteoglycan. A monoclonal antibody raised against bovine proteoglycans and recognizing the versican core protein reacted by immunoblotting with the proteoglycan isolated from human brain. The antibody was used to localize the proteoglycan in acetone-fixed cryostat sections of bovine spinal cord. The localization of the proteoglycan in the central nervous system was identical to that previously reported for glial hyaluronate-binding protein (GHAP), a 60-kDa glycoprotein of the brain extracellular matrix (ECM). However, a major difference was observed with respect to the sensitivity of the two antigens to hyaluronidase. As previously reported, GHAP was released from the tissue by hyaluronidase digestion, whereas the proteoglycan persisted under these conditions. We conclude that the protein-hyaluronate aggregates in brain ECM contain both GHAP and versican, that GHAP is only retained in the ECM by its interaction with hyaluronate, and that the proteoglycan is anchored in some other manner and probably connects cell surfaces with the ECM since it was not released by hyaluronidase digestion.  相似文献   

14.
15.
Atherosclerosis is initiated by the retention of lipoproteins on proteoglycans in the arterial intima. However, the mechanisms leading to proteoglycan accumulation and lipoprotein retention are poorly understood. In this study, we set out to investigate the role of ADAMTS-5 (a disintegrin and metalloprotease with thrombospondin motifs-5) in the vasculature. ADAMTS-5 was markedly reduced in atherosclerotic aortas of apolipoprotein E-null (apoE(-/-)) mice. The reduction of ADAMTS-5 was accompanied by accumulation of biglycan and versican, the major lipoprotein-binding proteoglycans, in atherosclerosis. ADAMTS-5 activity induced the release of ADAMTS-specific versican (DPEAAE(441)) and aggrecan ((374)ALGS) fragments as well as biglycan and link protein from the aortic wall. Fibroblast growth factor 2 (FGF-2) inhibited ADAMTS-5 expression in isolated aortic smooth muscle cells and blocked the spontaneous release of ADAMTS-generated versican and aggrecan fragments from aortic explants. In aortas of ADAMTS-5-deficient mice, DPEAAE(441) versican neoepitopes were not detectable. Instead, biglycan levels were increased, highlighting the role of ADAMTS-5 in the catabolism of vascular proteoglycans. Importantly, ADAMTS-5 proteolytic activity reduced the LDL binding ability of biglycan and released LDL from human aortic lesions. This study provides the first evidence implicating ADAMTS-5 in the regulation of proteoglycan turnover and lipoprotein retention in atherosclerosis.  相似文献   

16.
Versican G1 domain-containing fragments (VG1Fs) have been identified in extracts from the dermis in which hyaluronan (HA)-versican-fibrillin complexes are found. However, the molecular assembly of VG1Fs in the HA-versican-microfibril macrocomplex has not yet been elucidated. Here, we clarify the role of VG1Fs in the extracellular macrocomplex, specifically in mediating the recruitment of HA to microfibrils. Sequential extraction studies suggested that the VG1Fs were not associated with dermal elements through HA binding properties alone. Overlay analyses of dermal tissue sections using the recombinant versican G1 domain, rVN, showed that rVN deposited onto the elastic fiber network. In solid-phase binding assays, rVN bound to isolated nondegraded microfibrils. rVN specifically bound to authentic versican core protein produced by dermal fibroblasts. Furthermore, rVN bound to VG1Fs extracted from the dermis and to nondenatured versican but not to fibrillin-1. Homotypic binding of rVN was also seen. Consistent with these binding properties, macroaggregates containing VG1Fs were detected in high molecular weight fractions of sieved dermal extracts and visualized by electron microscopy, which revealed localization to microfibrils at the microscopic level. Importantly, exogenous rVN enhanced HA recruitment both to isolated microfibrils and to microfibrils in tissue sections in a dose-dependent manner. From these data, we propose that cleaved VG1Fs can be recaptured by microfibrils through VG1F homotypical interactions to enhance HA recruitment to microfibrils.  相似文献   

17.
ADAMTS-1 is a metalloprotease that has been implicated in the inhibition of angiogenesis and is a mediator of proteolytic cleavage of the hyaluronan binding proteoglycans, aggrecan and versican. In an attempt to further understand the biological function of ADAMTS-1, a yeast two-hybrid screen was performed using the carboxyl-terminal region of ADAMTS-1 as bait. As a result, the extracellular matrix protein fibulin-1 was identified as a potential interacting molecule. Through a series of analyses that included ligand affinity chromatography, co-immunoprecipitation, pulldown assays, and enzyme-linked immunosorbent assay, the ability of these two proteins to interact was substantiated. Additional studies showed that ADAMTS-1 and fibulin-1 colocalized in vivo. Furthermore, fibulin-1 was found to enhance the capacity of ADAMTS-1 to cleave aggrecan, a proteoglycan known to bind to fibulin-1. We confirmed that fibulin-1 was not a proteolytic substrate for ADAMTS-1. Together, these findings indicate that fibulin-1 is a new regulator of ADAMTS-1-mediated proteoglycan proteolysis and thus may play an important role in proteoglycan turnover in tissues where there is overlapping expression.  相似文献   

18.
Chen L  Yang BL  Wu Y  Yee A  Yang BB 《Biochemistry》2003,42(27):8332-8341
The extracellular matrix plays a critical role in maintaining tissue integrity. Among the matrix molecules, the large aggregating chondroitin sulfate proteoglycans are the major structural molecules and are the primary contributors to the stability for some tissues such as cartilage. The notable exceptions are nanomelic cartilage and arthritic cartilage: the former contains a point mutation leading to a stop codon before translating to the C-terminal G3 domain; the latter contains a large proportion of aggrecan from which the G3 domain has been cleaved. These phenomena suggest that the G3 domain may be important in cartilage stability. Here, we demonstrated for the first time that the G3 domains of aggrecan and another proteoglycan, PG-M/versican, formed intermolecular disulfide bonds, and all subdomains were involved. Further studies indicated that each of the 10 cysteine residues of the aggrecan G3 domain could potentially form intermolecular disulfide bonds in vitro. The disulfide bonds were disrupted in the presence of reducing reagent beta-mercaptoethanol and dithiothreitol. As a result, normal chondrocyte-matrix interaction was disrupted, and the structure of the extracellular matrix was altered. Furthermore, disruption of disulfide bonds also reduced the role of PG-M/versican G3 domain in mediating cell adhesion. Our study provides strong evidence of the importance of proteoglycan interactions through intermolecular disulfide bonds in cartilage firmness and cell-matrix stability.  相似文献   

19.
Cell adhesion and proliferation mediated through the G1 domain of versican   总被引:8,自引:0,他引:8  
We have demonstrated previously that versican stimulated cell proliferation through the G3 domain. In these experiments, we show that versican mini-gene-transfected cell lines exhibited decreased cell-substratum interaction and increased cell proliferation. Exogenous addition of growth medium containing the versican gene product produced the same results. Because the G1 domain of versican is structurally similar to the G1 domain of aggrecan and to link protein, both of which play role in cell adhesion, we hypothesized that versican's proliferative effects may be a consequence of its ability to reduce cell adhesion, and may be mediated through the G1 domain. To investigate this, we expressed a G1 construct in NIH3T3 cells and showed that it reduced cell adhesion and enhanced cell proliferation. We then demonstrated that deletion of the G1 domain from versican greatly, but not completely, reversed the effects of versican: G1-deletion mutants of versican show slightly reduced amounts of cell adhesion and slightly increased rates of proliferation. We concluded that versican can stimulate cell proliferation via two mechanisms: through two EGF-like motifs in the G3 domain which play a role in stimulating cell growth, and through the G1 domain, which destabilizes cell adhesion and facilitates cell growth. We purified the G1 product with an affinity column and demonstrated that it reduced cell adhesion and enhanced cell proliferation.  相似文献   

20.
Aggrecan, a major structural proteoglycan in cartilage, contains three globular domains, G1, G2, and G3, as well as sequences for glycosaminoglycan modification. A large number of proteases are implicated in aggrecan cleavage in normal metabolism, aging, and arthritis. These proteases are known to cleave at the IGD, KS, and CS domains. Here we report for the first time evidence of cleavage at a novel site, the carboxyl tail of aggrecan. Results from deletion mutants of the tail indicated that the likely cleavage sites were two consensus sequences, RRLXK and RSPR, present in the aggrecan analogs of many species. This was confirmed by site-directed mutagenesis. A construct containing two G3 domains (G3G3) was also found to cleave between the G3 duplicates. When G3 tail was linked to a glycosaminoglycan-modifying sequence, it was protected from cleavage. Furin inhibitor also reduced the levels of tail cleavage. The carboxyl tails of chicken and human versican were not cleaved, despite the presence of the consensus sequence. Our studies indicate that the basic amino acids present in the tail play an important role in cleavage, and this mechanism is specific to aggrecan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号